Constraint Programming and Operations Research

Jean-Charles REGIN Cornell University

Plan

- General Principles
- CP vs MIP
- Integration of OR algorithms
- A MIPLIB example: sports scheduling
- The maximum clique problem
- Strength of CP
- Weakness of CP
- New research areas
- Conclusion

Constraint Programming

- 3 notions:
 - constraint network: variables, domains
 constraints + filtering (domain reduction)
 - propagation
 - search procedure (assignments + backtrack or B&B)

Problem = conjunction of subproblems

- In CP a problem can be viewed as a conjunction of sub-problems that we are able to solve
- A sub-problem can be trivial: x < y or complex: search for a feasible flow
- A sub-problem = a constraint

Filtering

- We are able to solve a sub-problem: a method is available
- CP uses this method to remove values from domain that do not belong to a solution of this sub-problem: filtering or domain-reduction
- E.g: x < y and D(x)=[10,20], D(y)=[5,15]
 => D(x)=[10,14], D(y)=[11,15]

Arc consistency

- All the values which do not belong to any solution of the constraint are deleted.
- Example: Alldiff({x,y,z}) with D(x)=D(y)={0,1}, D(z)={0,1,2} the two variables x and y take the values 0 and 1, thus z cannot take these values. FA by AC => 0 and 1 are removed from D(z)

- Domain Reduction due to one constraint can lead to new domain reduction of other variables
- When a domain is modified all the constraints involving this variable are studied and so on...

Why Propagation?

- Idea: problem = conjunction of easy subproblems.
- Sub-problems: local point of view. Problem: global point of view. Propagation tries to obtain a global point of view from independent local point of view
- The conjunction is stronger that the union of independent resolution

Search

- Backtrack (or Branch and Bound) algorithm with strategies
- Strategy: define which variable and which value will be chosen.
- After each domain reduction (i.e assignment included) filtering and propagation are triggered

Plan

- General Principles
- CP vs MIP
- Integration of OR algorithms
- A MIPLIB example: sports scheduling
- The maximum clique problem
- Strength of CP
- Weakness of CP
- New research areas
- Conclusion

- Relax the problem: floats instead of integers
- 1) Use the Simplex algorithm ("polynomial")
- 2) Set float to integer value. Go to 1) and backtrack if necessary

- Relax the problem: floats instead of integers
- 1) Use the Simplex algorithm ("polynomial")
- 2) Set float to integer value. Go to 1) and backtrack if necessary

- Identify sub-problems that are easy (called constraints)
- 1) Use specific algorithm for solving these sub-problems and for performing domainreduction
- 2) Instantiate variable. Go to 1) and backtrack if necessary

- Relax the problem: floats instead of integers
- 1) Use the Simplex algorithm ("polynomial")
- 2) Set float to integer value. Go to 1) and backtrack if necessary

Global point of view on a relaxation of the problem

- Identify sub-problems that are easy (called constraints)
- 1) Use specific algorithm for solving these sub-problems and for performing domainreduction
- 2) Instantiate variable. Go to 1) and backtrack if necessary
- Local point of view on subproblems. "Global" point of view by propagation of domain reductions

CP vs MIP

- In CP constraints can be non-linear
- Structure of the problem is used in CP
- Structure of the constraints is used
- First solution given by CP is generally good (better than MIP)

Plan

- General Principles
- CP vs MIP
- Integration of OR algorithms
- A MIPLIB example: sports scheduling
- The maximum clique problem
- Strength of CP
- Weakness of CP
- New research areas
- Conclusion

Alldiff constraint

The value graph:

 $D(x1) = \{1,2\}$ $D(x2) = \{2,3\}$ $D(x3) = \{1,3\}$ $D(x4) = \{3,4\}$ $D(x5) = \{2,4,5,6\}$ $D(x6) = \{5,6,7\}$

Matching

Arc consistency

Berge's theorem:

An edge belong to some but not all maximum matching, iff, for an arbitrary matching it belongs to either an even alternating path which begins at a free vertex, or an even alternating cycle.

