
1

Constraint Programming
and

Operations Research

Jean-Charles REGIN
Cornell University

2

Plan
 General Principles
 CP vs MIP
 Integration of OR algorithms
 A MIPLIB example: sports scheduling
 The maximum clique problem
 Strength of CP
 Weakness of CP
 New research areas
 Conclusion

3

Constraint Programming
 3 notions:

- constraint network: variables, domains
constraints + filtering (domain reduction)
- propagation
- search procedure (assignments + backtrack
or B&B)

4

Problem = conjunction of sub-
problems
 In CP a problem can be viewed as a

conjunction of sub-problems that we are able
to solve

 A sub-problem can be trivial: x < y or
complex: search for a feasible flow

 A sub-problem = a constraint

5

Filtering
 We are able to solve a sub-problem: a

method is available
 CP uses this method to remove values from

domain that do not belong to a solution of this
sub-problem: filtering or domain-reduction

 E.g: x < y and D(x)=[10,20], D(y)=[5,15]
=> D(x)=[10,14], D(y)=[11,15]

6

Arc consistency
 All the values which do not belong to any

solution of the constraint are deleted.
 Example: Alldiff({x,y,z}) with

D(x)=D(y)={0,1}, D(z)={0,1,2}
the two variables x and y take the values 0
and 1, thus z cannot take these values.
FA by AC => 0 and 1 are removed from D(z)

7

Propagation
 Domain Reduction due to one constraint can

lead to new domain reduction of other
variables

 When a domain is modified all the constraints
involving this variable are studied and so on...

8

Why Propagation?
 Idea: problem = conjunction of easy sub-

problems.
 Sub-problems: local point of view. Problem:

global point of view. Propagation tries to
obtain a global point of view from
independent local point of view

 The conjunction is stronger that the union of
independent resolution

9

Search
 Backtrack (or Branch and Bound) algorithm

with strategies
 Strategy: define which variable and which

value will be chosen.
 After each domain reduction (i.e assignment

included) filtering and propagation are
triggered

10

Plan
 General Principles
 CP vs MIP
 Integration of OR algorithms
 A MIPLIB example: sports scheduling
 The maximum clique problem
 Strength of CP
 Weakness of CP
 New research areas
 Conclusion

CP vs MIP
MIP approach CP approach

CP vs MIP
 Relax the problem: floats

instead of integers
 1) Use the Simplex

algorithm (“polynomial”)
 2) Set float to integer value.

Go to 1) and backtrack if
necessary

MIP approach CP approach

CP vs MIP
 Relax the problem: floats

instead of integers
 1) Use the Simplex

algorithm (“polynomial”)
 2) Set float to integer value.

Go to 1) and backtrack if
necessary

 Identify sub-problems that are
easy (called constraints)

 1) Use specific algorithm for
solving these sub-problems
and for performing domain-
reduction

 2) Instantiate variable. Go to 1)
and backtrack if necessary

MIP approach CP approach

CP vs MIP
 Relax the problem: floats

instead of integers
 1) Use the Simplex

algorithm (“polynomial”)
 2) Set float to integer value.

Go to 1) and backtrack if
necessary

 Global point of view on a
relaxation of the problem

 Identify sub-problems that are
easy (called constraints)

 1) Use specific algorithm for
solving these sub-problems
and for performing domain-
reduction

 2) Instantiate variable. Go to 1)
and backtrack if necessary

 Local point of view on sub-
problems. “Global” point of
view by propagation of
domain reductions

MIP approach CP approach

15

CP vs MIP
 In CP constraints can be non-linear
 Structure of the problem is used in CP
 Structure of the constraints is used
 First solution given by CP is generally good

(better than MIP)

16

Plan
 General Principles
 CP vs MIP
 Integration of OR algorithms
 A MIPLIB example: sports scheduling
 The maximum clique problem
 Strength of CP
 Weakness of CP
 New research areas
 Conclusion

17

Alldiff constraint

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

The value graph:

D(x1)={1,2}
D(x2)={2,3}
D(x3)={1,3}
D(x4)={3,4}
D(x5)={2,4,5,6}
D(x6)={5,6,7}

18

Matching

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

19

Arc consistency

Berge’s theorem:
An edge belong to some but not all maximum
matching, iff, for an arbitrary matching it
belongs to either an even alternating path
which begins at a free vertex, or an even
alternating cycle.

