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Constraint Programming
 3 notions:

- constraint network: variables, domains 
constraints + filtering (domain reduction)
- propagation
- search procedure (assignments + backtrack 
or B&B)
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Problem = conjunction of sub-
problems
 In CP a problem can be viewed as a 

conjunction of sub-problems that we are able 
to solve

 A sub-problem can be trivial: x < y or 
complex: search for a feasible flow

 A sub-problem = a constraint
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Filtering
 We are able to solve a sub-problem: a 

method is available
 CP uses this method to remove values from 

domain that do not belong to a solution of this 
sub-problem: filtering or domain-reduction

 E.g: x < y and D(x)=[10,20], D(y)=[5,15]
=> D(x)=[10,14], D(y)=[11,15]
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Arc consistency
 All the values which do not belong to any 

solution of the constraint are deleted.
 Example: Alldiff({x,y,z}) with 

D(x)=D(y)={0,1}, D(z)={0,1,2}
the two variables x and y take the values 0 
and 1, thus z cannot take these values.
FA by AC => 0 and 1 are removed from D(z)
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Propagation
 Domain Reduction due to one constraint can 

lead to new domain reduction of other 
variables

 When a domain is modified all the constraints 
involving this variable are studied and so on... 
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Why Propagation?
 Idea: problem = conjunction of easy sub-

problems. 
 Sub-problems: local point of view. Problem: 

global point of view. Propagation tries to 
obtain a global point of view from 
independent local point of view

 The conjunction is stronger that the union of 
independent resolution
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Search
 Backtrack (or Branch and Bound) algorithm 

with strategies
 Strategy:  define which variable and which 

value will be chosen.
 After each domain reduction (i.e assignment 

included) filtering and propagation are 
triggered
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CP vs MIP
 Relax the problem: floats 

instead of integers
 1) Use the Simplex 

algorithm (“polynomial”)
 2) Set float to integer value. 

Go to 1) and backtrack if 
necessary

 Global point of view on a 
relaxation of the problem

 Identify sub-problems that are 
easy (called constraints)

 1) Use specific algorithm for 
solving these sub-problems 
and for performing domain-
reduction

 2) Instantiate variable. Go to 1) 
and backtrack if necessary

 Local point of view on sub-
problems. “Global” point of 
view by propagation of 
domain reductions 

MIP approach CP approach
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CP vs MIP
 In CP constraints can be non-linear
 Structure of the problem is used in CP
 Structure of the constraints is used
 First solution given by CP is generally good 

(better than MIP)
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Alldiff constraint
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The value graph:
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Matching
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Arc consistency

Berge’s theorem:
An edge belong to some but not all maximum 
matching, iff, for an arbitrary matching it 
belongs to either an even alternating path 
which begins at a free vertex, or an even 
alternating cycle.
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Alternating path
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Alternating cycle
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Alldiff constraint
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Arc consistency
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The value graph:

D(x1)={1,2}
D(x2)={2,3}
D(x3)={1,3}
D(x4)={4}
D(x5)={5,6}
D(x6)={5,6,7}
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Alldiff constraint
 Compute a matching which covers X
 Compute the strongly connected components 
 Remove every unmatched arc for which the 

ends belong to two different components 
 Linear algorithm establishing arc 

consistency O(m)=O(nd)
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Global Cardinality Constraint
 GCC(X,{li},{ui})
 Defined on a set X of variables, the number 

of times each value vi can be taken must be 
in a given interval [li, ui]

 Example: D(x1)={a,b,c,d}, D(x2)={a,b,c,d},
D(x3)={b,c},D(x4)={c,d}. Values b and c must 
be taken at most 2, values a and d must be 
taken at least 1.
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GCC
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Value Network
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A Solution
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Residual Graph
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Properties
 The flow value xij of (i,j) can be increased iff 

there is a path from j to i in R - {(j,i)}

 The flow value xij of (i,j) can be decreased iff 
there is a path from i to j in R - {(i,j)}

ij

j i
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Arc consistency
 The flow value of an arc is constant iff the arc 

does not belong to a directed cycle of the 
residual graph

 Definition of strongly connected components
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Filtering algorithm for GCC
 Compute a feasible flow
 Compute the strongly connected components 
 Remove every arc with a zero flow value for 

which the ends belong to two different 
components 

 Linear algorithm achieving arc consistency
 work well due to (0,1) arcs



33

GCC
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)



