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Abstract. Recent applications of constraint programming to entertain-
ment, e.g., music or video, call for global constraints describing the struc-
ture of temporal sequences. A typical constraint approach is to model
each temporal event in the sequence with one variable, and to state
constraints on these indexed variables. However, this approach hampers
the statement of constraints involving events based on temporal posi-
tion, since the position depends on preceding events rather than on the
index. We introduce Allen, a global constraint relating event indexes
with temporal positions. Allen maintains two set-variables: the set of
events occurring at a position defined by an Allen relation, and the set
of their indexes. These variables enable defining structural and temporal
synchronization properties that cannot be stated on indexed variables.
We show that a model based on a local scheduling approach does not
solve the problem, even for very small instances, highlighting the need
for complex filtering. We present a model that uses Multi-valued Deci-
sion Diagrams (MDDs) to compile the Allen constraint. We show that
this model can be used to state and solve two complex musical tasks:
audio track synchronization and musical score generation.
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1 Introduction

Many difficult combinatorial problems consist in arranging sequences of events
in time, subject to horizontal and vertical constraints. These constraints are ex-
pressed on the temporal position of events. Horizontal constraints relate events
in the same sequence, but occurring at different positions. Vertical constraints
relate events occurring simultaneously, i.e., at the same position in different se-
quences. This is similar to shceduling problems, such as job-shop scheduling,
in which tasks are performed on machines according to sequencial and resource
constraints. The combination of horizontal and vertical constraints make these
problems extremely difficult to solve: the job-shop scheduling problem is notori-
ously among the hardest combinatorial problems.

A typical constraint programming approach to generating such sequences is
to define a variable for each item of the sequence, and to post constraints on



these variables. Temporal sequences challenge this model, since the position of
an event is determined by the duration of all the preceding events, and so is
only weakly dependent on its index. It is therefore difficult, if not impossible, to
express temporal properties using constraints on item variables.

This problem appears naturally in application domains related to entertain-
ment [1–4]. Structural properties usually involve long-range dependencies be-
tween events. Deep learning approaches attempt precisely at capturing these
dependencies in a statistical model, to reproduce them during classification or
sampling. However, the representations of structure in statistical models is not
explicit, making them inappropriate for specifying hard constraints on sequences.
In the next section, we describe a typical example of a structural constraint oc-
curring in the generation of lead sheets, a type of musical notation.

Lead Sheet Generation

A lead sheet is a representation of a musical piece commonly used in popular
music and consisting of a melody with chord labels on top, as shown on Figure 1
(extract of A Day in the Life by Lennon / McCartney).

An important aspect of this lead sheet is that melodic patterns are distributed
according to a temporal structure. For example, the pattern of bars 1-2 is re-
peated at bars 5-6. This type of structures is commonplace in popular music.
To generate lead sheets with a similar temporal structure similar, a standard
CP approach is to define one variable per note. However, notes have a different
duration: bar 1 contains eight short notes (including the rest) and bar 2 contains
only one long note. Consequently, there is no direct correspondence between the
index of a note and its temporal position. This makes it hard to post constraints
stating that the first two bars should be repeated two bars later, regardless of
their number of notes; or any other constraint of the same kind. In Section 6,
we show that our approach yields a practical solution to this problem.

Fig. 1. The first 8 bars of A Day in the Life by John Lennon and Paul McCartney

Automatic Accompaniment Generation

We describe and evaluate our technical contribution on the generation of musical
accompaniment from audio multitrack recordings. We chose this example as it
has immediate applications for computer generated musical improvisation or
accompaniment generation, as mentioned in Section 5.1.



The task consists in generating a new multi-track audio accompaniment by
reusing an existing multi-track recording. The original tracks are segmented into
chunks, using an onset detector [5]. Then new tracks are generated by recom-
bining chunks, using concatenative synthesis [6]. Chunks in the generated tracks
may appear in a different order than in the original track and may be used any
number of times. Such a scheme involves several types of constraints: On the
one hand, we have to constrain each track to avoid awkward chunk transitions,
by allowing transitions that are similar to the transitions in the training corpus.
The similarity is measured using acoustic features, see Section 5.1. On the other
hand, to prevent the tracks from “drifting” from one another, e.g., one track be-
comes increasingly louder while another track fades out, we have to synchronize
the tracks at regular points in time, for instance at the onset of every bar.

This problem raises the same issue as lead sheet generation. The chunks have
different durations, therefore the index of a chunk and its temporal position are
not directly depending on one another.

