
Constraint Programming Letters 3 (2008) 21–35 Submitted 11/2006; Published 2/2008

A Quadratic Propagator for the Inter-Distance Constraint

Claude-Guy Quimper
QUIMPER@ALUMNI .UWATERLOO.CA

University of Waterloo
School of Computer Science

Alejandro L ópez-Ortiz
ALOPEZ-O@UWATERLOO.CA

University of Waterloo
School of Computer Science

Gilles Pesant
PESANT@CRT.UMONTREAL.CA

École Polytechnique de Montréal
Department of Computer Engineering

Editor: Pascal Van Hentenryck

Abstract
We present a new propagator achieving bounds consistency for the INTER-DISTANCE constraint. This con-

straint ensures that, among a set of variablesX1, . . . , Xn, the difference between two variables is at least
p. This restriction models, in particular, scheduling problems in which tasks requirep contiguous units of a
disjunctive resource to be completed. Until now, the best known propagator for bounds consistency had time
complexityO(n3). In this work we propose a quadratic propagator for the same level of consistency. We
then show that the theoretical gain gives savings of an orderof magnitude in our benchmark of scheduling
problems. Our propagator is also the first one to filter the variablep.

1. Introduction

Thecumulative scheduling problemwith one resource of capacityC consists of a set of tasksT1, . . . , Tn to
which we associate four integer variables: a release timeri, a deadlinedi, a processing timepi and a capacity
requirementci. Each taskTi must start at timeti such thatri ≤ ti ≤ di − pi. Let Ω(t) be the set of tasks
in process at timet, i.e. the tasksTi such thatti ≤ t ≤ ti + pi. We have the resource capacity constraint
∑

Ti∈Ω(t) ci ≤ C. This problem is NP-Hard even in the case whereC = 1 which we call, in this particular
case, thedisjunctive scheduling problem.

Edge finders (Carlier and Pinson (1994); Mercier and Van Hentenryck (2005)) have largely been used to
solve scheduling problems. This technique reduces the intervals [ri, di] by detecting time zones that must
be allocated to a subset of the tasks making these zones unavailable for other tasks. The goal is to increase
release times and reduce deadlines without eliminating anyfeasible solution. The problem is said to be
bounds consistentwhen intervals[ri, di] have been fully shrunk, i.e. when there exists at least one feasible
schedule in which taskTi starts on timeri and at least one feasible schedule in which taskTi finishes on
timedi. It is NP-Hard to make a scheduling problem bounds consistent, even in the disjunctive case. For this
reason, edge finders try to reduce, in polynomial time, the size of the intervals without necessarily achieving
bounds consistency. A backtracking search assigns starting times to tasks and uses the edge finder to reduce
the size of the search tree.

c©2008 Quimper, López-Ortiz, and Pesant.

QUIMPER, LÓPEZ-ORTIZ, AND PESANT

We study the disjunctive scheduling problem when all tasks have the same processing timepi = p. This
problem can be solved in polynomial time (Garey et al. (1981)) but traditional algorithms only return one
solution that generally does not satisfy the side constraints. These side constraints can even make the problem
NP-Hard. See, for instance, the runway scheduling problem (Artiouchine et al. (2004)). The flexibility that
constraint programming offers to encode such problems is anasset. A single INTER-DISTANCE constraint
can encode the disjunctive scheduling problem. This constraint ensures that starting times are pairwise distant
by at leastp units of time. The global constraint offers a stronger pruning than theO(n2) associated binary
constraints|Xi −Xj | ≥ p.

Artiouchine and Baptiste (2005) recently proposed anO(n3) propagator that enforces bounds consistency
on the INTER-DISTANCE constraint. By achieving bounds consistency, their propagator prunes the search
space better than edge finding algorithms resulting in smaller choice points in the backtracking search and a
better time performance. We propose in this work a quadraticpropagator that is faster both in theory and in
practice, even for small instances. We generalize the INTER-DISTANCE constraint by letting the distanceP
be a constrained variable whose domain can be pruned. This proves to be useful when one wants to maximize
the distance between each pair of variables. The generalization of the INTER-DISTANCE constraint as well
as the experiments with this new constraint extend the work previously presented in Quimper et al. (2006).

Throughout the paper, we will consider the set[a, b] as the interval of integer values betweena andb

inclusively. Ifa > b, then the interval[a, b] is empty. We nevertheless say that the lower bound of the interval
is min([a, b]) = a and the upper bound ismax([a, b]) = b as for non-empty intervals.

We present in Section 2 some notions about how bounds consistency can be enforced on the INTER-DISTANCE

constraint. We then explain in Section 3 how the computationcan be simplified. Based on this simplification,
we present in Section 4 our algorithm and a data structure that ensures the quadratic behaviour of our propa-
gator. We show in Section 5 how bounds consistency can be enforced on the distance variableP . Finally, we
present in Section 6 some experiments proving the efficiencyof our propagator.

2. The INTER-DISTANCE Constraint

Régin (1997) first introduced the INTER-DISTANCE constraint under the nameglobal minimum distance
constraint. The expression INTER-DISTANCE([X1, . . . , Xn], P) holds if and only if|Xi − Xj | ≥ P for
all i 6= j. WhenP = 1, the INTER-DISTANCE specializes into an ALL -DIFFERENT constraint (Régin
(1994); Mehlhorn and Thiel (2000); López-Ortiz et al. (2003)). Régin (1994) showed that a single global
constraint, in many cases, causes more domain reduction than the n(n−1)

2 equivalent binary constraints. This
observation also applies to the INTER-DISTANCE constraint which is the general case. Artiouchine and
Baptiste provided the first propagator for the bounds consistency of the INTER-DISTANCE constraint. The
running time complexity of their propagator is cubic. Throughout the paper, we will assume thatP is fixed
to a valuep and therefore can be assigned to this value. In Section 5, we generalize to the case whereP is
not fixed and show how to enforce bounds consistency on all constrained variables.