Alternating path

Alternating cycle

Alldiff constraint

Arc consistency

The value graph:

 $D(x1) = \{1,2\}$ $D(x2) = \{2,3\}$ $D(x3) = \{1,3\}$ $D(x4) = \{4\}$ $D(x5) = \{5,6\}$ $D(x6) = \{5,6,7\}$

Alldiff constraint

- Compute a matching which covers X
- Compute the strongly connected components
- Remove every unmatched arc for which the ends belong to two different components
- Linear algorithm establishing arc consistency O(m)=O(nd)

Global Cardinality Constraint

- GCC(X,{**l**i},{ui})
- Defined on a set X of variables, the number of times each value vi can be taken must be in a given interval [li, ui]
- Example: D(x1)={a,b,c,d}, D(x2)={a,b,c,d}, D(x3)={b,c},D(x4)={c,d}. Values b and c must be taken at most 2, values a and d must be taken at least 1.

GCC

7 flow value

Properties

 The flow value xij of (i,j) can be increased iff there is a path from j to i in R - {(j,i)}

 The flow value xij of (i,j) can be decreased iff there is a path from i to j in R - {(i,j)}

Arc consistency

- The flow value of an arc is constant iff the arc does not belong to a directed cycle of the residual graph
- Definition of strongly connected components

Filtering algorithm for GCC

- Compute a feasible flow
- Compute the strongly connected components
- Remove every arc with a zero flow value for which the ends belong to two different components
- Linear algorithm achieving arc consistency
- work well due to (0,1) arcs

GCC

GCC after AC

GCC with costs

Peter М (1,2) Paul D (1,2) Mary N (1,1) John Bob B (0,2) Mike O (0,2) Julia

Sum < 12

Sum < 12
GCC with costs

- Consistency can be computed by searching for a minimum cost flow
- Arc consistency can be computed by searching for shortest paths in the residual graph. The length of an arc is its reduced cost
- Complexity O(n S(n,m,χ)).
- Can be improved by searching for shortest path from the values that are assigned.

Plan

- CP vs MIP
- Integration of OR algorithms
- A MIPLIB example: sports scheduling
- The maximum clique problem
- Strength of CP
- Weakness of CP
- New research areas
- Conclusion

The problem

- n teams and n-1 weeks and n/2 periods
- every two teams play each other exactly once
- every team plays one game in each week
- no team plays more than twice in the same period

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	0 vs 1	0 vs 2	4 vs 7	3 vs 6	3 vs 7	1 vs 5	2 vs 4
Period 2	2 vs 3	1 vs 7	0 vs 3	5 vs 7	1 vs 4	0 vs 6	5 vs 6
Period 3	4 vs 5	3 vs 5	1 vs 6	0 vs 4	2 vs 6	2 vs 7	0 vs 7
Period 4	6 vs 7	4 vs 6	2 vs 5	1 vs 2	0 vs 5	3 vs 4	1 vs 3

- Problem 10teams of the MIPLIB (n=10 and the objective function is dummy)
- MIP is not able to find a solution for n=14
- CP finds a solution for n=10 in 0.06s, n=14 in 0.2, n=40 in 6h

CP model: variables

For each slot: 2 variables represent the teams and 1 variable represents the match are defined

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	0 vs 1	0 vs 2	4 vs 7	3 vs 6	3 vs 7	1 vs 5	2 vs 4
Period 2	2 vs 3	1 vs 7	0 vs 3	5 vs 7	1 vs 4	0 vs 6	5 vs 6
Period 3	4 vs 5	3 vs 5	<mark>1 vs 6</mark>	0 vs 4	2 vs 6	2 vs 7	0 vs 7
Period 4	6 vs 7	4 vs 5	2 vs 5	1 vs 2	0 vs 5	3 vs 4	1 vs 3

-M33 variable (M33=12) $Mij=1 \le 0 vs 1 or 1 vs 0$ Mij=12 $\le 1 vs 6 or 6 vs 1$ **VS 6** T33a variable (T33a=6) T33h variable (T33h=1)