Approaches

In the examples above and, more generally, in many interactive or content gener-
ation applications, we need to specify sequences with structural properties that
cannot be inferred using statistical models. In the first example, the temporal
structure in a lead sheet is not a statistical property that can be inferred from
a set of examples, but is rather explicitly imposed, for instance by a user.

Constraint programming provides an ideal way of enforcing structure on se-
quences. However, as we highlighted earlier, we cannot state structural con-
straints on events based on their index alone.

Adopting a position-based model, in which variables represent events of
smaller, atomic duration whereby longer objects are made up of several con-
secutive variables, solves this issue. For a given total duration, a fixed number
of variables are defined and therefore indexes correspond to temporal positions.
This requires discretizing time into a grid of equal-duration slices, small enough
so that all events are aligned with the grid. In this model, the number of variables
is considerably larger than the number of events in the generated sequences: if
durations are expressed as fractions of the longest event, the atomic duration
decreases with the least common multiple of the denominators, whose growth
is exponential [7]. Hence, the size of the grid may be exponentially smaller
than the event lengths, creating an intractable number of variables. Moreover,
the position-based model requires additional horizontal constraints to aggregate
atomic events to form longer objects. These constraints are not easy to specify
in general. This approach is therefore not applicable in many real problems.

Several frameworks using constraint propagation make inferences about tem-
poral relations from a qualitative [8] or quantitative standpoint [9]. The compu-
tational efficiency of these approaches is very limited in the general case, but they
offer a precise and powerful representation of relations between times events.



Our Contribution

Allen [8] introduced an algebra with 13 binary relations between time intervals
for temporal reasoning. We use this algebra as a language to express temporal
positions and introduce the Allen global constraint, which defines variables
corresponding to a given Allen relation. Technically, for a given time interval
t and a given Allen relation R, Allen maintains two set-variables: the set of
events and the set of variable indexes satisfying R for t. Temporal properties
of the sequence are represented by constraints defined on these set-variables.
We present two models implementing Allen: the first model is based on a
classical scheduling approach and the second model uses Multi-valued Decision
Diagrams (MDDs). We show that the MDD-based approach, which performs
tighter pruning, is much more efficient on the multitrack generation problem. The
MDD representation and the associated filtering procedures are complex, which
is why we present the first, simpler model. The two approaches are also used to
run experimental comparisons showing that the MDD approach is necessary to
solve actual synchronization problems.

A constraint based on Allen’s algebra [1] takes a set of tasks, a set of Allen
relations, a set of intervals, and checks that every task satisfies at least one rela-
tion for one interval. They apply this work to the generation of video summaries.
In their approach, the checks for every task are independent from one another.
On the contrary, in our approach, we use Allen to enforce explicit structural
temporal properties, defined by Allen relations. Moreover, we take all specified
properties into account in a single, global constraint.

The Meter constraint [10] provides control on the duration and on various
temporal properties of sequences, but is limited to the definition of unary con-
straints on events defined by their temporal position. It does not provide actual
variables representing these events, and cannot be used, for instance, to state
equality or difference constraints between events. Allen generalizes Meter by
defining two additional set-variables that can be used to state arbitrary, e.g.,
binary, constraints enforcing temporal structures on sequences.

Allen is designed to model and solve problems of temporal sequence syn-
chronization and structure. Previous work, including our own on using Regular
[11] for music generation, never addressed this aspect.

2 Constraining Contiguous Temporal Sequences (CTS)

A temporal event e is a symbol with a duration d(e). A contiguous temporal
sequence, CTS for short, is a finite sequence of temporal events (e1, . . . , en). A
CTS is basically a concatenation of events: two consecutive events in a CTS
are considered contiguous. Therefore, for a CTS S = (e1, . . . , en), the duration
d(S) of S is the sum of the duration of the events contained in S, defined by
d(S) =

∑n
i=1 d(ei). The absolute temporal position, or starting time of an event ep

in S is defined by s(ep) =
∑p−1

i=1 d(ei). Note that the absolute temporal position
is not an intrinsic property of a temporal event, it is a property of a temporal



event with respect to a CTS. A same temporal event may appear several times
in a same CTS at different starting times.

In this article, we consider only temporal events with integer duration and,
therefore, we address CTS in which all events have integer temporal positions.