20

Alternating path

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7
Free vertex

21

Alternating cycle

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

22

Alldiff constraint

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

23

Arc consistency

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

The value graph:

D(x1)={1,2}
D(x2)={2,3}
D(x3)={1,3}
D(x4)={4}
D(x5)={5,6}
D(x6)={5,6,7}

24

Alldiff constraint
 Compute a matching which covers X
 Compute the strongly connected components
 Remove every unmatched arc for which the

ends belong to two different components
 Linear algorithm establishing arc

consistency O(m)=O(nd)

25

Global Cardinality Constraint
 GCC(X,{li},{ui})
 Defined on a set X of variables, the number

of times each value vi can be taken must be
in a given interval [li, ui]

 Example: D(x1)={a,b,c,d}, D(x2)={a,b,c,d},
D(x3)={b,c},D(x4)={c,d}. Values b and c must
be taken at most 2, values a and d must be
taken at least 1.

26

GCC
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

27

Value Network
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

t s

Default Orientation

(7,7)

28

A Solution
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

t s

Default Orientation

(7,7)

2
2

2

7

7 flow value

29

Residual Graph
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

t s

Black Orientation

2

Green Orientation

30

Properties
 The flow value xij of (i,j) can be increased iff

there is a path from j to i in R - {(j,i)}

 The flow value xij of (i,j) can be decreased iff
there is a path from i to j in R - {(i,j)}

ij

j i

31

Arc consistency
 The flow value of an arc is constant iff the arc

does not belong to a directed cycle of the
residual graph

 Definition of strongly connected components

32

Filtering algorithm for GCC
 Compute a feasible flow
 Compute the strongly connected components
 Remove every arc with a zero flow value for

which the ends belong to two different
components

 Linear algorithm achieving arc consistency
 work well due to (0,1) arcs

33

GCC
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

34

GCC after AC
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

35

GCC with costs
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

1
4
1
4
3
1
3

1 1

1

1 1

Sum < 12

36

Arc consistency
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

1

1

1

1 1

1

1 1

Sum < 12

37

GCC with costs
 Consistency can be computed by searching

for a minimum cost flow
 Arc consistency can be computed by

searching for shortest paths in the residual
graph. The length of an arc is its reduced
cost

 Complexity O(n S(n,m,χ)).
 Can be improved by searching for shortest

path from the values that are assigned.

38

Plan
 General Principles
 CP vs MIP
 Integration of OR algorithms
 A MIPLIB example: sports scheduling
 The maximum clique problem
 Strength of CP
 Weakness of CP
 New research areas
 Conclusion

39

The problem

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

• n teams and n-1 weeks and n/2 periods
• every two teams play each other exactly once
• every team plays one game in each week
• no team plays more than twice in the same period

• Problem 10teams of the MIPLIB
 (n=10 and the objective function is dummy)
• MIP is not able to find a solution for n=14
• CP finds a solution for n=10 in 0.06s, n=14 in 0.2, n=40 in 6h

40

CP model: variables

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

For each slot: 2 variables represent the teams
and 1 variable represents the match are defined

1 vs 6

T33a variable (T33a=6)
T33h variable (T33h=1)

M33 variable (M33=12) Mij=1 <=> 0 vs 1 or 1 vs 0
Mij=12 <=> 1 vs 6 or 6 vs1

41

CP model: T variables

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

D(Tija)=[1,n-1]
D(Tijh)=[0,n-2]

Tijh < Tija

42

CP model: M variables

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

D(Mij)=[1,n(n-1)/2]

43

CP model: constraints

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

• n teams and n-1 weeks and n/2 periodsn teams and n-1 weeks and n/2 periods
• every two teams play each other exactly once
• every team plays one game in each weekevery team plays one game in each week
• no team plays more than twice in the same periodno team plays more than twice in the same period

Alldiff constraints defined on M variables

44

CP model: constraints

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

• n teams and n-1 weeks and n/2 periods
• every two teams play each other exactly once
• every team plays one game in each week
• no team plays more than twice in the same period

For each week w:
Alldiff constraint defined
on {Tpwh, p=1..4} U {Tpwa, p=1..4}

45

CP model: constraints

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

• n teams and n-1 weeks and n/2 periods
• every two teams play each other exactly once
• every team plays one game in each week
• no team plays more than twice in the same period

