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Constraint Programming
 3 notions:

- constraint network: variables, domains 
constraints + filtering (domain reduction)
- propagation
- search procedure (assignments + backtrack 
or B&B)
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Problem = conjunction of sub-
problems
 In CP a problem can be viewed as a 

conjunction of sub-problems that we are able 
to solve

 A sub-problem can be trivial: x < y or 
complex: search for a feasible flow

 A sub-problem = a constraint
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Filtering
 We are able to solve a sub-problem: a 

method is available
 CP uses this method to remove values from 

domain that do not belong to a solution of this 
sub-problem: filtering or domain-reduction

 E.g: x < y and D(x)=[10,20], D(y)=[5,15]
=> D(x)=[10,14], D(y)=[11,15]
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Arc consistency
 All the values which do not belong to any 

solution of the constraint are deleted.
 Example: Alldiff({x,y,z}) with 

D(x)=D(y)={0,1}, D(z)={0,1,2}
the two variables x and y take the values 0 
and 1, thus z cannot take these values.
FA by AC => 0 and 1 are removed from D(z)
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Propagation
 Domain Reduction due to one constraint can 

lead to new domain reduction of other 
variables

 When a domain is modified all the constraints 
involving this variable are studied and so on... 
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Why Propagation?
 Idea: problem = conjunction of easy sub-

problems. 
 Sub-problems: local point of view. Problem: 

global point of view. Propagation tries to 
obtain a global point of view from 
independent local point of view

 The conjunction is stronger that the union of 
independent resolution
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Search
 Backtrack (or Branch and Bound) algorithm 

with strategies
 Strategy:  define which variable and which 

value will be chosen.
 After each domain reduction (i.e assignment 

included) filtering and propagation are 
triggered
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CP vs MIP
 Relax the problem: floats 

instead of integers
 1) Use the Simplex 

algorithm (“polynomial”)
 2) Set float to integer value. 

Go to 1) and backtrack if 
necessary

 Global point of view on a 
relaxation of the problem

 Identify sub-problems that are 
easy (called constraints)

 1) Use specific algorithm for 
solving these sub-problems 
and for performing domain-
reduction

 2) Instantiate variable. Go to 1) 
and backtrack if necessary

 Local point of view on sub-
problems. “Global” point of 
view by propagation of 
domain reductions 

MIP approach CP approach
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CP vs MIP
 In CP constraints can be non-linear
 Structure of the problem is used in CP
 Structure of the constraints is used
 First solution given by CP is generally good 

(better than MIP)
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Alldiff constraint
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The value graph:

D(x1)={1,2}
D(x2)={2,3}
D(x3)={1,3}
D(x4)={3,4}
D(x5)={2,4,5,6}
D(x6)={5,6,7}
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Matching
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Arc consistency

Berge’s theorem:
An edge belong to some but not all maximum 
matching, iff, for an arbitrary matching it 
belongs to either an even alternating path 
which begins at a free vertex, or an even 
alternating cycle.
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Alternating path
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Alternating cycle

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7



22

Alldiff constraint
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Arc consistency
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The value graph:

D(x1)={1,2}
D(x2)={2,3}
D(x3)={1,3}
D(x4)={4}
D(x5)={5,6}
D(x6)={5,6,7}
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Alldiff constraint
 Compute a matching which covers X
 Compute the strongly connected components 
 Remove every unmatched arc for which the 

ends belong to two different components 
 Linear algorithm establishing arc 

consistency O(m)=O(nd)
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Global Cardinality Constraint
 GCC(X,{li},{ui})
 Defined on a set X of variables, the number 

of times each value vi can be taken must be 
in a given interval [li, ui]

 Example: D(x1)={a,b,c,d}, D(x2)={a,b,c,d},
D(x3)={b,c},D(x4)={c,d}. Values b and c must 
be taken at most 2, values a and d must be 
taken at least 1.
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GCC
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Value Network
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A Solution
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Residual Graph
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Properties
 The flow value xij of (i,j) can be increased iff 

there is a path from j to i in R - {(j,i)}

 The flow value xij of (i,j) can be decreased iff 
there is a path from i to j in R - {(i,j)}

ij

j i
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Arc consistency
 The flow value of an arc is constant iff the arc 

does not belong to a directed cycle of the 
residual graph

 Definition of strongly connected components
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Filtering algorithm for GCC
 Compute a feasible flow
 Compute the strongly connected components 
 Remove every arc with a zero flow value for 

which the ends belong to two different 
components 

 Linear algorithm achieving arc consistency
 work well due to (0,1) arcs
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GCC after AC
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GCC with costs
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Arc consistency
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GCC with costs
 Consistency can be computed by searching 

for a minimum cost flow
 Arc consistency can be computed by 

searching for shortest paths in the residual 
graph. The length of an arc is its reduced 
cost