Given a set E of temporal events, a model for the generation of CTS is to
represent a CTS containing n temporal events of E as a sequence of n constrained
variables (X1, . . . , Xn), each with domain dom(Xi) = E. With this model, it is
easy to state constraints relating events based on their index in the sequence,
such as X1 = Xn, or Xi 6= Xi+1. However, the absolute temporal position of an
event in a CTS is not directly related to its index as it depends on the duration
of all preceding events. There is therefore no straightforward way of constraining
the elements of the sequence based on their absolute temporal position.

3 The Global Allen Constraint

The idea behind the Allen constraint is to use Allen relations between temporal
intervals to specify some temporal element(s) of a CTS (the 13 atomic relations
of Allen are given on Table 1). Let S be a CTS (e1, . . . en). An Allen relation
R and a temporal interval t specify a subsequence of S. For instance, if R is d,
i.e., the relation “during”, and t = [a, b], then R and t specify the subsequence
of S containing the events which start after a and end before b.

Let E be a set of temporal events and let X1, . . . , Xn be n constrained vari-
ables, each with domain E. The Xis are the sequence variables. Let t be a tem-
poral interval and let R be a relation of Allen between temporal intervals (see
Table 1). Let I be a set-variable, with domain {1, . . . , n} and E be a set-variable
with domain E. The Allen constraint

AllenR,t(X1, . . . , Xn, I, E) (1)

ensures that I contains the indexes of all sequence variables Xi belonging to the
subsequence of (X1, . . . , Xn) specified by Allen relation R and temporal interval
t. Similarly, the constraint (1) ensures that E contains the values of all sequence
variables Xi belonging to the subsequence of (X1, . . . , Xn) specified by R and t.

The Allen constraint defined above is satisfied if and only if

I = {i ∈ {1, . . . , n} | [s(Xi), s(Xi+1)] R t} and E = {Xi | i ∈ I}

For example, the melody on Figure 1 contains 36 notes (including rests).
We represent each note as a temporal event and the melody as a CTS M =
(n1, . . . , n36), where ni is the i-th note of the melody. Writing events as (note,
duration) ordered pairs, with duration 1 for eighth-notes, we have:

n1 = (rest , 1);n2 = (B4, 1);n3 = (D5, 1);n4 = (B4, 1);n5 = (E5, 1);
n6 = (B4, 1);n7 = (D5, 1);n8 = (E5, 1);n9 = (B4, 8); . . .

where D4 denotes pitch D and octave 4. Note that n2 = n4 = n6, n3 = n7, and
n5 = n8.



Relation Symbol Example Semantics Inverse

t1 before t2 < t1 t2 t1+ < t2− >

t1 equal t2 eq t1 t2 t1− = t2− and t1+ = t2+ eq

t1 meets t2 m t1 t2 t1+ = t2− mi

t1 overlaps t2 o t1 t2 t1− < t2− and t2− < t1+ < t2+ oi

t1 during t2 d t1 t2 t1− > t2− and t1+ < t2+ di

t1 starts t2 s t1 t2 t1− = t2− and t1+ < t2+ si

t1 finishes t2 f t1t2 t1− > t2− and t1+ = t2+ fi

Table 1. The 13 atomic relations of Allen. The lower bound of a time interval ti is
denoted by ti− and the upper bound by ti+.

Consider the relation of Allen “during” and the time interval defined by the
first bar, i.e., the interval starting at temporal position 1 and ending at temporal
position 8 (as we count 1 for an eighth-note). The Allen constraint

Allend[1,8](n1, . . . , n36, I, E)

is satisfied if, and only if I = {1, 2, . . . , 8} and E = {(rest, 1), (B4, 1), (D5, 1),
(E5, 1)}. Note that although the note (B4, 1) appears three times in the first
bar, it appears only once in E , as temporal events do not have a starting time.

4 Implementing the Allen Constraint

We now describe two implementations of the Allen constraint. The first one is
a simple model, based on scheduling, and performing only local propagations.
We show in Section 5 that this model performs poorly. This justifies the need for
a more elaborated model, using an MDD to represent the sequences explicitly,
which makes it possible to prune more values during the search. This second
model is presented in Section 4.2.

In both models, the sequence variables X1, . . . , Xn take temporal event val-
ues.

4.1 A First Model

The Allen constraint can be seen as a non-preemptive scheduling problem
with unary resources where variables correspond to activities having a variable
duration. In this model, each variable Xi is associated with two variables Si and
Di. Variable Si represents the absolute temporal position of Xi in the CTS, and
Di represents the duration of Xi. The start and duration variables are related
via a set of constraints

Si+1 = Si + Di,∀i = 1, . . . , n− 1 (2)



with S1 = 0.

