Constraint Programming Letters 3 (2008) 21-35 Submitted 11/2006; Published 2/2008

A Quadratic Propagator for the Inter-Distance Constraint

Claude-Guy Quimper
QUIMPER@ALUMNI .UWATERLOO.CA
University of Waterloo

School of Computer Science

Alejandro L 6pez-Ortiz
ALOPEZ-O@UWATERLOO.CA
University of Waterloo
School of Computer Science

Gilles Pesant
PESANT@CRT.UMONTREAL.CA

Ecole Polytechnique de Montréal
Department of Computer Engineering

Editor: Pascal Van Hentenryck

Abstract

We present a new propagator achieving bounds consistentigefdNTER-DISTANCE constraint. This con-
straint ensures that, among a set of variablgs. .., X,,, the difference between two variables is at least
p. This restriction models, in particular, scheduling peshé in which tasks requine contiguous units of a
disjunctive resource to be completed. Until now, the bestmpropagator for bounds consistency had time
complexity O(n?). In this work we propose a quadratic propagator for the savel bf consistency. We
then show that the theoretical gain gives savings of an arfleragnitude in our benchmark of scheduling
problems. Our propagator is also the first one to filter theatde p.

1. Introduction

The cumulative scheduling problewith one resource of capacity consists of a set of tasks, ..., T, to
which we associate four integer variables: a releasetjreedeadlinel;, a processing timg; and a capacity
requirement;. Each taskl; must start at time; such that; < t; < d; — p;. LetQ(¢) be the set of tasks
in process at time, i.e. the taskg; such that; < ¢ < ¢; + p;. We have the resource capacity constraint
> reaq) ¢ < C. This problem is NP-Hard even in the case where- 1 which we call, in this particular
case, thelisjunctive scheduling problem

Edge finders (Carlier and Pinson (1994); Mercier and Van &taytk (2005)) have largely been used to
solve scheduling problems. This technique reduces thevalter;, d;] by detecting time zones that must
be allocated to a subset of the tasks making these zonesilabésdor other tasks. The goal is to increase
release times and reduce deadlines without eliminatingfeagible solution. The problem is said to be
bounds consistenthen intervalgr;, d;] have been fully shrunk, i.e. when there exists at least onglite
schedule in which task; starts on time-; and at least one feasible schedule in which t&skinishes on
timed;. Itis NP-Hard to make a scheduling problem bounds congistgan in the disjunctive case. For this
reason, edge finders try to reduce, in polynomial time, the sf the intervals without necessarily achieving
bounds consistency. A backtracking search assigns gfdiires to tasks and uses the edge finder to reduce
the size of the search tree.

(©2008 Quimper, Lopez-Ortiz, and Pesant.

QUIMPER, LOPEZORTIZ, AND PESANT

We study the disjunctive scheduling problem when all tagksetthe same processing time= p. This
problem can be solved in polynomial time (Garey et al. (1981} traditional algorithms only return one
solution that generally does not satisfy the side condsairhese side constraints can even make the problem
NP-Hard. See, for instance, the runway scheduling probkertiouchine et al. (2004)). The flexibility that
constraint programming offers to encode such problems &sant. A singleNTER-DISTANCE constraint
can encode the disjunctive scheduling problem. This caimitensures that starting times are pairwise distant
by at least units of time. The global constraint offers a stronger pngrthan theO(n?) associated binary
constraintg.X; — X;| > p.

Artiouchine and Baptiste (2005) recently proposed&dn?) propagator that enforces bounds consistency
on the NTER-DISTANCE constraint. By achieving bounds consistency, their prapagprunes the search
space better than edge finding algorithms resulting in €neloice points in the backtracking search and a
better time performance. We propose in this work a quadpatipagator that is faster both in theory and in
practice, even for small instances. We generalize titeR-DISTANCE constraint by letting the distande
be a constrained variable whose domain can be pruned. Thisgto be useful when one wants to maximize
the distance between each pair of variables. The generafizaf the INTER-DISTANCE constraint as well
as the experiments with this new constraint extend the wagkipusly presented in Quimper et al. (2006).

Throughout the paper, we will consider the &etb] as the interval of integer values betweemandb
inclusively. Ifa > b, then the intervala, b] is empty. We nevertheless say that the lower bound of thevaite
ismin([a, b]) = a and the upper bound iaax([a, b]) = b as for non-empty intervals.

We presentin Section 2 some notions about how bounds censjstan be enforced on theTER-DISTANCE
constraint. We then explain in Section 3 how the computataonbe simplified. Based on this simplification,
we present in Section 4 our algorithm and a data structutestisures the quadratic behaviour of our propa-
gator. We show in Section 5 how bounds consistency can becadfon the distance variabfe Finally, we
present in Section 6 some experiments proving the efficiehoyr propagator.

2. The INTER-DISTANCE Constraint

Régin (1997) first introduced thevtER-DISTANCE constraint under the nangdobal minimum distance
constraint The expressionNTER-DISTANCE([X7, ..., X,], P) holds if and only if| X; — X;| > P for
all i # j. WhenP = 1, the INTER-DISTANCE specializes into an AL -DIFFERENT constraint (Régin
(1994); Mehlhorn and Thiel (2000); Lopez-Ortiz et al. (3)0 Régin (1994) showed that a single global
constraint, in many cases, causes more domain reductinﬂhhﬁ@ equivalent binary constraints. This
observation also applies to th&TER-DISTANCE constraint which is the general case. Artiouchine and
Baptiste provided the first propagator for the bounds ctersty of the NTER-DISTANCE constraint. The
running time complexity of their propagator is cubic. Thgbout the paper, we will assume thats fixed
to a valuep and therefore can be assigned to this value. In Section 5energlize to the case whefeis
not fixed and show how to enforce bounds consistency on afitcained variables.