We use the following problem as a running example.

Example 1 Consider a problem withn = 3 tasks with starting timesT1, T2, andT3 and processing time
p = 6 subject to the following release times and deadlines.

r1 = 2 r2 = 10 r3 = 4

d1 = 12 d2 = 20 d3 = 21

Figure 1 shows the release times and deadlines as well as a feasible schedule.
Let the domain ofTi be the interval[ri, di − p] i.e., T1 ∈ [2, 6], T2 ∈ [10, 14], andT3 ∈ [4, 15]. After

propagation of the constraintINTER-DISTANCE([T1, T2, T3], p), the variables get assigned to the following
values.

T1 = 2 T2 = 14 T3 = 8

22

A QUADRATIC PROPAGATOR FOR THEINTER-DISTANCE CONSTRAINT

0 5 10 15 20 25

Task 1

Task 2

Task 3

Figure 1: Release times and deadlines for the three tasks described in Example 1. The black rectangles
represent a feasible schedule.

Here, taskT1 must finish before or at time8 in order to allow tasksT2 andT3 to meet their deadlines.
TaskT2 cannot start before time 14 since the two other tasks are not completed before this time. Finally, task
T3 must be executed between tasksT1 andT2 forcing its release time to be increased and its deadline to be
reduced.

Garey et al. (1981) designed an algorithm that finds a solution satisfying the INTER-DISTANCE constraint
in O(n log n) steps. Their algorithm proceeds in two phases. In the first phase, the algorithm computes a set
of intervalsF in which no tasks are allowed to start. We call this set theforbidden regionsand denote it by
F . Their number is bounded above byn, the number of tasks. Once these forbidden regions are computed,
the second phase uses a greedy strategy to schedule the tasks.

Artiouchine and Baptiste (2005) and Garey et al. (1981) use two basic functions as main pillars of their
algorithm. We define the completion time of a schedule as the time of completion of the very last task and
the starting time of a schedule as the starting time of the very first task. Letect(F, r, q) be theearliest
completion timeof a schedule ofq tasks with release timer and unbounded deadline such that no task starts
in a forbidden region contained in the set of forbidden regionsF . Symmetrically, letlst(F, d, q) be thelatest
starting timeof a schedule ofq tasks with deadlined and unbounded release time such that no task starts in a
forbidden region inF . Computingect(F, r, q) andlst(F, d, q) can be done inO(q) steps using the following
recurrences.

ect(F, r, q) =

{

r if q = 0
min{t 6∈ F | t ≥ ect(F, r, q − 1)}+ p if q > 0

(1)

lst(F, d, q) =

{

d if q = 0
max{t 6∈ F | t ≤ lst(F, d, q − 1)− p} if q > 0

(2)

The functionlst helps to explain the algorithm of Garey et al. (see Algorithm1) that computes the
forbidden regionsF . Their algorithm starts with an empty set of regionsF = ∅ and processes each release
time r in decreasing order. Consider a deadlined and let∆(r, d) be the tasks whose release times and
deadlines are both contained in the interval[r, d]. The valuelst(F, d, |∆(r, d)|)− r represents the amount of
slack in the interval[r, d], i.e. an upper bound on the processing time that can be used inthe interval[r, d] for
tasks that are not in∆(r, d). If lst(F, d, |∆(r, d)|)− r is smaller thanp then there is not enough room to fit a
whole task not in∆(r, d). The algorithm therefore appends toF the forbidden region[lst(F, d, |∆(r, d)| +
1) + 1, r − 1]. Indeed, any task starting in this region consumes too much time in the interval[r, d] to
allow the completion of the tasks in∆(r, d). If lst(F, d, |∆(r, d)|) − r < 0, there are too many tasks that
require to be executed in the interval[r, d], the problem is unsolvable. Upon termination, the set of forbidden
regions contains up ton distinct regions. These regions are sufficient to find a solution to the problem but
are insufficient to enforce bounds consistency on the INTER-DISTANCE constraint. Artiouchine and Baptiste
explain how to compute a larger set of regions that are sufficient to filter the INTER-DISTANCE constraint.

Using the functionsect and lst, Artiouchine and Baptiste describe two types of adjustmentintervals
necessary and sufficient to maintain bounds consistency on the INTER-DISTANCE constraint. Aninternal

23

QUIMPER, LÓPEZ-ORTIZ, AND PESANT

F ← ∅
R← the set of release times
D ← the set of deadlines
for r ∈ R in decreasing orderdo

d← argmin
d∈D

lst(F, d, |∆(r, d)|) − r

s← lst(F, d, |∆(r, d)|) − r

if s < 0 then
return The problem is unsolvable

else ifs < p then
F ← F ∪ [lst(F, d, |∆(r, d)| + 1) + 1, r − 1]

return F
Algorithm 1 : Algorithm that computes the forbidden regions. Garey et al. (1981) use special data structures
to obtain a complexity ofO(n log n).

adjustment intervalis an interval in which no task is allowed to start. The set of internal adjustment intervals
is a superset of the forbidden regionsF .

Definition 1 (Internal Adjustment Interval) Given two time pointsr and d and an integer0 ≤ q <

|∆(r, d)|, theinternal adjustment intervalIr,d,q is defined as follows.

Ir,d,q = [lst(F, d, q + 1) + 1, ect(F, r, |∆(r, d)| − q)− 1] (3)

Theorem 2 presents in which context we will use internal adjustment intervals.

Theorem 2 (Artiouchine and Baptiste (2005))Given two time pointsr, d, and an integer0 ≤ q < |∆(r, d)|,
no task can start in the intervalIr,d,q.

