
copyright Jean-Charles Regin 2004 1

Filtering Algorithms based
on Graph Theory

Jean-Charles REGIN
ILOG, Sophia Antipolis

regin@ilog.fr

copyright Jean-Charles Regin 2004 2

Plan

❏ CP
❏ Graph Theory: Flows
❏ Global cardinality constraints: based on flow

algorithms
❏ Global cardinality with costs: based on minimum

cost flow
❏ Alldiff constraint: matching
❏ Symmetric alldiff constraint: symmetric matching
❏ Conclusion

copyright Jean-Charles Regin 2004 3

Plan

❏ CP
❏ Graph Theory: Flows
❏ Global cardinality constraints: based on flow

algorithms
❏ Global cardinality with costs: based on minimum

cost flow
❏ Alldiff constraint: matching
❏ Symmetric alldiff constraint: symmetric matching
❏ Conclusion

copyright Jean-Charles Regin 2004 4

Constraint Programming

❏ In CP a problem is defined from:
- variables with possible values (domain)
- constraints

❏ Domain can be discrete or continuous, symbolic
values or numerical values

❏ Constraints express properties that have to be
satisfied

copyright Jean-Charles Regin 2004 5

Problem = conjunction of sub-
problems

❏ In CP a problem can be viewed as a conjunction of
sub-problems that we are able to solve

❏ A sub-problem can be trivial: x < y or complex:
search for a feasible flow

❏ A sub-problem = a constraint

copyright Jean-Charles Regin 2004 6

Constraints

❏ Predefined constraints: arithmetic (x < y, x = y +z, |x-y| > k, alldiff,
cardinality, sequence …

❏ Constraints given in extension by the list of allowed (or forbidden)
combinations of values

❏ user-defined constraints: any algorithm can be encapsulated
❏ Logical combination of constraints using OR, AND, NOT, XOR

operators. Sometimes called meta-constraints

copyright Jean-Charles Regin 2004 7

Filtering

❏ We are able to solve a sub-problem: a method is
available

❏ CP uses this method to remove values from domain
that do not belong to a solution of this sub-problem:
filtering or domain-reduction

❏ E.g: x < y and D(x)=[10,20], D(y)=[5,15]
=> D(x)=[10,14], D(y)=[11,15]

copyright Jean-Charles Regin 2004 8

Filtering

❏ A filtering algorithm is associated with each
constraint (sub-problem).

❏ Can be simple (x < y) or complex (alldiff)
❏ Theoretical basics: arc consistency, remove all the

values that do not belong to a solution of the
underlined sub-problem.

copyright Jean-Charles Regin 2004 9

Arc consistency

❏ All the values which do not belong to any solution of
the constraint are deleted.

❏ Example: Alldiff({x,y,z}) with
D(x)=D(y)={0,1}, D(z)={0,1,2}
the two variables x and y take the values 0 and 1,
thus z cannot take these values.
FA by AC => 0 and 1 are removed from D(z)

copyright Jean-Charles Regin 2004 10

Propagation

❏ Domain Reduction due to one constraint can lead to
new domain reduction of other variables

❏ When a domain is modified all the constraints
involving this variable are studied and so on ...

copyright Jean-Charles Regin 2004 11

Why Propagation?

❏ Idea: problem = conjunction of easy sub-problems.
❏ Sub-problems: local point of view. Problem: global

point of view. Propagation tries to obtain a global
point of view from independent local point of view

❏ The conjunction is stronger that the union of
independent resolution

copyright Jean-Charles Regin 2004 12

Search

❏ Backtrack algorithm with strategies:
try to successively assign variables with values. If a
dead-end occurs then backtrack and try another
value for the variable

❏ Strategy: define which variable and which value will
be chosen.

❏ After each domain reduction (i.e assignment) filtering
and propagation are triggered

copyright Jean-Charles Regin 2004 13

Constraint Programming

❏ 3 notions:
- constraint network: variables, domains constraints
+ filtering (domain reduction)
- propagation
- search procedure (assignments + backtrack)

copyright Jean-Charles Regin 2004 14

Plan

❏ CP
❏ Graph Theory: Flows
❏ Global cardinality constraints: based on flow

algorithms
❏ Global cardinality with costs: based on minimum

cost flow
❏ Alldiff constraint: matching
❏ Symmetric alldiff constraint: symmetric matching
❏ Conclusion

copyright Jean-Charles Regin 2004 15

Graph Theory

❏ Directed graph or digraph G=(X,U), X set of nodes, U set of
arcs

❏ A path from v1 to vk is a set of nodes [v1,…,vk] such that
(vi,vi+1) is an arc for every i in [1,..k-1]