For each period p:
Global cardinality constraint defined on
{Tpwh, w=1..7} U {Tpwa, w=1..7}
every team t is taken at most 2

46

CP model: constraints
 For each slot the two T variables and the M variable must be

linked together; example:
M12 = game T12h vs T12a

 For each slot we add Cij a ternary constraint defined on the two T
variables and the M variable; example:
C12 defined on {T12h,T12a,M12}

 Cij are defined by the list of allowed tuples:
for n=4: {(0,1,1),(0,2,2),(0,3,3),(1,2,4),(1,3,5),(2,3,6)}
(1,2,4) means game 1 vs 2 is the game number 4

 All these constraints have the same list of allowed tuples
 Efficient arc consistency algorithm for this kind of constraint is

known

47

First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 . vs .

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 . vs .

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 . vs .

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 . vs .

Introduction of a dummy column

48

First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 5 vs 6

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 . vs .

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 . vs .

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 . vs .

Introduction of a dummy column

We can prove that:
• each team occurs exactly twice for each period

49

First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 5 vs 6

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 2 vs 4

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 1 vs 3

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 0 vs 7

Introduction of a dummy column

We can prove that:
• each team occurs exactly twice for each period
• each team occurs exactly once in the dummy column

50

First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 5 vs 6

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 2 vs 4

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 1 vs 3

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 0 vs 7

Introduction of a dummy column

• The problem is exactly the same
• The solver is helped by such constraint. It can deduce some
inconsistencies more quickly

51

First model: strategies
 Break symmetries: 0 vs w appears in week w
 Teams are instantiated:

- the most instantiated team is chosen
- the slots that has the less remaining
possibilities (Tijh or Tija is minimal) is
instantiated with that team

52

First model: results

teams # fails Time (in s)
4 2 0.01
6 12 0.03
8 32 0.08

10 417 0.8
12 41 0.2
14 3,514 9.2
16 1,112 4.2
18 8,756 36
20 72,095 338
22 6,172,672 10h
24 6,391,470 12h

MIPLIB

MIP solver limit

53

Second model
 Break symmetry: 0 vs 1 is the first game of

the dummy column
 1) Find a round-robin. Define all the games

for each column (except for the dummy)
- Alldiff constraint on M is satisfied
- Alldiff constraint for each week is satisfied

 2) set the games in order to satisfy
constraints on periods. If no solution go to 1)

54

Second model: results

teams # fails Time (in s)
8 10 0.01

10 24 0.06
12 58 0.2
14 21 0.2
16 182 0.6
18 263 0.9
20 226 1.2
24 2702 10.5
26 5,683 26.4
30 11,895 138
40 2,834,754 6h

MIPLIB

MIP limit

First model limit

55

Why does CP perform well?

 Pure discrete problem. You can give any
number to the teams

 This is a feasibility problem (no objective
function).

 No arithmetic symbol: +, -, = is used
 A global point of view on the global cardinality

constraints (i.e. group these constraints into
only one) does not help

56

Plan
 General Principles
 CP vs MIP
 Integration of OR algorithms
 A MIPLIB example: sports scheduling
 The maximum clique problem
 Strength of CP
 Weakness of CP
 New research areas
 Conclusion

57

Motivations
 Contradict some conventional wisdoms about

CP: not good for combinatorial optimization
problem, need time to find the optimal
solution.

 Consider a well known pure combinatorial
optimization problem and show that CP
 Is an efficient technique
 Can give good results very quickly

58

Maximum clique

59

Maximum clique

60

The problem: studies
 Good and recent states of the art
 Advantages of this problem: 400 references

in the states of the art.
 All existing techniques have been used (GA,

Neural Network, Local Search, CP, MIP …)
 DIMACS challenge in 1993.
 Active area: papers every year

61

Enumeration based Algo
 Try to successively augment a Current set of nodes

by adding a new node to it.
 When a node is added: removes its non-

neighborhood (nodes not linked).
 Possible set is called Candidate set.
 Branch-and-Bound algorithm is used
 Upper bounds of the max clique are used:

 |K| best solution found so far
 If (UBmaxClique(candidate) <= |K| - |Current|) then fails

62

Efficient filtering algorithm is
required
 Basic program performs more than 5 millions of

backtracks per second.
 Some people consider that this is not possible to

use FA + propagation for this kind of problem
because it will be too long. Therefore, we need
efficient properties that can be efficiently computed.