 Complexity O(n S(n,m,χ)).
 Can be improved by searching for shortest 

path from the values that are assigned.
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The problem

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

• n teams and n-1 weeks and n/2 periods
• every two teams play each other exactly once
• every team plays one game in each week
• no team plays more than twice in the same period

• Problem 10teams of the MIPLIB 
  (n=10 and the objective function is dummy)
• MIP is not able to find a solution for n=14
• CP finds a solution for n=10 in 0.06s, n=14 in 0.2, n=40 in 6h
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CP model: variables

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

For each slot: 2 variables represent the teams 
and 1 variable represents the match are defined

1 vs 6

T33a variable (T33a=6)
T33h variable (T33h=1)

M33 variable (M33=12) Mij=1 <=> 0 vs 1 or 1 vs 0
Mij=12 <=> 1 vs 6 or 6 vs1
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CP model: T variables

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

D(Tija)=[1,n-1]
D(Tijh)=[0,n-2]

Tijh < Tija
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CP model: M variables

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

D(Mij)=[1,n(n-1)/2]
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CP model: constraints

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

•  n teams and n-1 weeks and n/2 periodsn teams and n-1 weeks and n/2 periods
• every two teams play each other exactly once
•  every team plays one game in each weekevery team plays one game in each week
•  no team plays more than twice in the same periodno team plays more than twice in the same period

Alldiff constraints defined on M variables
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CP model: constraints

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

• n teams and n-1 weeks and n/2 periods
• every two teams play each other exactly once
• every team plays one game in each week
• no team plays more than twice in the same period

For each week w:
Alldiff constraint defined
on {Tpwh, p=1..4} U {Tpwa, p=1..4} 
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CP model: constraints

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

• n teams and n-1 weeks and n/2 periods
• every two teams play each other exactly once
• every team plays one game in each week
• no team plays more than twice in the same period

For each period p:
Global cardinality constraint defined on
{Tpwh, w=1..7} U {Tpwa, w=1..7}
every team t is taken at most 2
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CP model: constraints
 For each slot the two T variables and the M variable must be 

linked together; example:
M12 = game T12h vs T12a 

 For each slot we add Cij a ternary constraint defined on the two T 
variables and the M variable; example:
C12 defined on {T12h,T12a,M12}

 Cij are defined by the list of allowed tuples: 
for n=4: {(0,1,1),(0,2,2),(0,3,3),(1,2,4),(1,3,5),(2,3,6)}
(1,2,4) means game 1 vs 2 is the game number 4

 All these constraints have the same list of allowed tuples
 Efficient arc consistency algorithm for this kind of constraint is 

known
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First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 . vs .

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 . vs .

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 . vs .

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 . vs .

Introduction of a dummy column
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First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 5 vs 6

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 . vs .

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 . vs .

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 . vs .

Introduction of a dummy column

We can prove that:
• each team occurs exactly twice for each period
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First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 5 vs 6

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 2 vs 4

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 1 vs 3

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 0 vs 7

Introduction of a dummy column

We can prove that:
• each team occurs exactly twice for each period
• each team occurs exactly once in the dummy column
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First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 5 vs 6

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 2 vs 4

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 1 vs 3

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 0 vs 7

Introduction of a dummy column

• The problem is exactly the same
• The solver is helped by such constraint. It can deduce some
inconsistencies more quickly
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First model: strategies
 Break symmetries: 0 vs w appears in week w
 Teams are instantiated:

- the most instantiated team is chosen
- the slots that has the less remaining 
possibilities (Tijh or Tija is minimal) is 
instantiated with that team
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First model: results

# teams # fails Time (in s)
4 2 0.01
6 12 0.03
8 32 0.08

10 417 0.8
12 41 0.2
14 3,514 9.2
16 1,112 4.2
18 8,756 36
20 72,095 338
22 6,172,672 10h
24 6,391,470 12h

MIPLIB

MIP solver limit
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Second model
 Break symmetry: 0 vs 1 is the first game of 

the dummy column
 1) Find a round-robin. Define all the games 

for each column (except for the dummy)
- Alldiff constraint on M is satisfied
- Alldiff constraint for each week is satisfied

 2) set the games in order to satisfy 
constraints on periods. If no solution go to 1)
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Second model: results

# teams # fails Time (in s)
8 10 0.01

10 24 0.06
12 58 0.2
14 21 0.2
16 182 0.6
18 263 0.9
20 226 1.2
24 2702 10.5
26 5,683 26.4
30 11,895 138
40 2,834,754 6h

MIPLIB

MIP limit

First model limit
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Why does CP perform well?