Internal adjustment intervals appear in problems where a group of variables must be assigned to values in
an interval that is small enough to force a certain structureto be maintained. The internal adjustment intervals
ensure that a single variable does not occupy the “space” of two variables.

Theexternal adjustment intervalsare intervals in which a subset of the tasks are not allowed tostart.

Definition 3 (External Adjustment Intervals) Given two time pointsr and d and an integer0 ≤ q <

|∆(r, d)|, theinternal adjustment intervalEr,d,q is defined as follows.

Er,d,q = [lst(F, d, q + 2) + 1, ect(F, r, |∆(r, d)| − q)− 1] (4)

Theorem 4 shows the main property of external adjustment intervals.

Theorem 4 (Artiouchine and Baptiste (2005))Given two time pointsr, d and an integer0 ≤ q < |∆(r, d)|,
a taski 6∈ ∆(r, d) cannot start in the intervalEr,d,q.

External adjustment intervals appear in problems where a group of variables compete for an interval of
values. The variables whose domain is not restricted to thissmall interval and hence do not belong to this
group of competing variables must be assigned to values outside of the interval.

Table 1 shows the internal and external adjustment intervals from Example 1.
Artiouchine and Baptiste formally proved that the internaland external adjustment intervals are necessary

and sufficient to enforce bounds consistency on the INTER-DISTANCE constraint.

24

A QUADRATIC PROPAGATOR FOR THEINTER-DISTANCE CONSTRAINT

Internal Adjustment Intervals
ri\dj 12 20 21

2 {[7, 7]} {[9, 7], [15, 13]} {[3, 7], [9, 13], [16, 19]}
4 ∅ {[15, 9]} {[9, 9], [16, 15]}
10 ∅ {[15, 15]} {[16, 15]}

External Adjustment Intervals
ri\dj 12 20 21

2 {[−3, 7]} {[3, 7], [9, 13]} {[−3, 7], [3, 13], [9, 19]}
4 ∅ {[9, 9]} {[3, 9], [9, 15]}
10 ∅ {[9, 15]} {[9, 15]}

Table 1: Internal and external adjustment intervals generated by a pair of time points(ri, dj) from Example 1.
Intervals are written in decreasing order with respect to parameterq. The forbidden regions are
F = {[−3, 1], [3, 3], [9, 9]}.

3. Towards a Quadratic Time Propagator

Internal and external adjustment intervals in the worst case may be computed with up ton possible release
timesr, n possible deadlinesd and produceO(n) adjustment intervals each. Therefore,O(n3) adjustment
intervals could be checked in the worst case, hence the cubictime complexity of the Artiouchine-Baptiste
propagator.

In fact, the union of all internal and external adjustment intervals consists of a maximum ofO(n2) disjoint
intervals. It is therefore possible to ignore intervals that are subsets of already discovered intervals in order
to achieve a quadratic complexity. To avoid computing redundant adjustment intervals, we introduce the
notion of dominance between two pairs of time points. When a pair of time points dominates another pair,
the adjustment regions of the dominant pair contain some adjustment regions of the other pair.

Definition 5 (Dominance) A pair of time points(r, d) dominates a pair of time points(r′, d′) if we have
min(Ir,d,q) ≤ min(Ir′,d′,q) andmax(Ir,d,q) ≥ max(Ir′,d′,q) for all 0 ≤ q < min(|∆(r, d)|, |∆(r′, d′)|). We
write (r, d) ≻ (r′, d′).

Notice that we usually have|∆(r, d)| 6= |∆(r′, d′)|. The definition of dominance only applies forq

below min(|∆(r, d)|, |∆(r′, d′)|). Also, for a fixed deadlined, the dominance operator (≺) is transitive,
i.e. if (ri, d) ≺ (rj , d) and (rj , d) ≺ (rk, d) hold, then(ri, d) ≺ (rk, d) holds. In Example 1 we have
(2, 21) ≻ (4, 21).

The following lemmas describe a property of theect and lst functions that will allow us to efficiently
decide if a pair of time points dominates another one.

Lemma 6 If ect(F, r, q) ≤ ect(F, r′, q′) thenect(F, r, q + k) ≤ ect(F, r′, q′ + k) for anyk ≥ 0.

Proof The proof is by induction onk. The base casek = 0 is trivial. Suppose that the lemma holds for
k − 1. We haveect(F, r, q + k) = ect(F, r, q + k − 1) + p + s wheres is a (potentially null) shift caused
by the (potentially empty) forbidden regionFi = [ect(F, r, q + k − 1), ect(F, r, q + k − 1) + s] ⊆ F .
Similarly we haveect(F, r′, q′ + k) = ect(F, r′, q′ + k − 1) + p + s′ wheres′ is the shift caused by
the forbidden regionFj = [ect(F, r′, q′ + k − 1), ect(F, r′, q′ + k − 1) + s′] ⊆ F . If s is large enough
to obtainect(F, r, q + k) ≥ ect(F, r′, q′ + k), then we haveFj ⊆ Fi. SinceFj is a subset ofFi,
both functionsect(F, r, q + k) and ect(F, r′, q′ + k) are shifted to the same value. We therefore obtain
ect(F, r, q + k) = ect(F, r′, q′ + k) which completes the induction step.

Lemma 7 If lst(F, d, q) ≤ lst(F, d′, q′) thenlst(F, d, q + k) ≤ lst(F, d′, q′ + k) for anyk ≥ 0.

25

QUIMPER, LÓPEZ-ORTIZ, AND PESANT

Proof Symmetric to the proof of Lemma 6.

We now describe three different situations in which a pair oftime points dominates another one. The first
case is described in Lemma 8.