 To be worthwhile the FA must be powerful

63

Max-Clique
 Other exact method: find the best possible

upper bound and check with current. The
check can be long.

 In CP: the UB + propagation must be
considered and not only the UB.

 UB1 better than UB2 and better than UB3
but
UB2 + UB3 + propagation can be better
than UB1

64

Max-Clique
 Classical method:

repeat:
select a node
remove nodes by applying the strongest property

 In CP:
repeat:

select a node
while (a node is removed)
 remove nodes by applying several

properties
end while

65

Max-Clique with CP
 Ideas:

 Find a good ub which is easy and quick to
compute

66

G CG

67

G CG
Max clique

68

G CG
Max clique Max Independent Set

69

G CG

Max clique Max Independent Set
CG

Min vertex
Cover

70

G CG

Max clique Max Independent Set
CG

Min vertex
Cover

maxClique(G)=maxIndependent(CG)=n-minCover(CG)

71

UB of maxClique
 maxClique(G)=n – minCover(CG). So:

maxClique(G) ≤ n – LBminCover(CG)
 UBmaxClique(G) = n – LBminCover(CG)
 Idea: find LBminCover(CG)

72

UB of maxClique
 maxClique(G)=n – minCover(CG). So:

maxClique(G) ≤ n – LBminCover(CG)
 UBmaxClique(G) = n – LBminCover(CG)
 Idea: find LBminCover(CG)
 Well known:

minCover(G) ≥ maxMatching(G)
equality when G is bipartite

73

UB of maxClique
 Matching: set of edges such that they have

no node in common

Vertex Cover: all the edges must be covered,
therefore any vertex cover contains

at least one node of every edge of the matching

74

UB of maxClique
 Drawback: G can be non-bipartite and the

matching algorithm is quite complex
 Goal: try to find an UB easier to implement

and better.

75

UB of max clique
 maxClique(G) = n – minCover(CG)
 If we find a covering of CG with paths and

cycles, we will have an UB of maxClique,
because we can deduce an LB of minCover.

76

LB of minCover

Every vertex cover involves at least k/2 nodes of a
Cycle of length k

Every vertex cover involves at least k/2 nodes of a
Path of length k

k = number of edges

Matching gives 3,
Our formula gives 3/2 + 3/2=2+2=4

77

LB of minCover

G

a

b

c

d

e

f

g

a
b
c
d
e
f
g

a
b
c
d
e
f
g

A cover by node disjoint paths and cycles can be found by searching for
a matching in the “duplicated graph”
and then by projecting this matching to the original graph

78

LB of minCover

G

a

b

c

d

e

f

g

a
b
c
d
e
f
g

a
b
c
d
e
f
g

A cover by node disjoint paths and cycles can be found by searching for
a matching in the “duplicated graph”
and then by projecting this matching to the original graph

79

LB of minCover

G

a

b

c

d

e

f

g

a
b
c
d
e
f
g

a
b
c
d
e
f
g

A cover by node disjoint paths and cycles can be found by searching for
a matching in the “duplicated graph”
and then by projecting this matching to the original graph

80

LB of minCover
 Another LB of minCover:

minCover(G) ≥ maxMatching(DG)/2

note: maxMatching(DG)/2 ≥ maxMatching(G)

 UB for maxClique:
maxClique(G) ≤ n – maxMatching(DCG)/2

81

LB of minCover
 Advantages:

 DCG is bipartite (means simple algorithm)
 Very good pre-test:

 maxClique(G) ≤ n – n/2

Only 5% of the nodes that satisfy this condition will
not be removed

82

2nd Filtering Algorithm
 Not set of nodes: contain the nodes that have been

tried and that are linked to all nodes of Current.

83

Bron & Kerbosh
N(y), y in NOT

Candidate

If a node in NOT is linked to all candidate nodes then fail

Any clique containing x can be extended by added y to it

84

Filtering from B&K’s idea

Candidate

x
and
N(x)

N(y), y in NOT

Let x be a node in candidate. If there is a node y in NOT such that
- y is linked to x and,
- N(x)-{y} is included in N(y)-{x} then x can be removed

Some other refinements given in my paper.