We use the following problem as a running example.

Example 1 Consider a problem witm = 3 tasks with starting time%}, 7>, and 75 and processing time
p = 6 subject to the following release times and deadlines.

7‘1:2 7‘2:10 7‘3:4
dy =12 ds = 20 ds =21

Figure 1 shows the release times and deadlines as well assibfeaschedule.

Let the domain of; be the intervalr;,d; — p] i.e., Ty € [2,6], T» € [10,14], andT5 € [4,15]. After
propagation of the constrailNTER-DISTANCE([T1, T», T3], p), the variables get assigned to the following
values.

22

A QUADRATIC PROPAGATOR FOR THEINTER-DISTANCE CONSTRAINT

Figure 1: Release times and deadlines for the three tasksiloles in Example 1. The black rectangles
represent a feasible schedule.

Here, taskl’; must finish before or at tim& in order to allow tasksl; and 75 to meet their deadlines.
TaskT; cannot start before time 14 since the two other tasks are owipteted before this time. Finally, task
T5 must be executed between tagksand 75 forcing its release time to be increased and its deadlinegto b
reduced.

Garey et al. (1981) designed an algorithm that finds a selstdisfying the NTER-DISTANCE constraint
in O(nlogn) steps. Their algorithm proceeds in two phases. In the fims@hthe algorithm computes a set
of intervalsF' in which no tasks are allowed to start. We call this setftrbidden regiongnd denote it by
F. Their number is bounded above hythe number of tasks. Once these forbidden regions are dechpu
the second phase uses a greedy strategy to schedule the tasks

Artiouchine and Baptiste (2005) and Garey et al. (1981) weehtasic functions as main pillars of their
algorithm. We define the completion time of a schedule asithe 6f completion of the very last task and
the starting time of a schedule as the starting time of thg fiest task. Letect(F,r,q) be theearliest
completion timeof a schedule of tasks with release timeand unbounded deadline such that no task starts
in a forbidden region contained in the set of forbidden regib. Symmetrically, leist(F, d, q) be thelatest
starting timeof a schedule of tasks with deadlind and unbounded release time such that no task starts in a
forbidden region inF’. Computingect(F, r, ¢) andist(F, d, q) can be done il)(q) steps using the following
recurrences.

B r ifg=0

ect(F,r,q) = {min{t¢F|tZect(F,r,q—l)}—i—p if g >0 1)
B d ifg=0

Ist(F,d,q) = {max{tgmtglst(F,d,q_U—p} if g >0 (2)

The functionist helps to explain the algorithm of Garey et al. (see Algorithjrthat computes the
forbidden regiond”. Their algorithm starts with an empty set of regidiis= () and processes each release
time r in decreasing order. Consider a deadlihand letA(r,d) be the tasks whose release times and
deadlines are both contained in the intefvatl]. The valudst(F, d,|A(r,d)|) — r represents the amount of
slack in the intervalr, d], i.e. an upper bound on the processing time that can be uskd interval]r, d] for
tasks that are notit\(r, d). If Ist(F, d, |A(r,d)|) — r is smaller tharp then there is not enough room to fit a
whole task not inA(r, d). The algorithm therefore appendsiiothe forbidden regiofist(F, d, |A(r,d)| +
1) + 1,7 — 1]. Indeed, any task starting in this region consumes too mimeé in the intervalr, d] to
allow the completion of the tasks if\(r, d). If Ist(F,d,|A(r,d)|) —r < 0, there are too many tasks that
require to be executed in the interyald], the problem is unsolvable. Upon termination, the set dfiftden
regions contains up ta distinct regions. These regions are sufficient to find a &wiub the problem but
are insufficient to enforce bounds consistency on #ER-DISTANCE constraint. Artiouchine and Baptiste
explain how to compute a larger set of regions that are seiffi¢o filter the NTER-DISTANCE constraint.

Using the functions:ct andist, Artiouchine and Baptiste describe two types of adjustnietervals
necessary and sufficient to maintain bounds consistench@iNTTER-DISTANCE constraint. Aninternal

23

QUIMPER, LOPEZORTIZ, AND PESANT

F—1
R « the set of release times
D « the set of deadlines
for » € R in decreasing ordedo
d — argmin Ist(F,d, |A(r,d)|) — r
deD
s« Ist(F,d,|A(r,d)|) —r
if s < 0then
| return The problem is unsolvable
else ifs < p then
| F— FU[lst(F,d,|A(r,d)|+1)+1,r —1]
return I
Algorithm 1: Algorithm that computes the forbidden regions. Garey gt1881) use special data structures
to obtain a complexity 0O (n logn).

adjustment interval an interval in which no task is allowed to start. The sentéinal adjustment intervals
is a superset of the forbidden regiofis

Definition 1 (Internal Adjustment Interval) Given two time points: and d and an integer0 < ¢ <
|A(r, d)|, theinternal adjustment intervd]. 4 , is defined as follows.

Ir,d,q = [lSt(Fa da q + 1) + 13 BCt(F, T, |A(T7 d)| - q) - 1] (3)
Theorem 2 presents in which context we will use internal stijient intervals.