Lemma 8 Consider the pairs of time points(r, d) and(r, d′) such thatd < d′. If |∆(r, d)| = |∆(r, d′)| then
(r, d) ≻ (r, d′).

Proof Let k = |∆(r, d)| = |∆(r, d′)|. We havelst(F, d, 0) < lst(F, d′, 0) and by Lemma 7, for any
0 ≤ q < k, we havelst(F, d, q + 1) ≤ lst(F, d′, q + 1). This impliesmin(Ir,d,q) ≤ min(Ir,d′,q) and since
we havemax(Ir,d,q) = max(Ir,d′,q) we have(r, d) ≻ (r, d′).

From Lemma 8 we conclude that(10, 20) ≻ (10, 21) in Example 1. Similarly, we have the following
Lemma.

Lemma 9 Consider the pairs of time points(r, d) and (r′, d) such thatr < r′ and |∆(r, d)| = |∆(r′, d)|.
Then(r, d) ≺ (r′, d).

Proof Let k = |∆(r, d)| = |∆(r′, d)|. We haveect(F, r, 0) < ect(F, r′, 0) and by Lemma 6, for any
0 ≤ q < k, ect(F, r, k − q) ≤ ect(F, r′, k − q). This impliesmax(Ir,d,q) ≤ max(Ir′,d,q) and since we have
min(Ir,d,q) = min(Ir′,d,q) we have(r, d) ≺ (r′, d).

In Example 1, Lemma 9 detects(4, 20) ≺ (10, 20). We show a last case where a pair of time points
dominates another one.

Lemma 10 Let (r, d) and (r′, d) be two pairs of time points such that|∆(r, d)| = |∆(r′, d)| + k and
ect(F, r, k) ≤ ect(F, r′, 0). Then(r′, d) ≻ (r, d).

Proof Clearly, for0 ≤ q < |∆(r′, d)|, the internal adjustment intervalsIr,d,q andIr′,d,q share the same
lower bound. For the upper bounds, we have the following:

max(Ir,d,q) = ect(F, r, |∆(r, d)| − q)− 1

= ect(F, r, |∆(r′, d)|+ k − q))− 1

≤ ect(F, r′, |∆(r′, d)| − q)− 1 Using Lemma 6 andect(F, r, k) ≤ ect(F, r′, 0)

≤ max(Ir′,d,q)

(5)

Therefore we have(r′, d) ≻ (r, d).

In Example 1, we have(10, 20) ≻ (2, 20) from Lemma 10.
Lemma 10 is crucial to obtain a quadratic algorithm. Consider a deadlined and a sequence of release

timesr1 < r2 < . . . < rk such that(r1, d) ≺ (r2, d) ≺ . . . ≺ (rk, d). There can be up toO(n2) internal
adjustment intervals associated to these pairs of time points. Nevertheless, the union of allO(n2) intervals
can be given by the union of onlyO(n) intervals. Given two integersj andq such that1 ≤ j ≤ k and
0 ≤ q < |∆(rj , d)|, we first notice that the following intervals all share a samelower bound. The union of
the intervals is therefore equal to the interval whose upperbound is the greatest.

j
⋃

i=1

Iri,d,q = [min(Irj ,d,q), max
1≤i≤j

max(Iri,d,q)] (6)

= [min(Irj ,d,q), max(Irj ,d,q)] (7)

= Irj ,d,q (8)

26

A QUADRATIC PROPAGATOR FOR THEINTER-DISTANCE CONSTRAINT

We see that up toO(n) adjustment intervals can be contained in a single interval.Using this observation,
we compute the union of all adjustment intervals formed by the pairs(r1, d), . . . , (rk, d) using the following
equation. To simplify the notation, we let|∆(rk+1, d)| = 0 sincerk+1 is undefined.

k
⋃

i=1

|∆(ri,d)|−1
⋃

q=0

Iri,d,q =

k
⋃

i=1

|∆(ri,d)|−1
⋃

q=|∆(ri+1,d)|

Iri,d,q (9)

Notice that the left hand side of Equation 9 hasO(n2) intervals while the right hand side has onlyO(n)

intervals. Indeed, the number of intervals to unite is givenby
∑k

i=1(|∆(ri, d)|−|∆(ri+1, d)|). The telescopic
series simplifies to|∆(r1, d)| − |∆(rk+1, d)| = |∆(r1, d)|. In Example 1 since we have(2, 20) ≺ (10, 20)
we obtain the following:

(I2,20,0 ∪ I2,20,1) ∪ (I10,20,0) = I2,20,1 ∪ I10,20,0

= [9, 7] ∪ [15, 15]

= [15, 15]

Theorem 11 There areO(n2) internal adjustment intervals that subsume any other internal adjustment
interval.

Proof Consider a deadlined and two release timesri ≤ rj . For every value0 ≤ q < |∆(rj , d)|, we
havemin(Iri,d,q) = min(Irj ,d,q). We havemax(Iri,d,q) ≥ max(Irj ,d,q) if and only if (ri, d) ≻ (rj , d).
Consequently, we haveIrj ,d,q ⊆ Iri,d,q if and only if (ri, d) ≻ (rj , d).

Consider the list of release timesr1 ≤ r2 ≤ . . . ≤ rn sorted in non-decreasing order. If for somek

we have(rk, d) ≻ (rk+1, d), we can safely ignore the release timerk+1 since for every interval we have
Irk+1,d,q ⊆ Irk,d,q for 0 ≤ q < |∆(rk+1, d, q)|. After removing all dominated release times, we obtain a
list of release timesrk1

≺ rk2
≺ . . . ≺ rkm

. Equation 9 shows how the internal adjustment intervalsIr,d,q

for anyr andq are subsumed byO(n) intervals. Since there areO(n) deadlinesd, there areO(n2) internal
adjustment intervals that subsume any other internal adjustment interval.

