
Constraint Programming Letters 1 (2007) 7-13 Submitted 5/2007; Published 11/2007

Constraint Programming - the Paradigm to Watch

Mark Wallace mark.wallace@infotech.monash.edu.au

Faculty of Information Technology

Monash University

Clayton, Vic 3800, Australia

Editor: Pascal Van Hentenryck

1. The Big Picture

Computer hardware has improved much more than computer software over the last 50
years. Moore’s law for its rate of performance improvement is an astounding testimony to
the success of research and development in computer technology. This stunning progress has
been complemented by the internet revolution, resulting from a marriage of computation and
communication, which fundamentally changes the role of computation - and communication
- in our society.

Over the last fifty years there has also been a huge investment in software research and
development, and this has yielded some significant benefits. Indeed the internet revolution
was made possible by advances in both hardware and software.

However the early visions of software researchers for provably correct programs; comput-
ers that can perceive, think, and communicate like people; and the automatic compilation of
high-level specifications into computer programs, have not been realised. Like many other
ventures, software research started out with high expectations, and when the goals proved
more challenging than expected some disillusionment set in for a period. Now I believe this
period is over, and we have positive and realistic objectives and expectations for software
research.

It is striking how much opportunity has now opened up for software advances to make
a massive impact. We have:

• Unimaginable computing power

• Masses of up-to-date data

• Huge numbers of users online almost permanently

The old software challenges remain - and we will not lose sight of them! - but many new
challenges have arisen:

• Supporting information retrieval, maintenance and communication for communities
of people of different sizes from 1 to a billion

• Modelling and optimising the behaviour and plans of organisations, or communities,
in relation to other organisations with whom they interact

c©2007 Mark Wallace.



Constraint Programming - the Paradigm to Watch

• Supporting negotiation, cooperation, commitments and payments between organisa-
tions

The ubiquity of computation in all manner of devices from watches to vehicle braking
systems, telephones, heart pacemakers, automated share trading mechanisms and power
stations, means that we depend absolutely on correctly functioning hardware and software
for our lives and the functioning of our society. At the same time the increasing performance
of computer chips has finally encountered limits and as a result increased computing power
is being achieved by multiplying the processors instead of miniaturising them.

Software research over the years has continually developed new paradigms, formalisms
and languages to express them. It has been said that all software research reduces to differ-
ent compiler projects. Most software research focuses on functionality that is implemented
in some underlying programming language, rather than the language itself, yet the language
constrains much of what can be implemented on top. New paradigms - like the web - require
new languages, such as XML.

The constraint programming paradigm has been curiously underexploited. CP arrived
at a time when the disillusion with software research was at its peak. Research investment
and focus was on making the best of what we had rather than exploring newly available
programming paradigms. CP nevertheless prospered in certain areas - in particularly in-
dustrial combinatorial optimisation problems. Yet CP offers scope for exploitation that has
hardly been noticed let alone harnessed.

CP is the ideal paradigm for encoding correct programs that must run efficiently on multi-
processor hardware. The embedding of highly efficient specialist constraint solvers within a
declarative host programming language offers an ideal platform for building correct, efficient
software that can run on multiprocessor hardware without modifications to the language.

The facility to build in one or many different solvers into a CP system provides exactly
the flexibility needed to serve for information representation and retrieval, system modelling
and optimisation and even negotiation and contracts. For example the article by Hassan
Ait Kaci in this volume, describes how CP can provide a formally correct and efficient
operational base for the Semantic Web.

CP is ideal for modelling because of its support for encapsulation (a predicate in a declar-
ative language is a perfect example of encapsulation), and modularity (also an immediate
consequence of its declarative semantics). It also supports optimisation through its con-
straints solvers: indeed CP has been used as a basis for integrating optimisation techniques
from Operations Research, Artificial Intelligence and Mathematical Programming. CP is a
programming paradigm whose time has come - no other paradigm is so well suited to meet
so many of today’s software challenges in the context of today’s computer architectures.