Theorem 2 (Artiouchine and Baptiste (2005))Given two time points, d, and anintege® < ¢ < |A(r,d)|,
no task can start in the intervd}. 4 ,.

Internal adjustment intervals appear in problems wher@agof variables must be assigned to values in
an interval that is small enough to force a certain strudtwb® maintained. The internal adjustment intervals
ensure that a single variable does not occupy the “spac&/@Variables.

Theexternal adjustment intervadge intervals in which a subset of the tasks are not allowsthi.

Definition 3 (External Adjustment Intervals) Given two time points and d and an integel) < ¢ <
|A(r, d)|, theinternal adjustment intervdl), 4 , is defined as follows.

E.aqq = [lst(F,d,q+2)+1,ect(F,r,|A(r,d)| —q) —1] (4)
Theorem 4 shows the main property of external adjustmeeatvats.

Theorem 4 (Artiouchine and Baptiste (2005))Given two time points, d and an integef) < ¢ < |A(r,d)],
ataski ¢ A(r,d) cannot start in the intervakl,. q 4.

External adjustment intervals appear in problems whereamof variables compete for an interval of
values. The variables whose domain is not restricted tostiiall interval and hence do not belong to this
group of competing variables must be assigned to valueg@eut§the interval.

Table 1 shows the internal and external adjustment intefvain Example 1.

Artiouchine and Baptiste formally proved that the interauadl external adjustment intervals are necessary
and sulfficient to enforce bounds consistency on HEER-DISTANCE constraint.

24

A QUADRATIC PROPAGATOR FOR THEINTER-DISTANCE CONSTRAINT

Internal Adjustment Intervals

r:\d; 12 20 21

2 A7y A9, 715,13} {[3,7],[9,13], [16, 19]}
4 0 {[15, 9]} {19, 9], [16, 15]}

10] {[15,15]} {[16,15]}

External Adjustment Intervals

2 {[_37 7]} {[37 7]7 [97 13]} {[_37 7]7 [37 13]7 [97 19]}
4 0 {19,913 {13,91,19, 15]}

10 0 {19, 15]} {[9, 15]}

Table 1: Internal and external adjustment intervals geadtay a pair of time point§-;, d;) from Example 1.
Intervals are written in decreasing order with respect tampeterq. The forbidden regions are
F ={[-3,1],]3,3],[9,9]}.

3. Towards a Quadratic Time Propagator

Internal and external adjustment intervals in the worseceaay be computed with up to possible release
timesr, n possible deadlineg and produce)(n) adjustment intervals each. Therefof¥n?) adjustment
intervals could be checked in the worst case, hence the tinlbéccomplexity of the Artiouchine-Baptiste
propagator.

In fact, the union of all internal and external adjustmetsivals consists of a maximum 6(n?) disjoint
intervals. It is therefore possible to ignore intervals thiee subsets of already discovered intervals in order
to achieve a quadratic complexity. To avoid computing reldunt adjustment intervals, we introduce the
notion of dominance between two pairs of time points. Wheia g@f time points dominates another pair,
the adjustment regions of the dominant pair contain somgstdgent regions of the other pair.

Definition 5 (Dominance) A pair of time points(r, d) dominates a pair of time points”, d’) if we have
min(Z, q,4) < min(l g 4) andmax(1, 4,4) > max(l ¢ 4) forall 0 < ¢ < min(|A(r, d)|, |A(r, d’)|). We
write (r,d) = (', d’).

Notice that we usually haveA(r,d)| # |A(r/,d")|. The definition of dominance only applies for
below min(|A(r, d)|, |A(r,d’)|). Also, for a fixed deadline/, the dominance operatok] is transitive,
i.e. if (r;,d) < (rj,d) and(rj,d) < (rg,d) hold, then(r;,d) < (rg,d) holds. In Example 1 we have
(2,21) = (4,21).

The following lemmas describe a property of the and!/st functions that will allow us to efficiently
decide if a pair of time points dominates another one.

Lemma 6 If ect(F,r,q) < ect(F,r’,q") thenect(F,r,q + k) < ect(F,r’,q' + k) foranyk > 0.

Proof The proof is by induction ok. The base cask = 0 is trivial. Suppose that the lemma holds for
k — 1. We haveect(F,r,q + k) = ect(F,r,q + k — 1) + p + s wheres is a (potentially null) shift caused
by the (potentially empty) forbidden regidfi = [ect(F,r,q + k — 1),ect(F,r,q + k — 1)+ s] C F.
Similarly we haveect(F,r',q' + k) = ect(F,r’,¢ + k — 1) + p + s’ wheres’ is the shift caused by
the forbidden regiorf; = [ect(F,7",q' + k — 1),ect(F,r',¢ + k — 1) + s'| C F. If sis large enough

to obtainect(F,r,q + k) > ect(F,r',q¢ + k), then we havel; C F;. SinceF; is a subset off},
both functionsect(F,r,q + k) andect(F,r’,q' + k) are shifted to the same value. We therefore obtain
ect(F,r,q+ k) = ect(F,r',q' + k) which completes the induction step. [|

Lemma 7 If ist(F,d,q) < lst(F,d,q") thenlst(F,d,q + k) < Ist(F,d',q + k) foranyk > 0.

25

QUIMPER, LOPEZORTIZ, AND PESANT

Proof Symmetric to the proof of Lemma 6. |

We now describe three different situations in which a patiro€ points dominates another one. The first
case is described in Lemma 8.