4. A Quadratic Propagator

4.1 General Scheme

The idea behind the algorithm is the following. We process each deadline in increasing order. If two deadlines
di anddj are equal and their associated release times satisfyrj ≤ ri, we process both deadlines at the same
time but usedi as a reference. For every deadlinedi, we compute the longest sequence of release times
rx1

< rx2
< . . . < rxk

such that(rx1
, di) ≺ (rx2

, di) ≺ . . . ≺ (rxk
, di) as we did in Theorem 11. Using

this sequence and Equation 9, we compute the union of all internal adjustment intervals generated by the
pairs of time points whose deadline isdi. To build the sequence, we iterate through all the release times in
non-decreasing order. Two cases can occur where we can safely skip a release timerj .

Case 1 (dj > di): Suppose that the deadlinedj associated torj has not been processed yet, i.e.dj > di.
For such a release timerj , two cases can occur. We choose the smallest release timerk whose deadline
has already been processed and such thatrk > rj . If such ark exists, then|∆(rj , di)| = |∆(rk, di)| and
Lemma 9 insures that(rk, di) ≻ (rj , di). All adjustment intervals from(rj , di) will be taken into account
when iterating throughrk. If no suchrk exists, then we have∆(rj , di) = ∅ and no adjustment intervals are
associated to the pair(rj , di). In either case, the pair(rj , di) can be ignored.

27

QUIMPER, LÓPEZ-ORTIZ, AND PESANT

Case 2 (rj > ri): A release timerj greater thanri can also be safely ignored. Letdl be the deadline
processed beforedi. Since|∆(rj , di)| = |∆(rj , dl)|, Lemma 8 insures that we have(rj , dl) ≻ (rj , di) and
adjustment intervals from(rj , di) have already been taken into account when processingdl.

We prove that Algorithm 2 constructs for every deadlinedi a sequencerj1 < rj2 < . . . < rjk
such that

(rj1 , di) ≺ (rj2 , di) ≺ . . . ≺ (rjk
, di). This sequence with Equation 9 compute the adjustment intervals.

Let D be the set of deadlines sorted in increasing order. If two deadlines are equal, exclude fromD the
one whose associated release time is the smallest.
P ← ∅, A← ∅, Ui ← ∅, ∀ 1 ≤ i ≤ n

for di ∈ D do1

P ← P ∪ {j | dj = di}
l ← min(P)
for j ∈ P ∩ [l, i] do2

a← |∆(rj , di)|
b← |∆(rl, di)|
if ect(F, rl, b− a) ≤ rj then3

Ui ← Ui ∪ {(l, q) | a ≤ q < b}4

l ← j;5

Ui ← Ui ∪ {(l, q) | 0 ≤ q < |∆(rl, di)|}6

for (j, q) ∈ Ui do A← A ∪ Irj ,di,q7

for all deadlinesdi in non-decreasing orderdo8

r′i ← min{t 6∈ A | t ≥ ri}9

if di ∈ D then
for (j, q) ∈ Ui do A← A ∪ Erj ,di,q10

for i ∈ [1, n] do ri ← r′i

Algorithm 2 : Enforcing bounds consistency for the INTER-DISTANCE constraint. We assume that the
forbidden regionsF have already been computed and that release times are sortedsuch thatri ≤ ri+1 and
ri = ri+1 ⇒ di ≤ di+1.

Lemma 12 Algorithm 2 encodes in the data structureUi a sequence(rj1 , di) ≺ (rj2 , di) ≺ . . . ≺ (rjk
, di)

generating all internal adjustment intervals associated to the deadlinedi.

Proof The for loop on line 2 processes each release timerj such thatdj ≤ di andrj ≤ ri. Other release
times can be safely ignored as they correspond to the cases 1 and 2 stated above.

Line 3 tests whetherect(F, rl, b − a) ≤ rj . The first time Line 3 is executed, the test is positive since
l = j = min(P) anda = b. We therefore include(rmin(P), di) in the sequence. Subsequent tests are positive
only if the pair(rj , di) dominates the last pair(rl, di) tested positive as proved below.

ect(F, rl, b− a) ≤ rj =⇒ ect(F, rl, b− a) ≤ ect(F, rj , 0) by definition ofect (10)

=⇒ ect(F, rl, b− q) ≤ ect(F, rj , a− q) ∀ 0 ≤ q < a by Lemma 6 (11)

=⇒ (rl, di) ≺ (rj , di) by def. of dominance (12)

Similarly, one can prove that a negative test implies that(rl, di) ≻ (rj , di) and that the pair(rj , di) should
not belong to the sequence. The sequencer1 ≺ r2 ≺ . . . ≺ rk is therefore not missing any release time.

Each time the relation(rl, di) ≺ (rj , di) is discovered, the algorithm appends toUi the tuples(j, q) for
|∆(rj , di)| ≤ q < |∆(rl, di)|. Each tuple(j, q) ∈ Ui will be used later to create the internal internal adjust-
ment intervalsIrj ,di,q. According to Equation 9, these intervals are sufficient.

28

A QUADRATIC PROPAGATOR FOR THEINTER-DISTANCE CONSTRAINT

Following Artiouchine and Baptiste (2005), the secondfor loop on line 8 processes the deadlines in non-
decreasing order. The external adjustment intervals are therefore computed in an order that ensures that the
processed variable is not contained in any∆(ri, dj) considered so far.

Algorithm 2 only prunes the release times. Following Puget (1998), one can prune the deadlines by creat-
ing the symmetric problem where taskT ′

i has release timer′i = −di and deadlined′i = −ri. Algorithm 2 can
then prune the release times in the symmetric problem, whichprunes the deadlines in the original problem.