❏ A path is simple if all its nodes are distinct
❏ A path is a cycle iff k >1 and v1=vk
❏ Length(p) is the sum of the costs of the arcs contained in p
❏ A shortest path from s to t is a path from s to t whose length is

minimum
❏ There is a simple shortest path

copyright Jean-Charles Regin 2004 16

Flows

❏ Let G be a graph in which every arc (i,j) is
associated with 2 integers:

❍ l(i,j) the lower bound capacity of the arc
❍ u(i,j) the upper bound capacity of the arc

❏ A flow is a function f satisfying:
❍ For any arc (i,j), f(i,j) represents the amount of some

commodity that can ``flow'' through the arc.
Such a flow is permitted only in the indicated direction of
the arc, i.e., from i to j.
For convenience, we assume f(i,j)=0 if (i,j) is not an arc.

❍ A conservation law is observed at each node:
for every node j: ∑ f(i,j) = ∑ f(j,k).

copyright Jean-Charles Regin 2004 17

Flows

❏ The feasible flow problem:
❍ Does there exist a flow in G that satisfies the capacity

constraints?
That is find f such that
for every arc (i,j) in U(G): l(i,j) ≤ f(i,j) ≤ u(i,j).

❏ The problem of the maximum flow for an arc (i,j):
❍ Find a feasible flow in G for which the value of f(i,j) is

maximum.

copyright Jean-Charles Regin 2004 18

Flows

❏ Without loss of generality, and to overcome
notational difficulties, we will consider that:

❍ if (i,j) is an arc of G then (j,i) is not an arc of G.
❍ all boundaries of capacities are nonnegative integers.

❏ If all the upper bounds and all the lower bounds are
integers and if there exists a feasible flow, then for
any arc (i,j) there exists a maximum flow from j to i
which is integral on every arc in G

copyright Jean-Charles Regin 2004 19

Plan

❏ CP
❏ Graph Theory: Flows
❏ Global cardinality constraints: based on flow

algorithms
❏ Global cardinality with costs: based on minimum

cost flow
❏ Alldiff constraint: matching
❏ Symmetric alldiff constraint: symmetric matching
❏ Conclusion

copyright Jean-Charles Regin 2004 20

Global Cardinality Constraint

❏ GCC(X,{li},{ui})
❏ Defined on a set X of variables, the number of times

each value vi can be taken must be in a given
interval [li, ui]

❏ Example: D(x1)={a,b,c,d}, D(x2)={a,b,c,d},
D(x3)={b,c},D(x4)={c,d}. Values b and c must be
taken at most 2, values a and d must be taken at
least 1.

copyright Jean-Charles Regin 2004 21

GCC
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

copyright Jean-Charles Regin 2004 22

Value Network
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

t s

Default Orientation

(7,7)

copyright Jean-Charles Regin 2004 23

Feasible Flow
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

t s

Black Orientation

(7,7)

copyright Jean-Charles Regin 2004 24

Successive augmentation

❏ Successive augmentation are computed in a
particular graph:
The residual graph

❏ The residual graph has no lower bounds
❏ In our case this algorithm is equivalent to the best

ones.

25

Residual Graph
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

t s

Black Orientation

(7,7)

Green Orientation

6

1
2

1

2

2

If f(i,j) > l(i,j) then (j,i) and r(j,i)= f(i,j) – l(i,j)
If f(i,j) < u(i,j) then (i,j) and r(i,j)= u(i,j) – f(i,j)

26

Residual Graph
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

t s

Black Orientation

(7,7)

Green Orientation

6

1
2

1

2

2

27

Residual Graph
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

t s

Black Orientation

(7,7)

Green Orientation

5

1
2

1

2

If f(i,j) > l(i,j) then (j,i) and r(j,i)= f(i,j) – l(i,j)
If f(i,j) < u(i,j) then (i,j) and r(i,j)= u(i,j) – f(i,j)

copyright Jean-Charles Regin 2004 28

A Solution
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

t s

Default Orientation

(7,7)

2
2

2

7

7 flow value Sum = 7

copyright Jean-Charles Regin 2004 29

Properties

❏ The flow value xij of (i,j) can be increased iff there is
a path from j to i in R - {(j,i)}

❏ The flow value xij of (i,j) can be decreased iff there is
a path from i to j in R - {(i,j)}

ij

j i

copyright Jean-Charles Regin 2004 30

Arc consistency

❏ The flow value of an arc is constant iff the arc does
not belong to a directed cycle of the residual graph