2. CP in Theory

The great deficiency of Prolog - and other versions of declarative programming - is that for
almost every problem, the algorithm Prolog uses to solve it is exponential.

With this background it is extraordinary that the first successes of CP, implemented as
an extension to Prolog, was in efficiently solving complex problems, such as car-sequencing
(Dincbas et al., 1988b) and cutting-stock (Dincbas et al., 1988a).

8



Mark Wallace

While Prolog wilfully ignored the issue of worst-case complexity, the theory of CP has
increasingly focussed on this very issue. A typical result is the design of a new algorithm for
constraint propagation showing how much inference is achieved at what cost in worst-case
complexity. Of course the program from which the constraint is invoked almost always
suffers from exponential complexity! However if a constraint performs more inference with
a smaller complexity bound, then the performance of the program using this constraint is
likely also to improve. Indeed if the search behaviour is not changed but merely pruned,
then the program performance is guaranteed to be better. This kind of theoretical result is
relevant but not revolutionary.

While the ultimate complexity hypothesis P 6= NP is unlikely to be solved by someone
in the CP community in the next ten years, the CP paradigm does engage and exploit a
useful line of theory delineating broader and broader classes of tractable and intractable
constraints and problems involving them (Cohen and Jeavons, 2006). For brevity we shall
call large scale real-life problems from industry, government, health, education, environment
etc. LSCO problems (“large scale combinatorial optimisation” problems). While there are
LSCO problems that fall into the tractable (polynomially solvable) classes these are typically
only subproblems of a larger NP-hard problem. However even though LSCO problems are
almost all NP-hard, the study of tractable problem classes is important.

The real key to solving LSCO problems is to separate the core NP-hard problem from
the tractable remainder of the problem. When the optimal solution to the core is found,
the problem of finding an optimal solution to the full problem can be solved polynomially.

Methods for eliciting the core from an arbitrary problem are of great practical impor-
tance. Finding a core with fewer variables can dramatically reduce the time required to find
an optimal solution. Naturally if P = NP then the core of every NP-complete problem is
empty: in other words we cannot find the minimal core unless we can determine whether
P = NP . In general we can only find a “hard” part of the problem which is a superset of
the core (or more correctly a core). However even non-optimal techniques for decomposing
an arbitrary problem into its “hard” and tractable parts would be very important contri-
butions. There is some similarity with research into finding the backbone (Parkes, 1997) of
a problem - except that problems with backbones may themselves have no tractable part.
The backbone is a property of a problem instance rather than a property of a problem class.

A second interesting and problematic notion is that of a search heuristic. Naturally
for NP-hard problems no heuristic can be guaranteed to work for all problem instances, as
formally established by the “no free lunch” theorems (Wolpert and McReady, 1997). There
are classes of problems for which certain search heuristics appear to work well (such as the
earliest available variable choice heuristic for scheduling problems). The CP research com-
munity has performed little analysis of the boundaries of the classes of problems for which
specialised heuristics perform well. The analysis could be experimental - by generating
random problems from the class and applying/not applying the heuristic - or theoretical
by deriving the expected search tree size for problems of that class with and without the
heuristic. The interesting research questions ask what most simple problem class benefits
from the heuristic; what, if any, additional constraints destroy the benefits of the heuristic;
how it is impacted by cost functions; and how robust the heuristic is to other changes in
the problem class.

9



Constraint Programming - the Paradigm to Watch

3. CP Platforms

CP is first and foremost a programming paradigm, and therefore the key research contri-
bution in CP is an implementation of the paradigm. CP only has a future if there are
successful working CP systems.

The first generation of CP implementations were dogged by secrecy. The platforms were
seen as so innovative and valuable that the organisations funding them insisted on main-
taining a lead by keeping implementation details hidden. At the same time the functionality
of these systems was being continually enhanced driven by application demand and ongoing
research. These enhancements included new types of solvers, new search facilities and new
global constraints, as well as new ways of combining solvers and search, and facilities for
interfacing to other software as well as to end users.