In order to define the propagation rules, we will use the following five predi-
cates:

– HoldsR,t(s, d)
def⇐⇒ [s, s + d]R t, where s is a start time (i.e., absolute

temporal position) and d a duration

– PossibleR,t(i, e)
def⇐⇒ e ∈ dom(Xi) and ∃s ∈ dom(Si), HoldsR,t(s, d(e))

– PossibleR,t(i)
def⇐⇒ ∃e ∈ dom(Xi) such that PossibleR,t(i, e)

– RequiredR,t(i, e)
def⇐⇒ Xi = e and ∀s ∈ dom(Si), HoldsR,t(s, d(e))

– RequiredR,t(i)
def⇐⇒ ∀e ∈ dom(Xi),∀s ∈ dom(Si), HoldR,t(s, d(e))

Variables I and E are set-variables [12]. We will use the notation lb(.) for the
lower-bound of a set-variable domain and ub(.) for its upper-bound. Intuitively,
during the filtering procedure, the lower-bound lb(I) (resp., lb(E)) is the set of
required values for I (resp., E). Similarly, the upper-bound ub(I) (resp., ub(E))
is the set of possible values for I (resp., E). The filtering rules presented below
rely on the equivalences:

i ∈ ub(I) ⇐⇒ PossibleR,t(i) (3)

i ∈ lb(I) ⇐⇒ RequiredR,t(i) (4)

e ∈ ub(E) ⇐⇒ ∃i,PossibleR,t(i, e) (5)

Note that e ∈ lb(E) is more difficult to express in terms of the predicates, which
is why Rule (15) is more complex. In fact, reasoning on lb(E) is the most complex
operation for maintaining the consistency between the sequence variables and
the set-variables. In the next section, we use an MDD model, which is sufficiently
rich to infer the exact lower-bound lb(E).

The consistency between the event, start, and duration variables, and the
lower and upper bounds of the Allen set-variables, is maintained with a set of
filtering rules.

When Si is modified, i.e., a value was removed from its domain, the following
rules may apply:

i ∈ ub(I) : ¬PossibleR,t(i)⇒ i 6∈ ub(I)

RequiredR,t(i)⇒ i ∈ lb(I) (6)

i ∈ lb(I) : e ∈ dom(Xi) ∧ (∀s ∈ dom(Si),¬HoldsR,t(s, d(e)))

⇒ e 6∈ dom(Xi) (7)

i 6∈ ub(I) : e ∈ dom(Xi) ∧ (∀s ∈ dom(Si),HoldsR,t(s, d(e)))

⇒ e 6∈ dom(Xi) (8)

e ∈ ub(E) : 6 ∃j,PossibleR,t(j, e)⇒ e 6∈ ub(E) (9)

e 6∈ ub(E) : (∀s ∈ dom(Si),HoldsR,t(s, d(e)))

⇒ e 6∈ dom(Xi) (10)



Let us explain the first rule, Rule (6), in detail. Rule (6) is applied when a value
is removed from the domain of Si and if i ∈ ub(I). The predicate PossibleR,t(i)
is evaluated, and if it does not hold true, index i is removed from ub(I). The
predicate RequiredR,t(i) is also evaluated, and if it holds true, index i is added
to lb(I). The variable Si represents the starting times of the i-th event in the
CTS. The property i ∈ ub(I) means exactly that predicate PossibleR,t(i) holds
true (by Equivalence (3)). A possible consequence of removing a value from the
domain of Si is that there may be no more starting time s in Si such that
[s, s+ d(e)]R t. Therefore, we reevaluate PossibleR,t(i), and if it does not hold
true anymore, we remove i from ub(I). Another possible consequence of removing
a value from Si is that all remaining values s ∈ dom(Si) are such that [s, s +
d(e)]R t for any event e ∈ dom(Xi), which means that RequiredR,t(i) holds
true. Equivalence (4), we add index i to lb(I).