34

GCC after AC
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GCC with costs
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Arc consistency
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GCC with costs
 Consistency can be computed by searching 

for a minimum cost flow
 Arc consistency can be computed by 

searching for shortest paths in the residual 
graph. The length of an arc is its reduced 
cost

 Complexity O(n S(n,m,χ)).
 Can be improved by searching for shortest 

path from the values that are assigned.
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The problem

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

• n teams and n-1 weeks and n/2 periods
• every two teams play each other exactly once
• every team plays one game in each week
• no team plays more than twice in the same period

• Problem 10teams of the MIPLIB 
  (n=10 and the objective function is dummy)
• MIP is not able to find a solution for n=14
• CP finds a solution for n=10 in 0.06s, n=14 in 0.2, n=40 in 6h
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CP model: variables

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

For each slot: 2 variables represent the teams 
and 1 variable represents the match are defined

1 vs 6

T33a variable (T33a=6)
T33h variable (T33h=1)

M33 variable (M33=12) Mij=1 <=> 0 vs 1 or 1 vs 0
Mij=12 <=> 1 vs 6 or 6 vs1
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CP model: T variables

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

D(Tija)=[1,n-1]
D(Tijh)=[0,n-2]

Tijh < Tija
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CP model: M variables

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

D(Mij)=[1,n(n-1)/2]
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CP model: constraints

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

•  n teams and n-1 weeks and n/2 periodsn teams and n-1 weeks and n/2 periods
• every two teams play each other exactly once
•  every team plays one game in each weekevery team plays one game in each week
•  no team plays more than twice in the same periodno team plays more than twice in the same period

Alldiff constraints defined on M variables



44

CP model: constraints

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

• n teams and n-1 weeks and n/2 periods
• every two teams play each other exactly once
• every team plays one game in each week
• no team plays more than twice in the same period

For each week w:
Alldiff constraint defined
on {Tpwh, p=1..4} U {Tpwa, p=1..4} 
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CP model: constraints

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

• n teams and n-1 weeks and n/2 periods
• every two teams play each other exactly once
• every team plays one game in each week
• no team plays more than twice in the same period

For each period p:
Global cardinality constraint defined on
{Tpwh, w=1..7} U {Tpwa, w=1..7}
every team t is taken at most 2
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CP model: constraints
 For each slot the two T variables and the M variable must be 

linked together; example:
M12 = game T12h vs T12a 

 For each slot we add Cij a ternary constraint defined on the two T 
variables and the M variable; example:
C12 defined on {T12h,T12a,M12}

 Cij are defined by the list of allowed tuples: 
for n=4: {(0,1,1),(0,2,2),(0,3,3),(1,2,4),(1,3,5),(2,3,6)}
(1,2,4) means game 1 vs 2 is the game number 4

 All these constraints have the same list of allowed tuples
 Efficient arc consistency algorithm for this kind of constraint is 

known
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First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 . vs .

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 . vs .

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 . vs .

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 . vs .

Introduction of a dummy column
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First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 5 vs 6

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 . vs .

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 . vs .

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 . vs .

Introduction of a dummy column

We can prove that:
• each team occurs exactly twice for each period
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First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 5 vs 6

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 2 vs 4

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 1 vs 3

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 0 vs 7

Introduction of a dummy column

We can prove that:
• each team occurs exactly twice for each period
• each team occurs exactly once in the dummy column
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First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 5 vs 6

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 2 vs 4

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 1 vs 3

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 0 vs 7

Introduction of a dummy column

• The problem is exactly the same
• The solver is helped by such constraint. It can deduce some
inconsistencies more quickly



51

First model: strategies
 Break symmetries: 0 vs w appears in week w
 Teams are instantiated:

- the most instantiated team is chosen
- the slots that has the less remaining 
possibilities (Tijh or Tija is minimal) is 
instantiated with that team
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First model: results

# teams # fails Time (in s)
4 2 0.01
6 12 0.03
8 32 0.08

10 417 0.8
12 41 0.2
14 3,514 9.2
16 1,112 4.2
18 8,756 36
20 72,095 338
22 6,172,672 10h
24 6,391,470 12h

MIPLIB

MIP solver limit
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Second model
 Break symmetry: 0 vs 1 is the first game of 

the dummy column
 1) Find a round-robin. Define all the games 

for each column (except for the dummy)
- Alldiff constraint on M is satisfied
- Alldiff constraint for each week is satisfied

 2) set the games in order to satisfy 
constraints on periods. If no solution go to 1)
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Second model: results

# teams # fails Time (in s)
8 10 0.01

10 24 0.06
12 58 0.2
14 21 0.2
16 182 0.6
18 263 0.9
20 226 1.2
24 2702 10.5
26 5,683 26.4
30 11,895 138
40 2,834,754 6h

MIPLIB

MIP limit

First model limit
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Why does CP perform well?