The result was that prototypes implementing new advances in CP were often stand-
alone, and the major platforms had other application-specific enhancements which were
inaccessible to the community. Many researchers built their prototypes from scratch, used
them for experimenting with a new research idea, but then had no way to maintain the new
feature and integrate it with other features designed and implemented by other researchers.

Standardisation has obvious advantages for the user of a technology, and obvious dis-
advantages for its ongoing research and development. However with the second generation
of CP systems, it has become more feasible to build an architecture that locks in stable
facilities, and allows room for enhancements in the research directions that we have now
learnt to be fruitful.

In the next ten years it is crucial that researchers contribute their ideas and implemen-
tations to CP platforms that:

• are maintained and made available to other researchers in the future

• include both the full range of “standard” facilities, as well as other new features
introduced by other researchers

Naturally this approach requires open access to these platforms, and requires researchers
to adopt these platforms for their research and experiments, rather than resorting to C++
or Java, in order to avoid “wasting” time on learning how to use a CP platform, that is
always changing as more facilities are added. The free availability of the ECLiPSe CP
platform (Apt and Wallace, 2007) is an exciting step in this direction. Other open source
implementations have been made available before (Diaz and Codognet, 2001) (Laburthe,
2000), but none with the wide range of facilities and the programming environment of
ECLiPSe.

One important step in this direction is standardisation on problem modelling facilities:
most obviously by establishing a standard problem modelling language. Once all problems
are expressed using the same language, then future platforms will be built to interface to
this language. The benefits of a shared modelling language include better communication
between researchers from different groups, more and better comparison of research results,
and an easier way “in” for new researchers and users of CP technology. This author is
involved in one proposal for such a standard modelling language, called Zinc (Garcia de la
Banda et al., 2006).

10



Mark Wallace

4. Users and Applications of CP

CP is well-positioned to become a mainstream programming language, with the advent of
multi-processor desktops and laptops, with more and more processors per machine. Mean-
while the role of CP in expressing correct programs and especially for reasoning about
program behaviour is an extremely important and still somewhat underdeveloped strength
(but see Delzanno and Podelski (1999); Podelski (2004)). The facility to deal with partial
information is at the heart of program analysis, and the facilities for constraint propagation
and solving precisely meet the needs of program analysis.

The application area of CP that has been strongly taken up in industry is optimisation.
CP is probably the technology of choice for short-term scheduling (Baptiste et al., 2001) and
for configuration (Subbarayan, 2005). It has many successes in the areas of logistics1, trans-
portation2 and rostering 3. It has been used to build tools used by the leading researchers
in bio-informatics (Konagurthu et al., 2006).

Much of this work could fall under the old name of “operations research”. However
the advent of CP has moved the field on from using a tractable approximation of the real
problem and solving the approximation, to modelling the real problem in all its complexity
and - as far as practicable - solving it.

The mathematical restriction to “convexity” has in the CP approach been ignored,
rather than overcome. However the resulting freedom of thought and expression has lead
to new ways of solving complex problems. New ways of integrating different subproblem
solvers, partly based just on the ease of expression that comes from CP, have made it
possible to solve more complex problems involving more different kinds of resources than
was previously practical. The new direction is a move from optimising one department to
the whole company, or from one company to the whole supply chain.

Orthogonally there has always been a separation between planning and control. Plans
are optimised using sophisticated algorithms and precise (but actually incorrect) estimates
of the data. These plans cannot be carried out, due to delays and other problems on the
day, and so operational controllers perform naive dispatching to keep things going.

The benefits from integrating planning and control will be enormous, and CP researchers
are starting to explore this exciting challenge (Van Hentenryck and Bent, 2006).