When Xi is modified, we apply the following rules:

i ∈ ub(I) : ¬PossibleR,t(i)⇒ i 6∈ ub(I)

RequiredR,t(i)⇒ i ∈ lb(I) (11)

i ∈ lb(I) : dom(Xi) = {e} ⇒ e ∈ lb(E)

s ∈ dom(Si) ∧ (∀e ∈ dom(Xi),¬HoldsR,t(s, d(e)))

⇒ s 6∈ dom(Si) (12)

i 6∈ ub(I) : s ∈ dom(Xi) ∧ (∀e ∈ dom(Xi),HoldsR,t(s, d(e)))

⇒ s 6∈ dom(Si) (13)

e ∈ ub(E) : 6 ∃j,PossibleR,t(j, e)⇒ e 6∈ ub(E) (14)

e ∈ lb(E) : ∃i ∈ ub(I) s.t.

PossibleR,t(i, e)∧
∀j ∈ ub(I) s.t. j 6= i, (e 6∈ dom(Xj ) ∨ ¬PossibleR,t(j, e))

⇒ dom(Xi) = {e} ∧ i ∈ lb(I) (15)

When I is modified: if i ∈ lb(I), apply Rule (7) and Rule (12); if i 6∈ ub(I)
apply Rule (8) and Rule (13). When E is modified: if e ∈ lb(E) apply Rule (15);
if e 6∈ ub(E), ∀i ∈ ub(I), apply Rule (10).

Most of those rules are straightforward implications of the predicate defi-
nitions, except rule (15). The first line of Rule (15) says that it is possible to
have value e in the sequence. The following lines express the fact that if a only
one variable Xi may take value e, we perform the assignment Xi ← e. We can
easily verify that no rule removes any consistent value, i.e., the rules are sound.
However, this model does not remove all inconsistent values, i.e., it does not
achieve arc-consistency for Allen.

4.2 MDD-Based Model

This model uses an MDD constraint to represent the extension of the Allen con-
straint. By using propagators for MDDs, we can therefore achieve arc-consistency



of the whole Allen constraint. In fact, we show that we can even combine sev-
eral Allen constraints into a single MDD and thus achieve arc-consistency for
a set of Allen constraints. An MDD, in constraint programming, is a directed
acyclic graph with one layer of nodes per constrained variable plus a final layer
containing the single true node [13]. Defining the Allen constraint with MDDs
can be decomposed into two steps:

– We first represent temporal constraint by a transition function computing
the set of all temporal positions reachable from a given temporal position.
The MDD is defined, starting from a root node associated to position 0, by
successive applications of the transition function to determine all reachable
temporal positions. An arc is associated to a duration, i.e., time difference
between the temporal position of its ending node and its origin node, i.e., for
and arc a = (i, j), we have t(j) = t(i)+d(a), where t(.) denotes the temporal
position of a node. The MDD constructed this way simply represents a sum
function. We use the MDD Pattern construction defined in [14], which allow
us to build an MDD based on a function of the node. Here the function node
is the transition function between durations. Events are introduced in the
MDD as follows: for each arc associated to a duration, we create as many
arcs as there are events with this duration. Each arc in the resulting MDD
is therefore labelled with a couple (event, duration).

– Then, for a given Allen relation, we identify all the arcs in the MDD that
satisfy this relation. We can do this by noting that an arc a = (i, j) occupies
the temporal interval [t(i), t(j)]. These are the red arcs in Figure 2.
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Fig. 2. The graph (left) and MDD (right) representations of the constraint
Allend∨s∨fi∨eq[2,5] (see Table 2). Red labels correspond to values satisfying the con-
straint. Numbers in the graph on the left represent the temporal position.

To illustrate this with an example, consider two events a and b with d(a) =
1 and d(b) = 2 and a sequence of three variables X1, X2, X3 with domains
dom(X1 ) = dom(X2 ) = {a, b} and dom(X3 ) = {b}. Let R denote the relation
d ∨ s ∨ f ∨ eq, which is similar to d except it is not strict. The extension of
AllenR[2,5]([X1, X2, X3], I, E) is shown in Table 2, where events that occur, not
strictly, during [2,5] are in red.



X1 X2 X3 I E
a a b {3} {b}
a b b {3} {b}
b a b {2, 3} {a, b}
b b b {2} {b}

Table 2. The extension of AllenR[2,5] for the example. Events that are, not strictly,
during [2, 5] are in red.

The list of valid sequences of the constraint may be represented by the graph
in Figure 2 (left). Each layer represents one sequence variable (X1 is the top
layer, X2 is the middle layer, and X3 the bottom layer). Node labels represent
start times and edge labels are events. Edges corresponding to events satisfying
AllenR[2,5] are in red.