Lemma 8 Consider the pairs of time points, d) and(r, d’) such thatl < d'. If |A(r,d)| = |A(r,d’)| then
(ryd) = (r,d).

Proof Letk = |A(r,d)] = |A(r,d")|. We havelst(F,d,0) < Ist(F,d’,0) and by Lemma 7, for any
0 < ¢ < k,wehavest(F,d,q+1) <lIst(F,d' g+ 1). This impliesmin(Z, 4) < min(l, 4) and since
we havemax (I, 4.4) = max(I, 4 4) we have(r,d) = (r,d’). |

From Lemma 8 we conclude thét0, 20) >~ (10,21) in Example 1. Similarly, we have the following
Lemma.

Lemma 9 Consider the pairs of time poin{s, d) and (', d) such that: < " and |A(r,d)| = |A(+',d)|.
Then(r,d) < (r',d).

Proof Letk = |A(r,d)| = |A(+',d)]. We haveect(F,r,0) < ect(F,r',0) and by Lemma 6, for any
0<q<k,ect(F,rk—q)<ect(F,r" k—q). Thisimpliesmax(I, 4 ,) < max(l,s 4,) and since we have
min(7, 4,4) = min(l,v 4,4) we have(r,d) < (', d). |

In Example 1, Lemma 9 detectd, 20) < (10,20). We show a last case where a pair of time points
dominates another one.

Lemma 10 Let (r,d) and (', d) be two pairs of time points such theA(r,d)| = |A(+’,d)| + k and
ect(F,r, k) < ect(F,r',0). Then(r',d) = (r,d).

Proof Clearly, for0 < ¢ < |A(+,d)], the internal adjustment intervals ; , andI,. 4, Share the same
lower bound. For the upper bounds, we have the following:

max(I, q,4) = ect(F,r,|A(r,d)] —q) — 1
=ect(F,r,|A(,d)|+k—q)) -1

5
<ect(F,r',|A(r',d)| —q) —1 Using Lemma 6 andct(F,r, k) < ect(F,r’,0) ®)
< max(l, 4,4)
Therefore we havé’, d) > (r,d). |

In Example 1, we havél0, 20) > (2,20) from Lemma 10.

Lemma 10 is crucial to obtain a quadratic algorithm. Consaldeadlinel and a sequence of release
timesr; < ry < ... < 7 such that(r,d) < (r2,d) < ... < (rg,d). There can be up t®(n?) internal
adjustment intervals associated to these pairs of timetpoldevertheless, the union of @l(n?) intervals
can be given by the union of onl§(n) intervals. Given two integerg andq such thatl < j < k and
0 < g < |A(r;,d)|, we first notice that the following intervals all share a sdaveer bound. The union of
the intervals is therefore equal to the interval whose uppeand is the greatest.

J

g Liaq = min(ly; a,4), max, max (I, q,q)] (6)
= [min(ly; d,q), max(I; 4,4)] (7)
= If,‘j,d7q (8)

26

A QUADRATIC PROPAGATOR FOR THEINTER-DISTANCE CONSTRAINT

We see that up t®(n) adjustment intervals can be contained in a single intekysihg this observation,
we compute the union of all adjustment intervals formed leyghirs(ry, d), . . ., (rx, d) using the following
equation. To simplify the notation, we IR\ (711, d)| = 0 sincery1 is undefined.

k |A(r;,d)|—1 ko |A(ri,d)|—1
U U Zaw=U U L ©)
=1 q=0 =1 g=|A(ri41,d)|

Notice that the left hand side of Equation 9 2&:?) intervals while the right hand side has orln)
intervals. Indeed, the number of intervals to unite is glvgaﬁ:f:l (|A(ry, d)|—|A(ri41,d)]). The telescopic
series simplifies tdA(r1, d)| — |A(rg+1,d)| = |A(r1,d)|. In Example 1 since we havg, 20) < (10, 20)
we obtain the following:

(I2,20,0 U I2,20,1) U ([10,20,0) = 12,201 UT10,20,0
— [9,7]U[15,15]
— [15,15]

Theorem 11 There areO(n?) internal adjustment intervals that subsume any other maérdjustment
interval.

Proof Consider a deadliné and two release times < r;. For every valug) < ¢ < |A(r;,d)|, we
havemin(/,, 44) = min(I,, 4,). We havemax(I,, 4,4) > max(l,; 44) if and only if (r;, d) = (r;,d).
Consequently, we havg, 4., C I, a4 ifand only if (r;, d) > (r;,d).

Consider the list of release times < r, < ... < r, sorted in non-decreasing order. If for soe
we have(ry,d) = (rx+1,d), we can safely ignore the release timg ; since for every interval we have
Iy dg € Iy aq for 0 < g < |A(rry1,d, q)|. After removing all dominated release times, we obtain a
list of release times;, < ry, < ... < rg,,. Equation 9 shows how the internal adjustment intervals,
for anyr andq are subsumed b§(n) intervals. Since there a@(n) deadlinesi, there areD(n?) internal
adjustment intervals that subsume any other internal adprt interval. [|

4. A Quadratic Propagator
4.1 General Scheme

The idea behind the algorithm s the following. We proceshateadline in increasing order. If two deadlines
d; andd; are equal and their associated release times satisfyr;, we process both deadlines at the same
time but used; as a reference. For every deadlihg we compute the longest sequence of release times
Toy < Tgy < ... <71y suchthalry,,d;) < (rg,,d;) < ... < (rs,,d;) as we did in Theorem 11. Using
this sequence and Equation 9, we compute the union of alinat@djustment intervals generated by the
pairs of time points whose deadlineds To build the sequence, we iterate through all the releasestin
non-decreasing order. Two cases can occur where we cay skijela release time;.