CP model: T variables

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	T11h vs	T12h vs	T13h vs	T14h vs	T15h vs	T16h vs	T17h vs
	T11a	T12a	T13a	T14a	T15a	T16a	T17a
Period 2	T21h vs	T22h vs	T23h vs	T24h vs	T25h vs	T26h vs	T27h vs
	T21a	T22a	T23a	T24a	T25a	T26a	T27a
Period 3	T31h vs	T32h vs	T33h vs	T34h vs	T35h vs	T36h vs	T37h vs
	T31a	T32a	T33a	T34a	T35a	T36a	T37a
Period 4	T41h vs	T42h vs	T43h vs	T44h vs	T45h vs	T46h vs	T47h vs
	T41a	T42a	T43a	T44a	T45a	T46a	T47a

D(Tija)=[1,n-1] D(Tijh)=[0,n-2]

Tijh < Tija

CP model: M variables

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	M11	M12	M13	M14	M15	M16	M17
Period 2	M21	M22	M23	M24	M25	M26	M27
Period 3	M31	M32	M33	M34	M35	M36	M37
Period 4	M41	M42	M43	M44	M45	M46	M47

D(Mij)=[1,n(n-1)/2]

- n teams and n-1 weeks and n/2 periods
- every two teams play each other exactly once
- every team plays one game in each week
- no team plays more than twice in the same period

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	M11	M12	M13	M14	M15	M16	M17
Period 2	M21	M22	M23	M24	M25	M26	M27
Period 3	M31	M32	M33	M34	M35	M36	M37
Period 4	M41	M42	M43	M44	M45	M46	M47

Alldiff constraints defined on M variables

- n teams and n-1 weeks and n/2 periods
- every two teams play each other exactly once
- every team plays one game in each week
- no team plays more than twice in the same period

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	T11h vs	T12h vs	T13h vs	T14h vs	T15h vs	T16h vs	T17h vs
	T11a	T12a	T13a	T14a	T15a	T16a	T17a
Period 2	T21h vs	T22h vs	T23h vs	T24h vs	T25h vs	T26h vs	T27h vs
	T21a	T22a	T23a	T24a	T25a	T26a	T27a
Period 3	T31h vs	T32h vs	T33h vs	T34h vs	T35h vs	T36h vs	T37h vs
	T31a	T32a	T33a	T34a	T35a	T36a	T37a
Period 4	T41h vs	T42h vs	T43h vs	T44h vs	T45h vs	T46h vs	T47h vs
	T41a	T42a	T43a	T44a	T45a	T46a	T47a

For each week w:

Alldiff constraint defined

on {Tpwh, p=1..4} U {Tpwa, p=1..4}

- n teams and n-1 weeks and n/2 periods
- every two teams play each other exactly once
- every team plays one game in each week
- no team plays more than twice in the same period

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	T11h vs	T12h vs	T13h vs	T14h vs	T15h vs	T16h vs	T17h vs
	T11a	T12a	T13a	T14a	T15a	T16a	T17a
Period 2	T21h vs	T22h vs	T23h vs	T24h vs	T25h vs	T26h vs	T27h vs
	T21a	T22a	T23a	T24a	T25a	T26a	T27a
Period 3	T31h vs	T32h vs	T33h vs	T34h vs	T35h vs	T36h vs	T37h vs
	T31a	T32a	T33a	T34a	T35a	T36a	T37a
Period 4	T41h vs	T42h vs	T43h vs	T44h vs	T45h vs	T46h vs	T47h vs
	T41a	T42a	T43a	T44a	T45a	T46a	T47a

For each period p:

Global cardinality constraint defined on {Tpwh, w=1..7} U {Tpwa, w=1..7} every team t is taken at most 2

- For each slot the two T variables and the M variable must be linked together; example: M12 = game T12h vs T12a
- For each slot we add Cij a ternary constraint defined on the two T variables and the M variable; example: C12 defined on {T12h,T12a,M12}
- Cij are defined by the list of allowed tuples: for n=4: {(0,1,1),(0,2,2),(0,3,3),(1,2,4),(1,3,5),(2,3,6)} (1,2,4) means game 1 vs 2 is the game number 4
- All these constraints have the same list of allowed tuples
- Efficient arc consistency algorithm for this kind of constraint is known

Introduction of a dummy column

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Dummy
Period 1	0 vs 1	0 vs 2	4 vs 7	3 vs 6	3 vs 7	1 vs 5	2 vs 4	. VS .
Period 2	2 vs 3	1 vs 7	0 vs 3	5 vs 7	1 vs 4	0 vs 6	5 vs 6	. VS .
Period 3	4 vs 5	3 vs 5	1 vs 6	0 vs 4	2 vs 6	2 vs 7	0 vs 7	. VS .
Period 4	6 vs 7	4 vs 6	2 vs 5	1 vs 2	0 vs 5	3 vs 4	1 vs 3	. VS .