 Pure discrete problem. You can give any 
number to the teams

 This is a feasibility problem (no objective 
function).

 No arithmetic symbol: +, -, = is used
 A global point of view on the global cardinality 

constraints (i.e. group these constraints into 
only one) does not help
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Motivations
 Contradict some conventional wisdoms about 

CP: not good for combinatorial optimization 
problem, need time to find the optimal 
solution.

 Consider a well known pure combinatorial 
optimization problem and show that CP
 Is an efficient technique 
 Can give good results very quickly 
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Maximum clique
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Maximum clique
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The problem: studies
 Good and recent states of the art
 Advantages of this problem: 400 references 

in the states of the art.
 All existing techniques have been used (GA, 

Neural Network, Local Search, CP, MIP …)
 DIMACS challenge in 1993.
 Active area: papers every year
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Enumeration based Algo
 Try to successively augment a Current set of nodes 

by adding a new node to it.
 When a node is added: removes its non-

neighborhood (nodes not linked).
 Possible set is called Candidate set.  
 Branch-and-Bound algorithm is used 
 Upper bounds of the max clique are used:

 |K| best solution found so far
 If (UBmaxClique(candidate) <= |K| - |Current|) then fails
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Efficient filtering algorithm is 
required
 Basic program performs more than 5 millions of 

backtracks per second.
 Some people consider that this is not possible to 

use FA + propagation for this kind of problem 
because it will be too long. Therefore, we need 
efficient properties that can be efficiently computed.

 To be worthwhile the FA must be powerful
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Max-Clique
 Other exact method: find the best possible 

upper bound and check with current. The 
check can be long.

 In CP: the UB + propagation must be 
considered and not only the UB. 

 UB1 better than UB2 and better than UB3 
but 
UB2 + UB3 + propagation can be better 
than UB1
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Max-Clique
 Classical method:

repeat:
select a node
remove nodes by applying the strongest property

 In CP: 
repeat:

select a node
while (a node is removed)
       remove nodes by applying several 

properties
end while
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Max-Clique with CP
 Ideas:

 Find a good ub which is easy and quick to 
compute
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G CG
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G CG
Max clique
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G CG
Max clique Max Independent Set



69

G CG

Max clique Max Independent Set
CG

Min vertex 
Cover



70

G CG

Max clique Max Independent Set
CG

Min vertex 
Cover

maxClique(G)=maxIndependent(CG)=n-minCover(CG)
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UB of maxClique
 maxClique(G)=n – minCover(CG). So: 

maxClique(G) ≤ n – LBminCover(CG)
 UBmaxClique(G) = n – LBminCover(CG)
 Idea: find LBminCover(CG)
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UB of maxClique
 maxClique(G)=n – minCover(CG). So: 

maxClique(G) ≤ n – LBminCover(CG)
 UBmaxClique(G) = n – LBminCover(CG)
 Idea: find LBminCover(CG)
 Well known: 

minCover(G) ≥ maxMatching(G)
equality when G is bipartite 
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UB of maxClique
 Matching: set of edges such that they have 

no node in common

Vertex Cover: all the edges must be covered, 
therefore any vertex cover contains 

at least one node of every edge of the matching 
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UB of maxClique
 Drawback: G can be non-bipartite and the 

matching algorithm is quite complex
 Goal: try to find an UB easier to implement 

and better. 
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UB of max clique
 maxClique(G) = n – minCover(CG)
 If we find a covering of CG with paths and 

cycles, we will have an UB of maxClique, 
because we can deduce an LB of minCover.