❏ Definition of strongly connected components

copyright Jean-Charles Regin 2004 31

Filtering algorithm for GCC

❏ Compute a feasible flow
❏ Compute the strongly connected components
❏ Remove every arc with a zero flow value for which

the ends belong to two different components
❏ Linear algorithm achieving arc consistency
❏ work well due to (0,1) arcs

copyright Jean-Charles Regin 2004 32

GCC
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

copyright Jean-Charles Regin 2004 33

GCC after AC
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

copyright Jean-Charles Regin 2004 34

Plan

❏ CP
❏ Graph Theory: Flows
❏ Global cardinality constraints: based on flow

algorithms
❏ Global cardinality with costs: based on minimum

cost flow
❏ Alldiff constraint: matching
❏ Symmetric alldiff constraint: symmetric matching
❏ Conclusion

copyright Jean-Charles Regin 2004 35

GCC with costs

❏ GCC with costs =
 Global cardinality constraint
 + Sum constraint on the assignment costs

❏ AC algorithm which takes into account the globality
of the constraint + the costs

copyright Jean-Charles Regin 2004 36

Minimum cost Flows

❏ Let G be a graph in which every arc (i,j) is
associated with 3 integers:

❍ l(i,j) the lower bound capacity of the arc
❍ u(i,j) the upper bound capacity of the arc
❍ c(i,j) the cost of carrying one unit of flow

❏ The cost of a flow f is cost(f)=∑ f(i,j) c(i,j)
❏ The minimum cost flow problem:

❍ If there exists a feasible flow, find a feasible flow f such
that cost(f) is minimum.

copyright Jean-Charles Regin 2004 37

GCC with costs
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

1
4
1
4
3
1
3

1 1

1

1 1

Sum < 12

copyright Jean-Charles Regin 2004 38

Arc consistency
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

1

1

1

1 1

1

1 1

Sum < 12

copyright Jean-Charles Regin 2004 39

GCC with costs

❏ Consistency can be computed by searching for a
minimum cost flow

❏ Arc consistency can be computed by searching for
shortest paths in a special graph.

copyright Jean-Charles Regin 2004 40

Minimum Cost flow

❏ Similar to feasible flow except that:
shortest paths are considered.

❏ length of an arc = reduced cost of the arc
❏ Reduced costs are used to work with nonnegative

value (useful for shortest paths algorithms), but the
principles remains the same with residual costs.

❏ We will consider here only the residual costs

copyright Jean-Charles Regin 2004 41

Minimum Cost Flow
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

1
4
1
4
3
1
3

1 1

1

1 1

t s

Default Orientation

(7,7)

42

A Solution
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

1
4
1
4
3
1
3

1 1

1

1 1

t s

Default Orientation

(7,7)

2
2

2

7

7 flow value Sum = 7

copyright Jean-Charles Regin 2004 43

Residual Graph
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

1
4
1
4
3
1
3

1 1

1

1 1

t s

Black Orientation

2

Green Orientation

copyright Jean-Charles Regin 2004 44

Residual Costs
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

-1
4
-1
4
3
-1
3

-1 -1

-1

-1 1

t s

Black Orientation

2

Green Orientation

-1 residual cost = - cost if opposite arc

45

Residual Costs
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

-1
4
-1
4
3
-1
3

-1 -1

-1

-1 1

t s

Black Orientation

2

Green Orientation

-1 residual cost = - cost if opposite arc
1 residual cost = cost if arc

copyright Jean-Charles Regin 2004 46

Shortest path

❏ d(i,j) = length of the shortest path which does not
use (i,j) in the residual graph. The length is the sum
of the residual costs of the arc contained in the path.

47

Residual Costs
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

-1
4
-1
4
3
-1
3

-1 -1

-1

-1 1

t s

Black Orientation

2

Green Orientation

d(M,D)=3 + (-1) = 2

copyright Jean-Charles Regin 2004 48

Minimum cost flow

❏ If the feasible flow is computed by augmenting the
flow along shortest paths then the solution is
optimal.

❏ Complexity O(n S(n,m,χ)) where χ is the maximum
cost value.

copyright Jean-Charles Regin 2004 49

Arc consistency

❏ The flow value xij of (i,j) can be increased iff there is
a path from j to i in R - {(j,i)}

❏ The flow value xij of (i,j) can be decreased iff there is
a path from i to j in R - {(i,j)}

ij

j i

copyright Jean-Charles Regin 2004 50

Arc consistency

❏ Let optcost be the value of the minimum cost flow,
and H be the maximum value of the assignments.