85

Max-Clique with CP

 Propagation:
while (a node is removed from Candidate) do
call maxCliqueUBFilter
call NotBasedFilter

done

86

Results
 All problems with less than or equal to 400

nodes are solved for the first time (notably all
brock400)

 Idem for 500 except for one
 P_hat300-1: 40s instead of 800s
 P_hat700-2: 250s instead of 2200s
 An open problem closed in 150s

87

Results:
 CP vs complete methods
 Wood, Ostegard, Fahle, Regin

#solved 38 36 45 52
< 10 min 38 35 38 44
best time 15 26 10 30
best LB 0 0 1 9

•Ostegard (Dynamic programming, RDS in CP)
 in less than 10 min: 350s CP: 285s

88

Results:
CP vs heuristic methods
 Qualex: 50 best bounds
 St-Louis, Gendron, Ferland (Optimization

days): 50 best bounds
 CP: 58 (52 proved)
 CP < 10 min: 49 (44 proved)
 CP < 1 min: 41 (37 proved)

89

Plan
 General Principles
 CP vs MIP
 Integration of OR algorithms
 A MIPLIB example: sports scheduling
 The maximum clique problem
 Strength of CP
 Weakness of CP
 New research areas
 Conclusion

90

Strength of CP
 Very flexible (easy to take into account new

constraints)
 The system is open: you can define you own

constraints, your own search mechanism.
 CP allows the use of sophisticated strategies,

you can use the knowledge of the domain of
application.

 You just have to respect a protocol given by a
solver. The solver manages the propagation
and provides you with a lot of predefined things

91

Strength of CP
 CP is exact: no solution is lost even for float variables
 Any existing algorithm can be integrated in CP as a

filtering algorithm of a constraints
 Concepts are simple
 A first model can be defined and tested quickly
 For optimization problems: the first solution is a good

one
 Easy to introduce your new “idea” in the system
 Cooperation is easy thanks to constraints

92

Plan
 General Principles
 CP vs MIP
 Integration of OR algorithms
 A MIPLIB example: sports scheduling
 The maximum clique problem
 Strength of CP
 Weakness of CP
 New research areas
 Conclusion

93

Weakness of CP
 Must be improved for optimization problems:

spend too much time in proving sub-
optimality
 First step: integration of cost in the constraints

 Sometimes lack of global point of view
 Dark zones: press Enter key then ?
 Relaxation is not good for CP. We learn

relaxation at school!

94

Plan
 General Principles
 CP vs MIP
 Integration of OR algorithms
 A MIPLIB example: sports scheduling
 The maximum clique problem
 Strength of CP
 Weakness of CP
 New research areas
 Conclusion

95

New research areas

 New point of view: CP is based on filtering
algorithm, i.e. : Given a property P defining a
necessary condition for an element to be in a
solution
Find as quickly as possible ALL elements that do
not satisfy P

 Ex: alldiff constraint and matching, cardinality
constraint and flows etc…

 Close to sensitivity analysis, but also different (for
instance we only have monotonic modifications).

96

New research areas

 Consider a Minimization problem, and OBJ the
objective. Suppose that we found a “solution” with
OBJ=25.

 We will reject any “solution” with OBJ > 24. So if x=a
leads to an OBJ > 24 then value a must be removed
from D(x).

 If we have a lower bound of OBJ then we can use it:
if lb(OBJ,x=a) > 24 then remove a from D(x)

 Problem: literature mainly gives upper bound for
minimization problems and lower bound for
maximization problems.

 Not always easy to get lb of good quality

97

New research areas

 The very same algorithm is called thousand
times (million sometimes)

 The incremental aspect of the algorithm
becomes really important.

98

Plan
 General Principles
 CP vs MIP
 Integration of OR algorithms
 A MIPLIB example: sports scheduling
 The maximum clique problem
 Strength of CP
 Weakness of CP
 New research areas
 Conclusion

99

Conclusion
 CP is a general technique: can encapsulate a

lot of work
 CP is an efficient method for solving some

combinatorial problems: small or large
 Filtering algorithms are quite important
 CP allows the use of sophisticated strategies
 If you want to use CP: think CP (avoid

Boolean (0-1) variables). CP allows the use
of symbolic representation