The data structuresP andUi can be implemented using some linked lists. However, to obtain an algorithm
running in quadratic time, we need to craft a special data structure to store the adjustment intervals inA.
This data structure should allow the execution of lines 7, 9,and 10 in no more thanO(n) time even ifA
contains up toO(n2) intervals. The next section describes how the adjustment data structureA can meet
these requirements.

4.2 Keeping Track of Adjustment Intervals

To guarantee a quadratic running time, we must carefully design the data structureA that contains the ad-
justment intervals. We use a doubly-linked list containingall adjustment intervals sorted by lower bounds,
including empty intervals. Each intervalIri,dj ,q has a pointernext(Iri,dj,q) andprevious(Iri,dj ,q) pointing
to the next and previous intervals in the list. The first interval has itsprevious pointer undefined as the last
interval has itsnext pointer undefined. Each interval has also a pointernextQ(Iri,dj,q) pointing toIrk,dj ,q+1

whererk andri might be equal. If the intervalIrk,dj,q+1 does not exist, the pointer is undefined. The data
structure initially contains an empty interval with lower bound−∞ used as a sentinel.

We implement Line 7 of Algorithm 2 as follows. We insert the intervals in decreasing order of lower
bounds. Since we process variables by increasing deadlines, the lower bound ofIrj ,di,0 is larger or equal to
any lower bound inserted inA and is therefore inserted at the end of the linked list.

Suppose we have inserted the intervalI1 = Irj ,di,q and we now want to insert the intervalI2 = Irk,di,q+1.
Algorithm 3 computes the insertion point in the linked list.The algorithm follows theprevious pointers
starting fromI1 until it either finds the insertion point or finds an intervalIra,db,q whosenextQ pointer
is assigned. In the latter case, the algorithm follows thenextQ pointer to finally follow thenext pointers
until the insertion point is reached. When following thenextQ(Ira,db,q) pointer, the algorithm necessarily
goes to or beyond the insertion point since we havemin(Ira,db,q) < min(I1) and by Lemma 7 we have
min(nextQ(Ira,db,q)) ≤ min(nextQ(I1)) and thereforemin(Ira,db,q+1) ≤ min(I2).

We show that Algorithm 3 inserts a sequence ofO(n) intervals in the linked listA in O(n) steps.

Lemma 13 Algorithm 3 inserts on line 7 a sequence ofO(n) internal adjustment intervals in the linked list
A in O(n) time.

Proof There is a maximum ofn intervals inA whosenextQ pointer is undefined, therefore the first while
loop runs inO(n). Let I4 be an interval explored by the second while loop. The interval I4 lies between
nextQ(I) and the insertion point. By Lemma 7, if an intervalI3 was pointing toI4 with its nextQ pointer,
the intervalI3 would lie betweenI andI1. SinceI3 6= I, we conclude that no intervals point toI4 with its
nextQ pointer. There is a maximum ofn such intervals. The second while loop runs inO(n). We therefore
showed that Line 7 can be implemented inO(n) steps.

I1
Ira,db,qIra,db,q+1 insert. point

nextQ

Figure 2: Nodes in the doubly linked list that Algorithm 3 visits to find the insertion point of an adjustment
interval.

29

QUIMPER, LÓPEZ-ORTIZ, AND PESANT

I ← previous(Irj ,di,q)
I2 ← Irj ,di,q+1

while nextQ(I) is undefined∧min(I) > min(I2) do
I = previous(I)

if min(I) > min(I2) then
I ← nextQ(I)
while min(next(I)) < min(I2) do

I ← next(I)

InsertI2 afterI
Algorithm 3 : Compute the insertion point ofIrj ,di,q+1 provided thatIrj ,di,q has already been inserted.

Line 10 inserts inA a sequence ofO(n) external adjustment intervals. Notice that at this point,A already
contains the internal adjustment intervals and that by definition, the lower bound ofEri,dj,q is equal to the
lower bound ofIrk,dj,q+1. Line 10 can be implemented by simply changingIrk,dj ,q+1 in A by Eri,dj ,q. If
Irk,dj,q+1 does not exist inA, it can be added using Algorithm 3.

Lemma 14 A sequence ofO(n) external adjustment intervals can be inserted inO(n) time.

Proof For every pair(j, q) ∈ Ui, one can keep a pointer on its associated intervalIrj ,di,q in the data structure
A. Following thenextQ pointer to reachIrk,di,q+1 takes constant time. Setting the new upper bound of
Irk,di,q+1 also takes constant time. ThenextQ pointer is undefined for the last interval to insert, Algorithm 3
can insert the intervalIrk,di,q+1 in O(n) steps. The total running time complexity is thereforeO(n).

Line 9 of Algorithm 2 can be implemented inO(α(n)) steps whereα is the inverse of Ackermann’s
function. We create a union-find data structureS with elements from1 to n. For each elementi, we associate
a timeti initially set tori and a pointerpi initially unassigned. When inserting adjustment intervals in A in
decreasing order of lower bounds, we simultaneously iterate in decreasing order the sets inS. If an interval
I is inserted such thatti ∈ I, we changeti to max(I) + 1. We then follow thenext pointers fromI to check
if other intervals intersectti and increaseti for each intersecting interval. Ifti becomes greater or equal to
ti+1, we merge the set inS containingi with the set containingi + 1. The pointerpi is used to keep track
of the last intervalI tested withti in order not to check twice a same interval. When executing Line 9 of
Algorithm 2, we simply retrieve fromS the sets containingi and returntj wherej = max(s).

Lemma 15 Updating and requesting the variablesti is performed inO(n2) steps.