Introduction of a dummy column

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Dummy
Period 1	0 vs 1	0 vs 2	4 vs 7	3 vs 6	3 vs 7	1 vs 5	2 vs 4	5 vs 6
Period 2	2 vs 3	1 vs 7	0 vs 3	5 vs 7	1 vs 4	0 vs 6	5 vs 6	. VS .
Period 3	4 vs 5	3 vs 5	1 vs 6	0 vs 4	2 vs 6	2 vs 7	0 vs 7	. VS .
Period 4	6 vs 7	4 vs 6	2 vs 5	1 vs 2	0 vs 5	3 vs 4	1 vs 3	. VS .

We can prove that:

• each team occurs exactly twice for each period

Introduction of a dummy column

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Dummy
Period 1	0 vs 1	0 vs 2	4 vs 7	3 vs 6	3 vs 7	1 vs 5	2 vs 4	5 vs 6
Period 2	2 vs 3	1 vs 7	0 vs 3	5 vs 7	1 vs 4	0 vs 6	5 vs 6	2 vs 4
Period 3	4 vs 5	3 vs 5	1 vs 6	0 vs 4	2 vs 6	2 vs 7	0 vs 7	1 vs 3
Period 4	6 vs 7	4 vs 6	2 vs 5	1 vs 2	0 vs 5	3 vs 4	1 vs 3	0 vs 7

We can prove that:

- each team occurs exactly twice for each period
- each team occurs exactly once in the dummy column

Introduction of a dummy column

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Dummy
Period 1	0 vs 1	0 vs 2	4 vs 7	3 vs 6	3 vs 7	1 vs 5	2 vs 4	5 vs 6
Period 2	2 vs 3	1 vs 7	0 vs 3	5 vs 7	1 vs 4	0 vs 6	5 vs 6	2 vs 4
Period 3	4 vs 5	3 vs 5	1 vs 6	0 vs 4	2 vs 6	2 vs 7	0 vs 7	1 vs 3
Period 4	6 vs 7	4 vs 6	2 vs 5	1 vs 2	0 vs 5	3 vs 4	1 vs 3	0 vs 7

- The problem is exactly the same
- The solver is helped by such constraint. It can deduce some inconsistencies more quickly

First model: strategies

- Break symmetries: 0 vs w appears in week w
- Teams are instantiated:
 - the most instantiated team is chosen
 - the slots that has the less remaining possibilities (Tijh or Tija is minimal) is instantiated with that team

First model: results

	Time (in s)	# fails	# teams
	0.01	2	4
	0.03	12	6
	0.08	32	8
MIPLIB	0.8	417	10
	0.2	41	12
MID solver limit	9.2	3,514	14
	4.2	1,112	16
	36	8,756	18
	338	72,095	20
	10h	6,172,672	22
	12h	6,391,470	24

Second model

- Break symmetry: 0 vs 1 is the first game of the dummy column
- 1) Find a round-robin. Define all the games for each column (except for the dummy)
 - Alldiff constraint on M is satisfied
 - Alldiff constraint for each week is satisfied
- 2) set the games in order to satisfy constraints on periods. If no solution go to 1)

Second model: results

0.01 0.06 MIDLID	0.01		
0.06 MIDI ID		10	8
	0.06	24	10
0.2	0.2	58	12
	0.2	21	14
0.6 MIP limit	0.6	182	16
0.9	0.9	263	18
1.2	1.2	226	20
	10.5	2702	24
26.4 First model filmit	26.4	5,683	26
138	138	11,895	30
6h	6h	2,834,754	40

Why does CP perform well?