Case 1 (¢; > d;): Suppose that the deadlidg associated t@; has not been processed yet, idg.> d;.
For such a release timg, two cases can occur. We choose the smallest release-fiméose deadline
has already been processed and suchsthat r;. If such ary exists, thenA(r;,d;)| = |A(rx, d;)| and
Lemma 9 insures thdt, d;) > (r;,d;). All adjustment intervals frongr;, d;) will be taken into account
when iterating throughy,. If no suchr;, exists, then we havA(r;,d;) = () and no adjustment intervals are
associated to the pair;, d;). In either case, the pafr;, d;) can be ignored.

27

QUIMPER, LOPEZORTIZ, AND PESANT

Case 2 ; > ;). A release timer; greater tham; can also be safely ignored. Léf be the deadline
processed beforé;. Since|A(r;,d;)| = |A(r;,d;)|, Lemma 8 insures that we have;, d;) > (r;,d;) and
adjustment intervals frorfr;, d;) have already been taken into account when procesging

We prove that Algorithm 2 constructs for every deadlih@ sequence;, < r;, < ... < rj, such that
(rjy,di) < (rj,,di) < ... =< (r4,d;). This sequence with Equation 9 compute the adjustmentiater

Let D be the set of deadlines sorted in increasing order. If twallilees are equal, exclude from the
one whose associated release time is the smallest.
P—0,A—0,U;«—0,V1<i<n
1 for d; € D do
P—PU{j|d;=d}
[— min(P)
2 for j € PNl,i] do
a— |A(ry, d;)]
b — |A(r, d;)|
if ect(F,r;,b—a) <r;then
U —U;U{(l,q) |a <qg<b}
L | — j;
Ui < U U{(l,q) | 0 < ¢ <|A(r,di)[}
for (j, q) cU;doA«— AU Irj,di.,q

g for all deadlinesd; in non-decreasing ordeilo
ri—min{t ¢ A|t>r}

if d; € D then

10 | for (j,q) eUido A — AUE,, 4, ,

for i € [1,n]dor; « 7}

Algorithm 2: Enforcing bounds consistency for theTIER-DISTANCE constraint. We assume that the
forbidden regiond” have already been computed and that release times are sodethat; < r,; and
Ty =Tit1 = dl < di+1-

Lemma 12 Algorithm 2 encodes in the data structure a sequencér;,, d;) < (rj,,d;) < ... < (rj,,d;)
generating all internal adjustment intervals associatedhte deadlinel;.

Proof Thefor loop on line 2 processes each release titnsuch thail; < d; andr; < r;. Other release
times can be safely ignored as they correspond to the caseb2 stated above.

Line 3 tests whethesct(F,r;,b — a) < r;. The first time Line 3 is executed, the test is positive since
| = j = min(P) anda = b. We therefore includér,i(p), d;) in the sequence. Subsequent tests are positive
only if the pair(r;, d;) dominates the last pa(r;, d;) tested positive as proved below.

ect(F,ri,b—a) <r; = ect(F,r;,b—a) <ect(F,r;,0) by definition ofect (10)
= ect(F,r;,b—q) <ect(F,rj,a—q)V0<qg<a by Lemma6 (11)
= (r1,d;) < (r,di) by def. of dominance (12)

Similarly, one can prove that a negative test implies thatl;) - (r;, d;) and that the paifr;, d;) should
not belong to the sequence. The sequence r; < ... < 1 is therefore not missing any release time.

Each time the relatiofr;, d;) < (r;,d;) is discovered, the algorithm appenddipthe tuples(j, ¢) for
|A(r;,d;)|] < q < |A(r,d;)|. Eachtupleg(j,) € U; will be used later to create the internal internal adjust-
ment intervald,., 4, .. According to Equation 9, these intervals are sufficient. |

28

A QUADRATIC PROPAGATOR FOR THEINTER-DISTANCE CONSTRAINT

Following Artiouchine and Baptiste (2005), the secdmdloop on line 8 processes the deadlines in non-
decreasing order. The external adjustment intervals arefibre computed in an order that ensures that the
processed variable is not contained in @xfy;, d;) considered so far.

Algorithm 2 only prunes the release times. Following Pu@@8@), one can prune the deadlines by creat-
ing the symmetric problem where tagk has release time = —d; and deadline’, = —r;. Algorithm 2 can
then prune the release times in the symmetric problem, wiriches the deadlines in the original problem.

The data structure8 andU; can be implemented using some linked lists. However, tahtaalgorithm
running in quadratic time, we need to craft a special datzcsire to store the adjustment intervalsAn
This data structure should allow the execution of lines 7arj 10 in no more tha®(n) time even ifA
contains up ta0(n?) intervals. The next section describes how the adjustmeatstauctured can meet
these requirements.