Note that the Allen relation does not change during search. As a consequence,
one can ignore the temporal information in the nodes and apply the MDD reduc-
tion operation to the graph. This yields the reduced MDD in Figure 2 (right).
Note that the reduction distinguishes between black and red labels.

The algorithm presented in [15] is used to filter the domains of the sequence
variables in the constraint represented by the MDD. The set-variables I and E
must satisfy the following properties:

1. if ∀a ∈ Ai, a is red, then i ∈ lb(I);

2. if ∃a ∈ Ai such that a is red, then i ∈ ub(I) and label(a) ∈ ub(E).

where Ai denotes the i-th layer of the MDD, and a denotes an arc. By using the
arcs deleted from the MDD, we maintain these properties incrementally.

When an event e is added to lb(E), it means that all complete path in the
MDD contains at least one red arc labelled with e. We modify the current MDD,
notated MDDc, to integrate this new information. This is done by generating a
new MDD, MDD(-e) containing all paths of MDDc that do not go through a red
arc labelled with e. Then, we substract MDD(-e) from MDDc. This is efficient as
MDD(-e) is a subgraph of MDDc. To generate MDD(-e), we duplicate MDDc,
suppress all red arcs labelled with e, and propagate the suppression until every
node belongs to a complete path (from the root node to a terminal node). This
procedure is described in an article by Perez and Régin [16]. The complexity of
these filtering operations is bounded by the size of the MDD.

In practice, the MDD representation is efficient because the bottom layers
are highly compressed. This approach solves problems with up to 150 variables,
which is enough for the targeted applications (see Section 5.3).

An important aspect of this approach it that we represent several Allen
constraints stated on the same sequence in a single MDD. Then, we implement
channeling relations between the MDD and the set-variables for each relation.
This allows us to achieve arc-consistent of the conjunction of all the Allen
constraints. Note that integrating the set-variables in the MDD would require



the definition of one MDD per Allen relation, and would sacrifice compression
without improving filtering.

5 Evaluation

We evaluated the two models on an instance of the audio multitrack synchro-
nization problem described in the introduction. The evaluation was implemented
using the OR Tools 1 solver. Benchmark data will be made available online.

5.1 Description of the Benchmark

We use a three-track recording (guitar, bass, and drum) of the first 32 bars of
song Prayer in C (Lilly Wood & The Prick). Each track is segmented using
standard onset detection and quantized to 1/24th of a beat (see Figure 3).

Fig. 3. A graphical representation of the guitar (top), bass (center), and drum (bottom)
tracks of Prayer in C. Each track contains 32 bars and each triangle represents a chunk.
Vertical lines indicate bar separations.

Chunks are categorized into clusters according to harmonic similarity (for
pitched instruments) and timbre similarity for drums. The timbre is represented
by Mel Frequency Cepstral Coefficients (MFCC) with 13 coefficients; the har-
monic similarity is computed using the Harmonic Pitch-Class Profile (HPCP)
with 36 divisions of the octave [17].

The guitar track contains 128 chunks with duration ranging from an eighth-
note (half a beat) to a dotted quarter-note (1.5 beats), categorized into 13 har-
monic clusters. The bass track contains 81 chunks (duration from half a beat
to 1.5 beats) categorized into 9 bass clusters (harmonic similarity). The drum
track contains 94 chunks with duration from half a beat to 20/3 beats, that is a
full bar plus two thirds of a bar. There are 40 timbre-based drum clusters.

We state the problem of creating new multitracks as the generation of three
sequences of chunks, each with an imposed total duration of n bars. Each bar
has four beats, and the duration of the shortest chunks is 1/8 of a bar, therefore
each sequence contains at most p = 32n chunks.

1 OR Tools is open source and available at https://github.com/google/or-tools



We define a sequence of p chunk variables: G1, . . . , Gp (guitar), B1, . . . ,
Bp (bass), and D1, . . . , Dp (drums). The domain of each variable is the set of
chunks in the corresponding recorded track, plus a dummy chunk with duration
0, called the padding element, which we explain below.

For each track, all chunk transitions, e.g., Gi → Gi+1, are such that the asso-
ciated cluster transition exists in the original track. Additionally, we synchronize
the tracks together at the beginning of every bar. More precisely, let Gi, Bj , Dk

be the three chunks playing at the beginning of bar b, and C(GI), C(Bj), C(Dk)
be the corresponding clusters. We enforce that the same cluster “signature” ex-
ists somewhere in the original multitrack, not necessarily at the beginning of
a bar. The underlying idea is that the cluster signatures of the original track
are musically acceptable. Intuitively, this constraint imposes that the generated
multitrack uses acceptable chunk signatures at the beginning of every bar but
can “invent” new cluster signatures (new sounds) between bar lines.