- Pure discrete problem. You can give any number to the teams
- This is a feasibility problem (no objective function).
- No arithmetic symbol: +, -, = is used
- A global point of view on the global cardinality constraints (i.e. group these constraints into only one) does not help

Plan

- General Principles
- CP vs MIP
- Integration of OR algorithms
- A MIPLIB example: sports scheduling
- The maximum clique problem
- Strength of CP
- Weakness of CP
- New research areas
- Conclusion

Motivations

- Contradict some conventional wisdoms about CP: not good for combinatorial optimization problem, need time to find the optimal solution.
- Consider a well known pure combinatorial optimization problem and show that CP
 - Is an efficient technique
 - Can give good results very quickly

Maximum clique

Maximum clique

The problem: studies

- Good and recent states of the art
- Advantages of this problem: 400 references in the states of the art.
- All existing techniques have been used (GA, Neural Network, Local Search, CP, MIP ...)
- DIMACS challenge in 1993.
- Active area: papers every year

Enumeration based Algo

- Try to successively augment a Current set of nodes by adding a new node to it.
- When a node is added: removes its nonneighborhood (nodes not linked).
- Possible set is called **Candidate** set.
- Branch-and-Bound algorithm is used
- Upper bounds of the max clique are used:
 - |K| best solution found so far
 - If (UBmaxClique(candidate) <= |K| |Current|) then fails

Efficient filtering algorithm is required

- Basic program performs more than 5 millions of backtracks per second.
- Some people consider that this is not possible to use FA + propagation for this kind of problem because it will be too long. Therefore, we need efficient properties that can be efficiently computed.
- To be worthwhile the FA must be powerful

Max-Clique

- Other exact method: find the best possible upper bound and check with current. The check can be long.
- In CP: the UB + propagation must be considered and not only the UB.
- UB1 better than UB2 and better than UB3 but
 UB2 + UB3 + propagation can be better than UB1

Max-Clique

Classical method:

repeat:

select a node remove nodes by applying the strongest property

• In CP:

repeat:

select a node while (a node is removed) remove nodes by applying **several** properties end while

Max-Clique with CP

- Ideas:
 - Find a good ub which is easy and quick to compute

UB of maxClique

- maxClique(G)=n minCover(CG). So: maxClique(G) ≤ n – LBminCover(CG)
- UBmaxClique(G) = n LBminCover(CG)
- Idea: find LBminCover(CG)

UB of maxClique

- maxClique(G)=n minCover(CG). So: maxClique(G) ≤ n – LBminCover(CG)
- UBmaxClique(G) = n LBminCover(CG)
- Idea: find LBminCover(CG)
- Well known: minCover(G) ≥ maxMatching(G) equality when G is bipartite
UB of maxClique

 Matching: set of edges such that they have no node in common

Vertex Cover: all the edges must be covered, therefore any vertex cover contains at least one node of every edge of the matching

UB of maxClique

- Drawback: G can be non-bipartite and the matching algorithm is quite complex
- Goal: try to find an UB easier to implement and better.

UB of max clique

- maxClique(G) = n minCover(CG)
- If we find a covering of CG with paths and cycles, we will have an UB of maxClique, because we can deduce an LB of minCover.

Every vertex cover involves at least $\lceil k/2 \rceil$ nodes of a Path of length k $\mathbf{k} = \mathbf{number of edges}$

Matching gives 3, Our formula gives $\lceil 3/2 \rceil + \lceil 3/2 \rceil = 2+2=4$

A cover by node disjoint paths and cycles can be found by searching for a matching in the "duplicated graph" and then by projecting this matching to the original graph

A cover by node disjoint paths and cycles can be found by searching for a matching in the "duplicated graph" and then by projecting this matching to the original graph

A cover by node disjoint paths and cycles can be found by searching for a matching in the "duplicated graph" and then by projecting this matching to the original graph

- Another LB of minCover: minCover(G) ≥ [maxMatching(DG)/2]
 note: [maxMatching(DG)/2] ≥ maxMatching(G)
- UB for maxClique: maxClique(G) ≤ n – [maxMatching(DCG)/2]

- Advantages:
 - DCG is bipartite (means simple algorithm)
 - Very good pre-test: $maxClique(G) \le n \lceil n/2 \rceil$

Only 5% of the nodes that satisfy this condition will not be removed

2nd Filtering Algorithm

• Not set of nodes: contain the nodes that have been tried and that are linked to all nodes of Current.