 Pure discrete problem. You can give any 
number to the teams

 This is a feasibility problem (no objective 
function).

 No arithmetic symbol: +, -, = is used
 A global point of view on the global cardinality 

constraints (i.e. group these constraints into 
only one) does not help
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Motivations
 Contradict some conventional wisdoms about 

CP: not good for combinatorial optimization 
problem, need time to find the optimal 
solution.

 Consider a well known pure combinatorial 
optimization problem and show that CP
 Is an efficient technique 
 Can give good results very quickly 
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Maximum clique



59

Maximum clique



60

The problem: studies
 Good and recent states of the art
 Advantages of this problem: 400 references 

in the states of the art.
 All existing techniques have been used (GA, 

Neural Network, Local Search, CP, MIP …)
 DIMACS challenge in 1993.
 Active area: papers every year
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Enumeration based Algo
 Try to successively augment a Current set of nodes 

by adding a new node to it.
 When a node is added: removes its non-

neighborhood (nodes not linked).
 Possible set is called Candidate set.  
 Branch-and-Bound algorithm is used 
 Upper bounds of the max clique are used:

 |K| best solution found so far
 If (UBmaxClique(candidate) <= |K| - |Current|) then fails
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Efficient filtering algorithm is 
required
 Basic program performs more than 5 millions of 

backtracks per second.
 Some people consider that this is not possible to 

use FA + propagation for this kind of problem 
because it will be too long. Therefore, we need 
efficient properties that can be efficiently computed.

 To be worthwhile the FA must be powerful
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Max-Clique
 Other exact method: find the best possible 

upper bound and check with current. The 
check can be long.

 In CP: the UB + propagation must be 
considered and not only the UB. 

 UB1 better than UB2 and better than UB3 
but 
UB2 + UB3 + propagation can be better 
than UB1
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Max-Clique
 Classical method:

repeat:
select a node
remove nodes by applying the strongest property

 In CP: 
repeat:

select a node
while (a node is removed)
       remove nodes by applying several 

properties
end while
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Max-Clique with CP
 Ideas:

 Find a good ub which is easy and quick to 
compute
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G CG



67

G CG
Max clique
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G CG
Max clique Max Independent Set
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G CG

Max clique Max Independent Set
CG

Min vertex 
Cover
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G CG

Max clique Max Independent Set
CG

Min vertex 
Cover

maxClique(G)=maxIndependent(CG)=n-minCover(CG)
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UB of maxClique
 maxClique(G)=n – minCover(CG). So: 

maxClique(G) ≤ n – LBminCover(CG)
 UBmaxClique(G) = n – LBminCover(CG)
 Idea: find LBminCover(CG)
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UB of maxClique
 maxClique(G)=n – minCover(CG). So: 

maxClique(G) ≤ n – LBminCover(CG)
 UBmaxClique(G) = n – LBminCover(CG)
 Idea: find LBminCover(CG)
 Well known: 

minCover(G) ≥ maxMatching(G)
equality when G is bipartite 
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UB of maxClique
 Matching: set of edges such that they have 

no node in common

Vertex Cover: all the edges must be covered, 
therefore any vertex cover contains 

at least one node of every edge of the matching 
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UB of maxClique
 Drawback: G can be non-bipartite and the 

matching algorithm is quite complex
 Goal: try to find an UB easier to implement 

and better. 
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UB of max clique
 maxClique(G) = n – minCover(CG)
 If we find a covering of CG with paths and 

cycles, we will have an UB of maxClique, 
because we can deduce an LB of minCover.
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LB of minCover

Every vertex cover involves at least k/2 nodes of a 
Cycle of length k

Every vertex cover involves at least k/2 nodes of a 
Path of length k

k = number of edges

Matching gives 3, 
Our formula gives 3/2 + 3/2=2+2=4 
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LB of minCover
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A cover by node disjoint paths and cycles can be found by searching for 
a matching in the “duplicated graph” 
and then by projecting this matching to the original graph
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LB of minCover
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and then by projecting this matching to the original graph
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LB of minCover
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A cover by node disjoint paths and cycles can be found by searching for 
a matching in the “duplicated graph” 
and then by projecting this matching to the original graph
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LB of minCover
 Another LB of minCover:

minCover(G) ≥ maxMatching(DG)/2  

note: maxMatching(DG)/2  ≥  maxMatching(G)