76

LB of minCover

Every vertex cover involves at least k/2 nodes of a 
Cycle of length k

Every vertex cover involves at least k/2 nodes of a 
Path of length k

k = number of edges

Matching gives 3, 
Our formula gives 3/2 + 3/2=2+2=4 
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LB of minCover
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A cover by node disjoint paths and cycles can be found by searching for 
a matching in the “duplicated graph” 
and then by projecting this matching to the original graph
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LB of minCover
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LB of minCover
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A cover by node disjoint paths and cycles can be found by searching for 
a matching in the “duplicated graph” 
and then by projecting this matching to the original graph
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LB of minCover
 Another LB of minCover:

minCover(G) ≥ maxMatching(DG)/2  

note: maxMatching(DG)/2  ≥  maxMatching(G)

 UB for maxClique:
maxClique(G) ≤ n – maxMatching(DCG)/2  
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LB of minCover
 Advantages:

 DCG is bipartite (means simple algorithm)
 Very good pre-test:

 maxClique(G) ≤ n – n/2 

Only 5% of the nodes that satisfy this condition will 
not be removed
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2nd Filtering Algorithm
 Not set of nodes: contain the nodes that have been 

tried and that are linked to all nodes of Current.
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Bron & Kerbosh
N(y), y in NOT

Candidate

If a node in NOT is linked to all candidate nodes then fail

Any clique containing x can be extended by added y to it
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Filtering from B&K’s idea

Candidate

x
and
N(x)

N(y), y in NOT

Let x be a node in candidate.  If there is a node y in NOT such that 
- y is linked to x and,
- N(x)-{y} is included in N(y)-{x} then x can be removed

Some other refinements given in my paper.
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Max-Clique with CP

 Propagation: 
while (a node is removed from Candidate) do
call maxCliqueUBFilter
call NotBasedFilter 

done
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Results
 All problems with less than or equal to 400 

nodes are solved for the first time (notably all 
brock400)

 Idem for 500 except for one
 P_hat300-1: 40s instead of 800s
 P_hat700-2: 250s instead of 2200s
 An open problem closed in 150s
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Results:
 CP vs complete methods
               Wood, Ostegard, Fahle, Regin

#solved      38         36         45        52
< 10 min    38         35         38        44
best time    15         26         10        30
best LB       0           0           1          9

•Ostegard (Dynamic programming, RDS in CP)
 in less than 10 min: 350s CP: 285s
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Results:
CP vs heuristic methods
 Qualex: 50 best bounds
 St-Louis, Gendron, Ferland (Optimization 

days): 50 best bounds
 CP: 58 (52 proved)
 CP < 10 min: 49 (44 proved)
 CP < 1 min: 41 (37 proved)
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Strength of CP
 Very flexible (easy to take into account new 

constraints)
 The system is open: you can define you own 

constraints, your own search mechanism. 
 CP allows the use of sophisticated strategies, 

you can use the knowledge of the domain of 
application.

 You just have to respect a protocol given by a 
solver. The solver manages the propagation 
and provides you with a lot of predefined things
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Strength of CP
 CP is exact: no solution is lost even for float variables
 Any existing algorithm can be integrated in CP as a 

filtering algorithm of a constraints
 Concepts are simple 
 A first model can be defined and tested quickly
 For optimization problems: the first solution is a good 

one
 Easy to introduce your new “idea” in the system
 Cooperation is easy thanks to constraints
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Weakness of CP
 Must be improved for optimization problems: 

spend too much time in proving sub-
optimality
 First step: integration of cost in the constraints

 Sometimes lack of global point of view
 Dark zones: press Enter key then ?
 Relaxation is not good for CP. We learn 

relaxation at school!
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New research areas

 New point of view: CP is based on filtering 
algorithm, i.e. : Given a property P defining a 
necessary condition for an element to be in a 
solution
Find as quickly as possible ALL elements that do 
not satisfy P

 Ex: alldiff constraint and matching, cardinality 
constraint and flows etc…

 Close to sensitivity analysis, but also different (for 
instance we only have monotonic modifications). 
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New research areas

 Consider a Minimization problem, and OBJ the 
objective. Suppose that we found a “solution” with 
OBJ=25. 

 We will reject any “solution” with OBJ > 24. So if x=a 
leads to an OBJ > 24 then value a must be removed 
from D(x). 

 If we have a lower bound of OBJ then we can use it:
if lb(OBJ,x=a) > 24 then remove a from D(x)

 Problem: literature mainly gives upper bound for 
minimization problems and lower bound for 
maximization problems. 

 Not always easy to get lb of good quality
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New research areas

 The very same algorithm is called thousand 
times (million sometimes)

 The incremental aspect of the algorithm 
becomes really important. 
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Conclusion
 CP is a general technique: can encapsulate a 

lot of work
 CP is an efficient method for solving some 

combinatorial problems: small or large
 Filtering algorithms are quite important 
 CP allows the use of sophisticated strategies
 If you want to use CP: think CP (avoid 

Boolean (0-1) variables). CP allows the use 
of symbolic representation