Bron & Kerbosh

83

Filtering from B&K's idea

Let x be a node in candidate. If there is a node y in NOT such that

- y is linked to x and,
- N(x)-{y} is included in N(y)-{x} then x can be removed

Some other refinements given in my paper.

Max-Clique with CP

• **Propagation**:

while (a node is removed from Candidate) do call maxCliqueUBFilter call NotBasedFilter done

Results

- All problems with less than or equal to 400 nodes are solved for the first time (notably all brock400)
- Idem for 500 except for one
- P_hat300-1: 40s instead of 800s
- P_hat700-2: 250s instead of 2200s
- An open problem closed in 150s

Results: CP vs complete methods

	Wood,	Ostegard,	Fahle,	Regin
#solved	38	36	45	52
< 10 min	38	35	38	44
best time	e 15	26	10	30
best LB	0	0	1	9

•Ostegard (Dynamic programming, RDS in CP) in less than 10 min: 350s CP: 285s

Results: CP vs heuristic methods

- Qualex: 50 best bounds
- St-Louis, Gendron, Ferland (Optimization days): 50 best bounds
- CP: 58 (52 proved)
- CP < 10 min: 49 (44 proved)
- CP < 1 min: 41 (37 proved)

Plan

- General Principles
- CP vs MIP
- Integration of OR algorithms
- A MIPLIB example: sports scheduling
- The maximum clique problem
- Strength of CP
- Weakness of CP
- New research areas
- Conclusion

Strength of CP

- Very flexible (easy to take into account new constraints)
- The system is open: you can define you own constraints, your own search mechanism.
- CP allows the use of sophisticated strategies, you can use the knowledge of the domain of application.
- You just have to respect a protocol given by a solver. The solver manages the propagation and provides you with a lot of predefined things

Strength of CP

- CP is **exact**: no solution is lost even for float variables
- Any existing algorithm can be integrated in CP as a filtering algorithm of a constraints
- Concepts are simple
- A first model can be defined and tested quickly
- For optimization problems: the first solution is a good one
- Easy to introduce your new "idea" in the system
- Cooperation is easy thanks to constraints

Plan

- General Principles
- CP vs MIP
- Integration of OR algorithms
- A MIPLIB example: sports scheduling
- The maximum clique problem
- Strength of CP
- Weakness of CP
- New research areas
- Conclusion

Weakness of CP

- Must be improved for optimization problems: spend too much time in proving suboptimality
 - First step: integration of cost in the constraints
- Sometimes lack of global point of view
- Dark zones: press Enter key then ?
- Relaxation is not good for CP. We learn relaxation at school!

Plan

- General Principles
- CP vs MIP
- Integration of OR algorithms
- A MIPLIB example: sports scheduling
- The maximum clique problem
- Strength of CP
- Weakness of CP
- New research areas
- Conclusion

New research areas

 New point of view: CP is based on filtering algorithm, i.e. : Given a property P defining a necessary condition for an element to be in a solution

Find as quickly as possible ALL elements that do not satisfy P

- Ex: alldiff constraint and matching, cardinality constraint and flows etc...
- Close to sensitivity analysis, but also different (for instance we only have monotonic modifications).

New research areas

- Consider a Minimization problem, and OBJ the objective. Suppose that we found a "solution" with OBJ=25.
- We will reject any "solution" with OBJ > 24. So if x=a leads to an OBJ > 24 then value a must be removed from D(x).
- If we have a lower bound of OBJ then we can use it: if lb(OBJ,x=a) > 24 then remove a from D(x)
- Problem: literature mainly gives upper bound for minimization problems and lower bound for maximization problems.
- Not always easy to get lb of good quality

New research areas

- The very same algorithm is called thousand times (million sometimes)
- The incremental aspect of the algorithm becomes really important.

Plan

- General Principles
- CP vs MIP
- Integration of OR algorithms
- A MIPLIB example: sports scheduling
- The maximum clique problem
- Strength of CP
- Weakness of CP
- New research areas
- Conclusion

Conclusion

- CP is a general technique: can encapsulate a lot of work
- CP is an efficient method for solving some combinatorial problems: small or large
- Filtering algorithms are quite important
- CP allows the use of sophisticated strategies
- If you want to use CP: think CP (avoid Boolean (0-1) variables). CP allows the use of symbolic representation