The technology enabling these advances is not just CP. The CP paradigm makes it possi-
ble to integrate different approaches into a single integrated algorithm and system (Wallace,
2007). However crucial technology comes from the different approaches themselves: math-
ematical programming, specialised algorithms from operations research, stochastic search
methods and metaheuristics, artificial intelligence, constraint propagation, advanced tech-
niques for propositional satisfiability, and theorem proving.

Perhaps the greatest excitement that I hope will be generated by CP is the bringing
together of researchers from these diverse areas. A common problem modelling language
and a common problem solving framework - CP - provides a conduit for the communica-
tion and - more importantly - the understanding of ideas from other communities. With
this shared basis for expression and experimentation, people from these different areas can

1. www.ilog.com/industries/logistics/index.cfm

2. www.carmensystems.com/research development/research reports.htm

3. www.friartuck.net/customer/case-studies/nuh.htm

11



Constraint Programming - the Paradigm to Watch

discuss, compete and ultimately combine the best of their techniques. Thus CP can under-
pin the establishment of a brand new research community addressing large scale industrial
combinatorial optimisation problems exploiting ideas and techniques from all these back-
grounds.

References

K.R. Apt and M. G. Wallace. Constraint Logic Programming Using ECLiPSe. Cambridge
Univerity Press, 2007. ISBN 0-521-86628-6.

Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-Based Scheduling. Kluwer
Academic Publishers, Norwell, MA, USA, 2001. ISBN 0792374088.

D. Cohen and P. Jeavons. The complexity of constraint languages. In Handbook of Con-
straint programming, chapter 6. Elsevier, 2006.

Giorgio Delzanno and Andreas Podelski. Model checking in CLP. Lecture Notes in Computer
Science, 1579:223–239, 1999.

Daniel Diaz and Philippe Codognet. Design and implementation of the GNU prolog system.
Journal of Functional and Logic Programming, 2001(6), 2001.

M. Dincbas, H. Simonis, and P. van Hentenryck. Solving a Cutting-Stock Problem in
Constraint Logic Programming. In Robert A. Kowalski and Kenneth A. Bowen, editors,
Fifth International Conference on Logic Programming, pages 42–58, Seattle, WA, August
1988a. MIT Press.

M. Dincbas, H. Simonis, and P. van Hentenryck. Solving the Car Sequencing Problem
in Constraint Logic Programming. In European Conference on Artificial Intelligence
(ECAI-88), Munich, W. Germany, August 1988b.

M. Garcia de la Banda, K. Marriott, R. Rafeh, and M. Wallace. The modelling language
zinc. In Proc. CP06, pages 700–705. Springer-Verlag, 2006.

A.S. Konagurthu, J.C. Whisstock, P.J. Stuckey, and A.M. Lesk. MUSTANG: A multiple
structural alignment algorithm. Proteins: Structure, Function, and Bioinformatics, 64
(3):559–574, 2006.

F. Laburthe. CHOCO: implementing a cp kernel. In CP’00 Post Conference Workshop
on Techniques for Implementing Constraint programming Systems - TRICS, Singapore,
2000.

Andrew J. Parkes. Clustering at the phase transition. In AAAI/IAAI, pages 340–345, 1997.

A. Podelski. Constraints in program analysis and verification. In Principles and Practice
of Constraint Programming - CP 2004, pages 1–4, 2004.

S. Subbarayan. Integrating CSP decomposition techniques and BDDs for compiling config-
uration problems. In Proc. CP-AI-OR, volume 3524 of LNCS, Brussels, 2005.

12



Mark Wallace

P. Van Hentenryck and R. Bent. Online Stochastic Combinatorial Optimization. MIT Press,
2006. ISBN 978-0-262-22080-4.

M.G. Wallace. Hybrid algorithms in constraint programming. In Recent Advances in Con-
straints, volume 4651 of ”LNCS”, pages 1–32. Springer, 2007.

D.H. Wolpert and W.G McReady. No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation, 1(1):67–82, 1997.

13