Proof There are up toO(n2) intervals in the data structureA and each of them can be visited at most once.
Indeed, the pointerspi make sure that the search is always resumed from the last visited position in the list
A. The union-find data structure ensures that if an intervalI ∈ A increases more than one release time,
this operation is done in constant time since all release times are grouped in the same set inS and only the
representativeti of this set is updated. Merging the elements inS and requesting the representive elements
takesO(nα(n)). The total complexity is thereforeO(n2).

4.3 Running Time Analysis

The functionlst(F, di, q) can be implemented with a tableL wherelst(F, ri, q) = L[i][q]. Such a table
requiresO(n2) steps to initialize and supports function evaluation in constant time. We use a similar table
to evaluateect(F, r, q). The function|∆(r1, di)| can trivially be computed inO(n) steps. Since the release
times are sorted in non-decreasing order, one can compute|∆(rj , di)| using the following recursion.

30

A QUADRATIC PROPAGATOR FOR THEINTER-DISTANCE CONSTRAINT

|∆(rj , di)| =

{

|∆(rj−1, di)| if dj−1 > di

|∆(rj−1, di)| − 1 otherwise
(13)

The function|∆(ri, dj)| can be implemented with a tableD such thatD[i][j] = |∆(ri, dj)|. Initializing
the table using the recursion above requiresO(n2) steps. Each function call then takes constant time.

Theorem 16 The running time complexity of Algorithm 2 isO(n2).

Proof We assume that the forbidden regionsF have already been computed inO(n log n) time as explained
by Garey et al. (1981). The data structuresP andUi are implemented using linked lists and the functions
lst, ect, and|∆(ri, dj)| are implemented using tables. The data structureA is implemented with the data
structure described in Section 4.2. Release times and deadlines are sorted inO(n log n) time. Initializing the
algorithm therefore requiresO(n2) time.

For a fixedi, every pair(l, q) added toUi on line 4 and line 6 have a distinct componentq ranging from
0 to n exclusively. There are therefore at mostO(n) elements inUi that were appended inO(1) time. The
complexity to build the listUi is thereforeO(n). Line 7 takesO(n) time to execute as stated by Lemma 13.
The total running time for thefor loop on line 1 is thereforeO(n2).

By Lemma 15, the cummulative running time complexity of the line 9 isO(n2). Line 10 takesO(n) time
to execute as stated in Lemma 14. Thefor loop on line 8 therefore runs inO(n2).

Since the initialization and thefor loops on lines 1 and 8 all run inO(n2) time, the total running time
complexity of Algorithm 2 is alsoO(n2).

5. Achieving Bounds Consistency on the Distance Variable

We now consider the general form of the INTER-DISTANCE constraint i.e., when the distance variableP is
not fixed. The constraint INTER-DISTANCE(X1, . . . , Xn, P) is satisfied if and only if

i 6= j =⇒ |Xi −Xj | ≥ P (14)

Clearly, if there is an assignment〈X1, ..., Xn〉 that satisfies the case whenP = p, then this assignment
is also a support forP = p− 1. Therefore, any value that has a support in the domain ofXi for P = p has
a support in the same domain forP < p. To prune theXi variables, one only needs to find the values in the
domains that have a support forP = min(D(P)). The algorithm presented in Section 4, when used with
p = min(D(P)), can therefore prune theXi variables.

To prune the domain ofP , we rely on the following observation. If the constraint is unsatisfiable with
P = p, then it is unsatisfiable forP > p. Therefore, to achieve bounds consistency on the variableP , one
only needs to prune the valuemax(D(P)).

The algorithm by Garey et al. allows testing, inO(n log n) steps, whether there exists a solution forP =
p. Using a one-sided binary search, we can find the largest value in D(P) such that the INTER-DISTANCE

constraint is satisfiable. A one-sided binary search returning valuep whose test requiresO(n log n) time has
a running time complexity ofO(n log n log p). We can enforce bounds consistency on the INTER-DISTANCE

constraint when the distance variable is not fixed inO(n2 + n log n log p) steps.

6. Experiments

We implemented our algorithm using the ILOG Solver C++ library, (ILOG (1998))1. The library already
provides a propagator for the INTER-DISTANCE constraint calledIlcAllMinDistanceand offers two levels

1. The code discussed in this section is available upon request from the first author.

31

QUIMPER, LÓPEZ-ORTIZ, AND PESANT

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60

T
im

e
(s

)

n

Scalability Test

Artiouchine-Baptiste
Our propagator

Figure 3: Running time of the Artiouchine-Baptiste propagator (O(n3)) and our propagator (O(n2)) as a
function of the number of tasks. For this scalability test, we set all release times tori = 0 and
deadlines todi = 6n.

of consistency, namelyIlcBasicandIlcExtended. We also implemented the Artiouchine-Baptiste propagator
(Artiouchine and Baptiste (2005)). The scalability test presented in Section 6.1 was run on a Pentium III 900
MHz with 256 Mb of memory and ILOG Solver 4.2. The experimentson the runway scheduling problem
presented in Section 6.2 were run on a AMD64 Opteron 250 with a2.4 GHz dual processor (only one
processor was used) and 3 GB of RAM. We used on this computer the library ILOG Solver 6.1. All reported
times are averaged over 10 runs.

6.1 Scalability Test

In order to test the scalability of our propagator, we first consider a scheduling problem with a single
INTER-DISTANCE constraint overn tasks whose release times areri = 0 and deadlines aredi = np for
all tasks. This problem has a trivial solution and is solved without backtracking. We clearly see on Fig-
ure 3 that our propagator has a quadratic behaviour while theArtiouchine-Baptiste propagator has a cubic
behaviour. This observation is supported by the study of thethird and second derivative.