4.2 Keeping Track of Adjustment Intervals

To guarantee a quadratic running time, we must carefullygdethe data structurd that contains the ad-
justment intervals. We use a doubly-linked list containafigadjustment intervals sorted by lower bounds,
including empty intervals. Each interval, 4, , has a pointenext(I,, 4,,4) andprevious(I,, 4, 4) pointing

to the next and previous intervals in the list. The first imé¢has itsprevious pointer undefined as the last
interval has itsext pointer undefined. Each interval has also a pointettQ(I,, 4,,,) POINting tol,., 4, ¢+1
wherer;, andr; might be equal. If the interval,., 4, ,+1 does not exist, the pointer is undefined. The data
structure initially contains an empty interval with lowesind—oc used as a sentinel.

We implement Line 7 of Algorithm 2 as follows. We insert theeirvals in decreasing order of lower
bounds. Since we process variables by increasing deadlimekwer bound of ., 4, o is larger or equal to
any lower bound inserted iA and is therefore inserted at the end of the linked list.

Suppose we have inserted the inteta= 1., 4, , and we now want to insert the intenial = 1., 4, 411
Algorithm 3 computes the insertion point in the linked listhe algorithm follows thevrevious pointers
starting fromI; until it either finds the insertion point or finds an intenia| 4, , Whosenext() pointer
is assigned. In the latter case, the algorithm followsrthet@) pointer to finally follow thenext pointers
until the insertion point is reached. When following thertQ (I, 4,.q) Pointer, the algorithm necessarily
goes to or beyond the insertion point since we hawe(l,, 4, ;) < min(Z;) and by Lemma 7 we have
min(nextQ(I,, 4,.4)) < min(nextQ(I1)) and thereforenin(I,, 4, ¢+1) < min(lz).

We show that Algorithm 3 inserts a sequencéXf) intervals in the linked list in O(n) steps.

Lemma 13 Algorithm 3 inserts on line 7 a sequence(®fr) internal adjustment intervals in the linked list
Ain O(n) time.

Proof There is a maximum of intervals inA whosenext@ pointer is undefined, therefore the first while
loop runs inO(n). Let I, be an interval explored by the second while loop. The intefydies between
nextQ(I) and the insertion point. By Lemma 7, if an intervglwas pointing tol, with its nextQ pointer,
the intervall; would lie between’ andI;. Sincels # I, we conclude that no intervals point fg with its
next() pointer. There is a maximum af such intervals. The second while loop rungtw). We therefore
showed that Line 7 can be implementedi(n) steps. [|

nextQ

I, dy.q+1— - — insert. point I, dy,q < < I

Figure 2: Nodes in the doubly linked list that Algorithm 3itssto find the insertion point of an adjustment
interval.

29

QUIMPER, LOPEZORTIZ, AND PESANT

I « previous(Iy; 4, 4)
IQ — Irj,di,q+1
while nextQ(I) is undefined\ min(7) > min(/y) do
| I = previous(I)
if min(7) > min(Jz) then
I — nextQ(I)
while min(next(I)) < min(Iz) do
| I+ next(I)

Insertl, after/ _ _ . _ _
Algorithm 3: Compute the insertion point df., 4, ,+1 provided that/,., 4, , has already been inserted.

Line 10 inserts il a sequence aP(n) external adjustment intervals. Notice that at this paihalready
contains the internal adjustment intervals and that by diefim the lower bound ofz;., 4, , is equal to the
lower bound off,., 4, 4+1. Line 10 can be implemented by simply changifigq; 11 in A by E;., 4, 4. If

I, .4;,4+1 do€s not exist im, it can be added using Algorithm 3.
Lemma 14 A sequence aP(n) external adjustment intervals can be insertedim) time.

Proof For every pairj, q) € U;, one can keep a pointer on its associated intefival, , in the data structure

A. Following thenezt@ pointer to reach,, 4, 4+1 takes constant time. Setting the new upper bound of
I, .4, q+1 also takes constant time. Thext() pointer is undefined for the last interval to insert, Alglonit3

can insert the intervdl,, 4, ,+1 In O(n) steps. The total running time complexity is theref6xe:). [|

Line 9 of Algorithm 2 can be implemented if0(«(n)) steps wherex is the inverse of Ackermann’s
function. We create a union-find data structSreith elements from to n. For each elemerif we associate
a timet; initially set tor; and a pointep; initially unassigned. When inserting adjustment intesvalA in
decreasing order of lower bounds, we simultaneously gdratlecreasing order the sets9n If an interval
I is inserted such that € I, we change; to max(/) + 1. We then follow thenext pointers from/ to check
if other intervals interseat; and increase; for each intersecting interval. if becomes greater or equal to
t;+1, we merge the set i§ containingi with the set containing+ 1. The pointerp; is used to keep track
of the last intervall tested witht; in order not to check twice a same interval. When executimg 9 of
Algorithm 2, we simply retrieve fron$ the sets containingi and returrt; wherej = max(s).

Lemma 15 Updating and requesting the variablgsis performed inO(n?) steps.

Proof There are up t@(n?) intervals in the data structuré and each of them can be visited at most once.
Indeed, the pointerg; make sure that the search is always resumed from the lattd/igdsition in the list

A. The union-find data structure ensures that if an intefvad A increases more than one release time,
this operation is done in constant time since all releasegiare grouped in the same sefSimnd only the
representative; of this set is updated. Merging the elementsiand requesting the representive elements
takesO(na(n)). The total complexity is therefor@(n?). [|

4.3 Running Time Analysis

The functionlst(F, d;, q) can be implemented with a table wherelst(F,r;,q) = L[i][q]. Such a table
requiresO(n?) steps to initialize and supports function evaluation instant time. We use a similar table
to evaluateect(F,r, q). The function|A(r,d;)| can trivially be computed i®(n) steps. Since the release
times are sorted in non-decreasing order, one can comfjte, d;)| using the following recursion.