 UB for maxClique:
maxClique(G) ≤ n – maxMatching(DCG)/2  
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LB of minCover
 Advantages:

 DCG is bipartite (means simple algorithm)
 Very good pre-test:

 maxClique(G) ≤ n – n/2 

Only 5% of the nodes that satisfy this condition will 
not be removed
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2nd Filtering Algorithm
 Not set of nodes: contain the nodes that have been 

tried and that are linked to all nodes of Current.
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Bron & Kerbosh
N(y), y in NOT

Candidate

If a node in NOT is linked to all candidate nodes then fail

Any clique containing x can be extended by added y to it
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Filtering from B&K’s idea

Candidate

x
and
N(x)

N(y), y in NOT

Let x be a node in candidate.  If there is a node y in NOT such that 
- y is linked to x and,
- N(x)-{y} is included in N(y)-{x} then x can be removed

Some other refinements given in my paper.
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Max-Clique with CP

 Propagation: 
while (a node is removed from Candidate) do
call maxCliqueUBFilter
call NotBasedFilter 

done
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Results
 All problems with less than or equal to 400 

nodes are solved for the first time (notably all 
brock400)

 Idem for 500 except for one
 P_hat300-1: 40s instead of 800s
 P_hat700-2: 250s instead of 2200s
 An open problem closed in 150s
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Results:
 CP vs complete methods
               Wood, Ostegard, Fahle, Regin

#solved      38         36         45        52
< 10 min    38         35         38        44
best time    15         26         10        30
best LB       0           0           1          9

•Ostegard (Dynamic programming, RDS in CP)
 in less than 10 min: 350s CP: 285s
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Results:
CP vs heuristic methods
 Qualex: 50 best bounds
 St-Louis, Gendron, Ferland (Optimization 

days): 50 best bounds
 CP: 58 (52 proved)
 CP < 10 min: 49 (44 proved)
 CP < 1 min: 41 (37 proved)
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 Conclusion
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Strength of CP
 Very flexible (easy to take into account new 

constraints)
 The system is open: you can define you own 

constraints, your own search mechanism. 
 CP allows the use of sophisticated strategies, 

you can use the knowledge of the domain of 
application.

 You just have to respect a protocol given by a 
solver. The solver manages the propagation 
and provides you with a lot of predefined things
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Strength of CP
 CP is exact: no solution is lost even for float variables
 Any existing algorithm can be integrated in CP as a 

filtering algorithm of a constraints
 Concepts are simple 
 A first model can be defined and tested quickly
 For optimization problems: the first solution is a good 

one
 Easy to introduce your new “idea” in the system
 Cooperation is easy thanks to constraints
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Weakness of CP
 Must be improved for optimization problems: 

spend too much time in proving sub-
optimality
 First step: integration of cost in the constraints

 Sometimes lack of global point of view
 Dark zones: press Enter key then ?
 Relaxation is not good for CP. We learn 

relaxation at school!
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New research areas

 New point of view: CP is based on filtering 
algorithm, i.e. : Given a property P defining a 
necessary condition for an element to be in a 
solution
Find as quickly as possible ALL elements that do 
not satisfy P

 Ex: alldiff constraint and matching, cardinality 
constraint and flows etc…

 Close to sensitivity analysis, but also different (for 
instance we only have monotonic modifications). 
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New research areas

 Consider a Minimization problem, and OBJ the 
objective. Suppose that we found a “solution” with 
OBJ=25. 

 We will reject any “solution” with OBJ > 24. So if x=a 
leads to an OBJ > 24 then value a must be removed 
from D(x). 

 If we have a lower bound of OBJ then we can use it:
if lb(OBJ,x=a) > 24 then remove a from D(x)

 Problem: literature mainly gives upper bound for 
minimization problems and lower bound for 
maximization problems. 

 Not always easy to get lb of good quality
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New research areas

 The very same algorithm is called thousand 
times (million sometimes)

 The incremental aspect of the algorithm 
becomes really important. 
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Conclusion
 CP is a general technique: can encapsulate a 

lot of work
 CP is an efficient method for solving some 

combinatorial problems: small or large
 Filtering algorithms are quite important 
 CP allows the use of sophisticated strategies
 If you want to use CP: think CP (avoid 

Boolean (0-1) variables). CP allows the use 
of symbolic representation