It is easy to impose the total duration of 4n to each track by simply removing
all nodes of the graph (see Figure 2, left) whose label is greater than 4n and every
node of the final layer whose label is different from 4n. Every node with label
4n that is not in the final layer receives a new arc, labeled with the padding
element, going to the next layer to a new node with the same label 4n, since
the padding element has a 0 duration. We repeat this process to the final layer.
This allows us to generate sequences with fewer than p “actual” variables, the
padding value being assigned to the “extra” variables.

The variables are subject to the binary constraints on chunk cluster transi-
tions. These constraints are expressed as simple table constraints between con-
secutive chunk variables in each track. For example, (C(Gi) → C(Gi+1)) ∈ Cg,
where Cg is the set of all cluster transitions in the original guitar track. The same
applies to the two other instruments.

The vertical synchronization constraints are represented by an Allen con-
straint for each track and for each bar. To specify the events that are playing
at the beginning of bar i, we use the Allen relation o ∨ s applied to the time
interval [4(i−1),+∞). In our context, this relation, one of the 213 combinations
of Allen relations, specifies exactly the intervals which “contain” the temporal
point 4(i− 1), the onset of bar i.

The Allen constraints for the guitar track are

Alleno∨s [4(i−1),∞)([C
g
1 , . . . , C

g
p ], Igi , E

g
i )

where Cg
i is the variable cluster(Gi). The synchronization itself is enforced by

an ad hoc table constraint between Egi , Ebi , and Edi , where accepted triplets are
cluster signatures of the original multitrack.

This approach applies to the generation of automatic accompaniment of an
imposed melody in a given style. A demo video2 is available online. Note that
in this case, we enforce additional harmonic constraints to match a target chord
sequence, in the case of the video above, the Ode to joy.

2 Video available online, https://www.youtube.com/watch?v=buXqNqBFd6E, exam-
ples at at seconds 140, 176, and 216.



5.2 Evaluation of the First Model

We evaluate two implementations of the scheduling model, depending on how
we implement constraint (2), which links start times and durations (defined in
Section 4.1). First, we enforce arc-consistency on this ternary sum constraint.
The model solves the problem for two bars in 8.4 seconds. It does not solve
the problem for more than two bars in less that 30 minutes, which we consider
a timeout. It is interesting to observe that the set of ternary sum constraints
models a Regular constraint enforcing the graph on Figure 2 (left). Further-
more, by enforcing AC for the ternary sum constraints, we also achieve AC for
this Regular, since we obtain a model equivalent to the Berge acyclic decom-
position of Regular [18]. The more complex MDD-based model differs from
this approach by the compression applied to this graph, and its exploitation to
obtain a tighter filtering on the set-variables.

We also implemented a lighter version where the ternary sums constraints
only perform bound-consistency, based on the intuition that propagating infor-
mation about the bounds of event duration offers a good trade off between sim-
plicity and pruning. This model solves the problem for two bars in 5.4 seconds,
but does not scale either to larger instances.

5.3 Evaluation of the MDD-Based Model

We use MDD4R [15] to perform the operations on the MDD constraint repre-
senting each Allen constraint. The code is implemented using the OR Tools
solver. Note that, as said in Section 4.2, all the Allen constraints for a same
track are represented by a single MDD.

n
MDD size (#Vertices, #Edges) Time
Guitar Bass Drum (ms)

6 2382 41k 848 13667 1864 73k 2301
8 4199 74k 1493 24k 3817 156k 7219
10 6530 117k 2388 39k 6513 275k 23k
12 9374 169k 3623 61k 9957 429k 57k
14 12k 231k 5085 87k 14k 617k 112k

Table 3. The size of the MDDs and the execution time to find 5 solutions for various
multitrack lengths

.

The comparison with the performance of the simple model for Allen is
clearly in favor of the MDD approach (see Table 3). The simple model does
not solve problems longer than two bars in less than 30 minutes. In contrast,
the MDD-based model solves the 14-bar problem in less than 2 minutes. The
extra cost of performing the MDD construction and operations is more than
compensated for by the higher pruning offered by this model, especially regarding
the treatment of the set-variable E .