30

A QUADRATIC PROPAGATOR FOR THEINTER-DISTANCE CONSTRAINT

|A(Tj,1,di)| if djfl > d;

|A(rj,di)| = {|A(rj1,di)|—1 otherwise (13)

The function|A(r;, d;)| can be implemented with a tahle such thatD[i][j] = |A(r;, d;)|. Initializing
the table using the recursion above requitésa?) steps. Each function call then takes constant time.

Theorem 16 The running time complexity of Algorithm 2G5 n?).

Proof We assume that the forbidden regidnéave already been computediin log n) time as explained
by Garey et al. (1981). The data structuregndU; are implemented using linked lists and the functions
Ist, ect, and|A(r;,d;)| are implemented using tables. The data structuiie implemented with the data
structure described in Section 4.2. Release times andideadire sorted in(n log n) time. Initializing the
algorithm therefore require3(n?) time.

For a fixed:, every pair(l, ¢) added taU; on line 4 and line 6 have a distinct componemanging from
0 ton exclusively. There are therefore at moxtn) elements irJ; that were appended if?(1) time. The
complexity to build the lisU; is thereforeD(n). Line 7 takesD(n) time to execute as stated by Lemma 13.
The total running time for théor loop on line 1 is therefor®(n?).

By Lemma 15, the cummulative running time complexity of time 9 isO(n?). Line 10 take$)(n) time
to execute as stated in Lemma 14. Toeloop on line 8 therefore runs i@ (n?).

Since the initialization and thfer loops on lines 1 and 8 all run i@(n?) time, the total running time
complexity of Algorithm 2 is als@(n?). |

5. Achieving Bounds Consistency on the Distance Variable

We now consider the general form of theTlER-DISTANCE constraint i.e., when the distance variablés
not fixed. The constrainNTER-DISTANCE(X, ..., X,,, P) is satisfied if and only if

iFj = [Xi=Xj|=P (14)

Clearly, if there is an assignmefiX, ..., X,,) that satisfies the case whéh= p, then this assignment
is also a support foP = p — 1. Therefore, any value that has a support in the domaiki,dbr P = p has
a support in the same domain fBr< p. To prune theX; variables, one only needs to find the values in the
domains that have a support f&r = min(D(P)). The algorithm presented in Section 4, when used with
p = min(D(P)), can therefore prune thg; variables.

To prune the domain oP, we rely on the following observation. If the constraint issatisfiable with
P = p, then it is unsatisfiable foP > p. Therefore, to achieve bounds consistency on the vari@btme
only needs to prune the valueax(D(P)).

The algorithm by Garey et al. allows testing(Xin log n) steps, whether there exists a solution foe=
p. Using a one-sided binary search, we can find the largesévall>(P) such that theNTER-DISTANCE
constraint is satisfiable. A one-sided binary search r@igrvaluep whose test require@(n logn) time has
a running time complexity of(n log n log p). We can enforce bounds consistency on tiieeR-DISTANCE
constraint when the distance variable is not fixedim? + n log n log p) steps.

6. Experiments

We implemented our algorithm using the ILOG Solver C++ ligrglLOG (1998)}. The library already
provides a propagator for theitER-DISTANCE constraint calledicAllMinDistance and offers two levels

1. The code discussed in this section is available upon stdugen the first author.

31

QUIMPER, LOPEZORTIZ, AND PESANT

Scalability Test

3 T T T T 1
Artiouchine-Baptiste
25 Our propagator ————-
2 =
N
H
1 =
0.5 |~
0 |
0 10

Figure 3: Running time of the Artiouchine-Baptiste propagdO(n?)) and our propagatorf(n?)) as a
function of the number of tasks. For this scalability test, set all release times t¢ = 0 and
deadlines tal; = 6n.

of consistency, namelycBasicandllcExtended We also implemented the Artiouchine-Baptiste propagator
(Artiouchine and Baptiste (2005)). The scalability testgmmted in Section 6.1 was run on a Pentium 111 900
MHz with 256 Mb of memory and ILOG Solver 4.2. The experimemtsthe runway scheduling problem
presented in Section 6.2 were run on a AMD64 Opteron 250 with4daGHz dual processor (only one
processor was used) and 3 GB of RAM. We used on this compuwdibttary ILOG Solver 6.1. All reported
times are averaged over 10 runs.

6.1 Scalability Test

In order to test the scalability of our propagator, we firshgider a scheduling problem with a single
INTER-DISTANCE constraint overn tasks whose release times ate= 0 and deadlines aré, = np for

all tasks. This problem has a trivial solution and is solvatheut backtracking. We clearly see on Fig-
ure 3 that our propagator has a quadratic behaviour whiléthieuchine-Baptiste propagator has a cubic
behaviour. This observation is supported by the study ofttlid and second derivative.

6.2 Runway Scheduling Problem

We then study a runway scheduling problem (Artiouchine ef20104)). In this problemy airplanes have
certain time intervals in which they can land. Airplane n@mbhass; time intervalsir}, d], ..., [r", d}"].
Following Artiouchine and Baptiste (2005), we create focteairplane a variable; with domain[r}, d7]
representing the landing time and a variahlevith domain(1, s;] representing the landing time interval. We
have the constraintg > k < t; > rf ande; <k <— t; < df. Finally, we have the constraint
INTER-DISTANCE([t1, ..., t,], P) that ensures a gap @f between each landing. For security reasons, we
want to maximize the timé between each landing.