6.2 Runway Scheduling Problem

We then study a runway scheduling problem (Artiouchine et al. (2004)). In this problem,n airplanes have
certain time intervals in which they can land. Airplane number i hassi time intervals[r1

i , d1
i], . . . , [r

si

i , dsi

i].
Following Artiouchine and Baptiste (2005), we create for each airplane a variableti with domain[r1

i , dsi

i]
representing the landing time and a variableci with domain[1, si] representing the landing time interval. We
have the constraintsci ≥ k ⇐⇒ ti ≥ rk

i andci ≤ k ⇐⇒ ti ≤ dk
i . Finally, we have the constraint

INTER-DISTANCE([t1, . . . , tn], P) that ensures a gap ofP between each landing. For security reasons, we
want to maximize the timeP between each landing.

In order to fairly compare both propagators, we enhanced theArtiouchine-Baptiste propagator with the
algorithm presented in Section 5 to prune the variableP . With ILOG Solver, we set the goal of performing a
binary search onP . We also set the objective of minimizing−P . We use the default heuristics and parameters
proposed by ILOG Solver.

32

A QUADRATIC PROPAGATOR FOR THEINTER-DISTANCE CONSTRAINT

We used the same benchmark as Artiouchine and Baptiste (2005) on random runway scheduling problems
where the sizes of intervals and the gap between intervals may vary. Figure 4 shows the number of problems
solved in the benchmark in a given period of time. Our propagator has consistently solved the problems at
greater speed than the Artiouchine-Baptiste propagator. The two levels of consistency provided in ILOG for
theIlcAllMinDistanceconstraint were not able to compete with the Artiouchine-Baptiste propagator nor with
ours.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.0001 0.001 0.01 0.1 1 10

N
um

be
r

of
 P

ro
bl

em
s

S
ol

ve
d

Time (s)

Number of Random Problems Solved in a Given Period of Time

Our propagator
Artiouchine-Baptiste

Figure 4: Number of random problems from the benchmark that were solved in a given period of time.

We then consider the runway scheduling problem where all intervals have the same length. Over both
series of problems available in the benchmark Artiouchine and Baptiste (2005), we obtain an improvement
over the Artiouchine-Baptiste propagator proportional ton. This observation is compatible with the running
time complexities of the algorithms. Figure 5 shows the number of problems solved in a given period of
time. Again, the two levels of consistency provided in ILOG for theIlcAllMinDistanceconstraint were not
competitive.

7. Conclusion

We presented a new propagator achieving bounds consistencyfor the INTER-DISTANCE constraint. The
running time complexity ofO(n2) improves by a factor ofn the previous best known propagator. This
theoretical improvement gives practical savings in scheduling problems.

It is still an open problem whether there exists anO(n log n) propagator for the INTER-DISTANCE con-
straint achieving bounds consistency. It would also be interesting to study how the constraint could be gener-
alized for the cumulative scheduling problem.

33

QUIMPER, LÓPEZ-ORTIZ, AND PESANT

 0

 10

 20

 30

 40

 50

 60

 0.001 0.01 0.1 1 10 100

P
er

ce
nt

ag
e

of
 S

ol
ve

d
P

ro
bl

em
s

Time (s)

Percentage of Solved Problems in the Mono-Pattern Benchmark in a Given Period of Time

Our propagator
Artiouchine-Baptiste

Figure 5: Number of problems with equal intervals from the benchmark that were solved in a given period
of time.

Acknowledgments

This work was partially supported by the Canadian Natural Sciences and Engineering Research Council.

References

K. Artiouchine and P. Baptiste. Inter-distance constraint: An extension of the all-different constraint for
scheduling equal length jobs. InProceedings of the 11th International Conference on Principles and
Practice of Constraint Programming, pages pp. 62–76, 2005.

K. Artiouchine, P. Baptiste, and C. Dürr. Runway scheduling with holding loop. InProceedings of Second
International Workshop on Discrete Optimization Methods in Production and Logistics, pages pp. 96–101,
2004.

J. Carlier and E. Pinson. Adjustment of heads and tails for the job-shop problem.European Journal of
Operation Rsearch, 78:146–161, 1994.

M.R. Garey, D.S. Johnson, B.B. Simons, and R.E. Tarjan. Scheduling unit-time tasks with arbitrary release
times and deadlines.SIAM Journal on Computing, 10(2):256–269, 1981.

ILOG. ILOG Solver 4.2 user’s manual, 1998.

A. López-Ortiz, C.-G. Quimper, J. Tromp, , and P. van Beek. Afast and simple algorithm for bounds
consistency of the alldifferent constraint. InProceedings of the Eighteenth International Joint Conference
on Artificial Intelligence, pages pp. 245–250, 2003.

34

A QUADRATIC PROPAGATOR FOR THEINTER-DISTANCE CONSTRAINT

K. Mehlhorn and S. Thiel. Faster algorithms for bound-consistency of the sortedness and alldifferent con-
straint. InProceedings of the Sixth International Conference on Principles and Practice of Constraint
Programming, pages pp. 306–319, 2000.

L. Mercier and P. Van Hentenryck. Edge finding for cumulativescheduling. Submitted for publication, 2005.

J.-F. Puget. A fast algorithm for the bound consistency of alldiff constraints. InProceedings of the Fifteenth
National Conference on Artificial Intelligence, pages pp. 359–366, 1998.

C.-G. Quimper, A. López-Ortiz, and G. Pesant. A quadratic propagator for the inter-distance constraint. In
Proceedings of the 21rst National Conference on Artificial Intelligence (AAAI 06), pages pp. 123–128,
2006.

J.-C. Régin. A filtering algorithm for constraints of difference in CSPs.Proceedings of AAAI-94, pages pp.
362–367, 1994.

J.-C. Régin. The global minimum distance constraint. Technical report, ILOG, 1997.

35