6 Generation of Lead Sheets

To complete our presentation, we now address the problem of generating a
melody, given a chord sequence, using Allen. This task, involving a single se-
quence, is a particular application of a general framework for lead sheet compo-
sition that we have developed. In this section, we sketch out the problem and
how to state it using Allen. We do not report computation times as they vary
considerably depending on the corpus and on the imposed chord sequence.

The melody is defined as a sequence of note variables, where a note is an
event with a pitch and a duration, subject to constraints enforcing: (1) the du-
ration of the melody matches that of the chord sequence, (2) the note transitions
form acceptable musical intervals, (3) the notes match the current harmony (the
chord), and (4) the melody satisfies an imposed pattern structure. We explain
these constraints in detail on the example on Figure 4.

Fig. 4. A 12-bar lead sheet generated using an Allen constraint.

For a 12-bar melody with a 4/4 time signature, we define a sequence of note
variables [N ] = [N1, . . . , Np], with p = 96. The total duration is 48 = 12 × 4
beats. The melodic interval constraints are stated as binary table constraints
between the pitch of any two consecutive notes. The allowed pitch intervals are
collected from a corpus of 12000 lead sheets of popular music.

To enforce the harmonic constraints, we state an Allen constraint for each
chord. For instance, on Figure 4, the first chord, CM7, occupies the time interval
[1,3] (half of the first bar). We define Allens∨d∨eq∨f[1,3](ECM7, ICM7), and use
a unary constraint on ECM7, restricting its set-domain to the notes whose pitch
is harmonically compatible with CM7. The allowed pitch for a given chord are
extracted from our corpus.

Figure 4 shows a 12-bar lead sheet generated using an Allen constraint
enforcing the equality between the patterns of bars 1-2 and bars 5-6, and between
bars 3 and 9. Let P1 denote the pattern of bars 1-2; P2 that of bar 3; P3 that of
bars 5-6; and P4 for bar 9. We state one Allen constraint for each pattern

– P1 corresponds to Allens∨eq∨d∨f [1,9]([N ], E1, I1),

– P3 corresponds to Allens∨eq∨d∨f [9,13]([N ], E2, I2),

– P3 corresponds to Allens∨eq∨d∨f [17,25]([N ], E3, I3),

– P4 corresponds to Allens∨eq∨d∨f [33,37]([N ], E4, I4).



However, the relations between patterns are relations between sub-sequences.
They cannot be stated straightforwardly in terms of E1 and E3, as these do not
maintain the order of the values.

For two index set-variables I = {i1, . . . , ik} and J = {j1, . . . , jk} with the in-
dexes sorted by increasing order. We define the sub-sequence equality constraint

SeqEq([X1, . . . , Xn], I,J ) ⇐⇒ Xi1 = Xj1 ∧ · · · ∧Xik = Xjk

This constraint is expensive to filter as the domains of I and J are not known
in advance. We add a redundant constraint to speed up the propagation:

Equal(E ,F)

where E and F are the even set-variables corresponding to I and J respec-
tively. The filtering procedure for the equality constraint between set-variables
(Equal) is quite standard; the filtering procedure for SeqEq is not presented
here. Basically, the filtering operation starts only once the first index in I and
in J are known or, similarly, once the last index in I and in J are known.

7 Conclusion

We have presented the Allen global constraint. Allen maintains set-variables
representing events in a temporal sequence in two ways: one variable is the set of
events occurring at a given position, defined by an Allen relation with a reference
time interval; the other variable is the set of indexes of these events. In practice,
Allen offers the possibility to control the generation of temporal sequences by
constraining events defined by their index and temporal position.

We proposed two models for Allen: a simple model using local propagation
and a model based on MDDs and shown that the MDD representation, which
achieves the global AC of the constraint, performs much better than the simple
model on a temporal sequence synchronization problem.

Allen makes it possible to model and solve new types of problems involving
structural constraints on patterns, represented by sub-sequences. We illustrated
Allen on the task of synchronizing several audio tracks. Another application
is the generation of structured lead sheets with pattern repetition. Such tasks
could hardly be addressed using standard global constraints. More generally we
believe that Allen addresses an increasing need for enforcing complex structural
constraints in content generation for the entertainment domain.
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14. Perez, G., Régin, J.c., Antipolis, U.N.s., Umr, I.S.: Efficient Operations on MDDs
for Building Constraint Programming Models. In: IJCAI International Joint Con-
ference on Artificial Intelligence, Buenos Aires, Argentina (2015) 374–380
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