In order to fairly compare both propagators, we enhancedthieuchine-Baptiste propagator with the
algorithm presented in Section 5 to prune the varidghl&Vith ILOG Solver, we set the goal of performing a
binary search o. We also set the objective of minimizirgP. We use the default heuristics and parameters

proposed by ILOG Solver.

32

A QUADRATIC PROPAGATOR FOR THEINTER-DISTANCE CONSTRAINT

We used the same benchmark as Artiouchine and Baptiste Y@80&ndom runway scheduling problems
where the sizes of intervals and the gap between intervaJsvarg. Figure 4 shows the number of problems
solved in the benchmark in a given period of time. Our propagaas consistently solved the problems at
greater speed than the Artiouchine-Baptiste propagat@.two levels of consistency provided in ILOG for
thellcAllMinDistanceconstraint were not able to compete with the Artiouchingtigte propagator nor with
ours.

Number of Random Problems Solved in a Given Period of Time
10 ———1—————7————

90

80

70

60

50

40

30

Number of Problems Solved

20

10 - - Our propagator m
= Artiouchine-BaPtiste —————
0 - 1 o o 1 1 1 1 1 1 1 1
0.0001 0.001 0.01 0.1 1 10
Time (s)

Figure 4: Number of random problems from the benchmark ttesewsolved in a given period of time.

We then consider the runway scheduling problem where ahwats have the same length. Over both
series of problems available in the benchmark Artiouchime Baptiste (2005), we obtain an improvement
over the Artiouchine-Baptiste propagator proportionattd his observation is compatible with the running
time complexities of the algorithms. Figure 5 shows the nendf problems solved in a given period of
time. Again, the two levels of consistency provided in ILO& thellcAlIMinDistanceconstraint were not
competitive.

7. Conclusion

We presented a new propagator achieving bounds consistentlye INTER-DISTANCE constraint. The
running time complexity of0(n?) improves by a factor of. the previous best known propagator. This
theoretical improvement gives practical savings in scliegproblems.

It is still an open problem whether there exists@fn log n) propagator for theNTER-DISTANCE con-
straint achieving bounds consistency. It would also beé@sting to study how the constraint could be gener-
alized for the cumulative scheduling problem.

33

QUIMPER, LOPEZORTIZ, AND PESANT

Percentage of Solved Problems in the Mono-Pattern Benchmark in a Given Period of Time
60 r —T r — r — r —T T —

Percentage of Solved Problems
w
o
T

10 -
/ Our propagator
/! Artiouchine-BaPtiste —————
O 1 - 1 1 I 1 1 1 I 1 1 1 I 1 1 1 1 1 L
0.001 0.01 0.1 1 10 100
Time (s)

Figure 5: Number of problems with equal intervals from thadienark that were solved in a given period
of time.

Acknowledgments

This work was partially supported by the Canadian Natur&@i8es and Engineering Research Council.

References

K. Artiouchine and P. Baptiste. Inter-distance constrafuh extension of the all-different constraint for
scheduling equal length jobs. Rroceedings of the 11th International Conference on Pples and
Practice of Constraint Programmingages pp. 62—76, 2005.

K. Artiouchine, P. Baptiste, and C. Durr. Runway scheduylvith holding loop. InProceedings of Second
International Workshop on Discrete Optimization MethauProduction and Logisticpages pp. 96-101,
2004.

J. Carlier and E. Pinson. Adjustment of heads and tails ferjob-shop problem.European Journal of
Operation Rsearch78:146-161, 1994.

M.R. Garey, D.S. Johnson, B.B. Simons, and R.E. Tarjan. @&dhmgy unit-time tasks with arbitrary release
times and deadline$SIAM Journal on Computind 0(2):256-269, 1981.

ILOG. ILOG Solver 4.2 user's manual 998.

A. Lopez-Ortiz, C.-G. Quimper, J. Tromp, , and P. van Beek.faét and simple algorithm for bounds
consistency of the alldifferent constraint. Pmoceedings of the Eighteenth International Joint Confere
on Atrtificial Intelligence pages pp. 245—-250, 2003.

34

A QUADRATIC PROPAGATOR FOR THEINTER-DISTANCE CONSTRAINT

K. Mehlhorn and S. Thiel. Faster algorithms for bound-cstesicy of the sortedness and alldifferent con-
straint. InProceedings of the Sixth International Conference on Rpies and Practice of Constraint
Programming pages pp. 306—-319, 2000.

L. Mercier and P. Van Hentenryck. Edge finding for cumulasebeduling. Submitted for publication, 2005.

J.-F. Puget. A fast algorithm for the bound consistency loifaconstraints. InProceedings of the Fifteenth
National Conference on Atrtificial Intelligencpages pp. 359-366, 1998.

C.-G. Quimper, A. Lépez-Ortiz, and G. Pesant. A quadratippgator for the inter-distance constraint. In
Proceedings of the 21rst National Conference on Artificraklligence (AAAI 06)pages pp. 123-128,
2006.

J.-C. Régin. A filtering algorithm for constraints of difesice in CSPsProceedings of AAAI-94ages pp.
362-367, 1994.

J.-C. Régin. The global minimum distance constraint. hécdd report, ILOG, 1997.

35