❏ The flow value of an arc (i,j) can be increased if and
only if:

rcij + d(j,i) + optcost < H

The cost of the directed cycle is computed, that is
the cost of rerouting the flow.

copyright Jean-Charles Regin 2004 51

Can (M,John) be increased?
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

-1
4
-1
4
3
-1
3

-1 -1

-1

-1 1

t s

Black Orientation

2

Green Orientation

copyright Jean-Charles Regin 2004 52

Can (M,John) be increased?
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

-1
4
-1
4
3
-1
3

-1 -1

-1

-1 1

t s

Black Orientation

2

Green Orientation

rc(M,John) + d(John,M) + optcost = 3 + (-1+4+(-1)) + 7 = 12 > 11: NO

copyright Jean-Charles Regin 2004 53

Arc consistency

❏ Similar reasoning for decreasing the flow value.
❏ Complexity O(m S(n,m,χ))
❏ can be improved!

copyright Jean-Charles Regin 2004 54

AC Improvement

❏ Problem: shortest paths from j to i cannot contain
(j,i).

❏ How the computations can be grouped, since the
graph changes for each computation?

copyright Jean-Charles Regin 2004 55

AC Improvement

❏ Problem: shortest paths from j to i cannot contain
(j,i).

❏ How the computations can be grouped, since the
graph changes for each computation?

❏ The graph does not change for (0,1) arcs!

copyright Jean-Charles Regin 2004 56

AC Improvement

❏ Between variables and values there are only (0,1)
arcs.

❏ If we search for increasing the flow value of (i,j) then
xij=0 and (j,i) does not exist in R

❏ If we search for decreasing the flow value of (i,j)
then xij=1 and (i,j) does not exist in R

copyright Jean-Charles Regin 2004 57

AC Improvement

❏ The computation can be grouped:
For each variable, the shortest paths to all the
values are computed

❏ Complexity O(n S(n,m,χ)).
❏ Can be improved by searching for shortest path from

the values that are assigned.
❏ Reduced costs can be used instead of residual cost

to have only nonnegative costs and to improve the
search for shortest paths.

copyright Jean-Charles Regin 2004 58

Sum of all different var

❏ Constraint:
 x1+x2+x3 < H and alldiff(x1,x2,x3).

❏ Can be represented as a gcc with costs.

copyright Jean-Charles Regin 2004 59

Sum of all different var
x1

x2

x3

1

2

3

5

1
1

2
2

3

5

The cost of an arc involving a value is equal to this value

Can be generalized to cardinality constraints

copyright Jean-Charles Regin 2004 60

Scalar Product of all different var
x1

x2

x3

1

2

3

5

3*1=3
4*1=43*2=6

2*2=4
2*3=6

4*5=20

3x1 + 2x2 + 4x3 = s
The cost of an arc involving a value is equal to

the coefficient of the variable multiplied by the value

Can be generalized to cardinality constraints

copyright Jean-Charles Regin 2004 61

Plan

❏ CP
❏ Graph Theory: Flows
❏ Global cardinality constraints: based on flow

algorithms
❏ Global cardinality with costs: based on minimum

cost flow
❏ Alldiff constraint: matching
❏ Symmetric alldiff constraint: symmetric matching
❏ Conclusion

copyright Jean-Charles Regin 2004 62

Matching

❏ A matching is a set of edges no two of which have a
common endpoint.

❏ A matching M covers X if all the nodes is an
endpoint of M

copyright Jean-Charles Regin 2004 63

Alldiff constraint

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

The value graph:

D(x1)={1,2}
D(x2)={2,3}
D(x3)={1,3}
D(x4)={3,4}
D(x5)={2,4,5,6}
D(x6)={5,6,7}

copyright Jean-Charles Regin 2004 64

Matching

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

copyright Jean-Charles Regin 2004 65

Arc consistency

Berge’s theorem:
An edge belong to some but not all maximum
matching, iff, for an arbitrary matching it belongs to
either an even alternating path which begins at a
free vertex, or an even alternating cycle.

copyright Jean-Charles Regin 2004 66

Alternating path

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7
Free vertex

copyright Jean-Charles Regin 2004 67

Alternating cycle

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

copyright Jean-Charles Regin 2004 68

Alldiff constraint

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

copyright Jean-Charles Regin 2004 69

Arc consistency

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

The value graph:

D(x1)={1,2}
D(x2)={2,3}
D(x3)={1,3}
D(x4)={4}
D(x5)={5,6}
D(x6)={5,6,7}

copyright Jean-Charles Regin 2004 70

Alldiff constraint

❏ Compute a matching which covers X
❏ Compute the strongly connected components
❏ Remove every unmatched arc for which the ends

belong to two different components
❏ Consistency: O(n1/2m)=O(n3/2d) from scratch

 O(knd) incremental
❏ Linear algorithm achieving arc consistency

O(m)=O(nd)

copyright Jean-Charles Regin 2004 71

Plan

❏ CP
❏ Graph Theory: Flows
❏ Global cardinality constraints: based on flow

algorithms
❏ Global cardinality with costs: based on minimum

cost flow
❏ Alldiff constraint: matching
❏ Symmetric alldiff constraint: symmetric

matching
❏ Conclusion

copyright Jean-Charles Regin 2004 72

The symmetric alldiff

❏ Goal: group entities by pair
❏ Example: aircraft pilots, nurses …

List of compatibility:
bob can work with john and peter
john can work with bob and mike
mike can work with peter and john
peter can work with bob and mike

john

bob
peter

mike

copyright Jean-Charles Regin 2004 73

Possible model

❏ One variable per person
values = variables
D(Vjohn)={bob,mike}
D(Vbob)={john,peter}

❏ Constraints:
AllDiff(Vjohn,Vbob,Vpeter,Vmike)
+ ∀i,j: (Vi=j <=> Vj=i)
If bob works with john then john works with
bob

john

bob
peter

mike

copyright Jean-Charles Regin 2004 74

Symmetric Alldiff

❏ A Symmetric Alldiff Constraint takes into account
SIMULTANEOUSLY:

AllDiff(Vjohn,Vbob,Vpeter,Vmike)
+ ∀i,j: (Vi=j <=> Vj=i)

copyright Jean-Charles Regin 2004 75

Symmetric Alldiff

❏ Why is it interesting?
D(x)={y,z}, D(y)={x,z}
D(z)={x,y}
Nothing is deduced
There is no solution!

x

y z

copyright Jean-Charles Regin 2004 76

Why is it important?

a

b

c

d

copyright Jean-Charles Regin 2004 77

Why is it important?

a

b

a

b

c c

d d

copyright Jean-Charles Regin 2004 78

Why is it important?

a

b

a

b

c c

d d

copyright Jean-Charles Regin 2004 79

Non bipartite matching

a b c

d

 g f

e h

 ij

copyright Jean-Charles Regin 2004 80

Non bipartite matching

a b c

d

 g f

e h

 ij

e is mark even

copyright Jean-Charles Regin 2004 81

Non bipartite matching

a b c

d

 g f

e h

 ij

e is mark odd

copyright Jean-Charles Regin 2004 82

Non bipartite matching

❏ In bipartite graph the edge can be oriented
(from one set to another set)

❏ In non bipartite graph this is impossible!
❏ We loose the efficient algorithm for the alldiff

constraint

copyright Jean-Charles Regin 2004 83

Non bipartite matching

❏ Idea: Edmond’s algorithm
❏ Improvement by Tarjan and other
❏ Complexity O(nmα(n,m)) easy to implement

O(nm) not to hard
O(n1/2m) : 42 pages of non intuitive demonstration

copyright Jean-Charles Regin 2004 84

Arc consistency

❏ Pb: find all edges that do not belong to any matching
which covers X

❏ First solution:
for each edge in turn:
 remove the two extremities, search for a
 matching which covers X-{e1,e2}
Complexity : mO(m)=O(m2) (because incremental
algorithm)

copyright Jean-Charles Regin 2004 85

Arc consistency

❏ We propose an algorithm in nO(m)=O(nm)
❏ Berge’s theorem:

An edge belong to some but not all maximum
matching, iff, for an arbitrary matching it belongs to
either an even alternating path which begins at a
free vertex, or an even alternating cycle.

copyright Jean-Charles Regin 2004 86

Arc consistency

❏ No free vertex. Thus only even alternating cycles
have to be identified

❏ Idea:
 alternating cycle = a matching edge {u,v}
 + alternating path from v to u

❏ Algorithm: for each matching edge {u,v} in turn we
identify the edge {w,u} that can form a cycle with an
alternating path from v
(idem from u)

copyright Jean-Charles Regin 2004 87

a b

c

d

e

f

g

i

h

j

copyright Jean-Charles Regin 2004 88

a b

c

d

e

f

g

i

h

j

The search starts from j

copyright Jean-Charles Regin 2004 89

a b

c

d

e

f

g

i

h

j

This arc is not traversed

copyright Jean-Charles Regin 2004 90

Arc consistency

❏ Algorithm in O(nm)=O(n2d)
❏ Problems:

 - non incremental algorithm
 - complexity too high for certain applications

❏ Solution: a filtering algorithm with a lower complexity

copyright Jean-Charles Regin 2004 91

Filtering algorithm

❏ New Proposition:

During the search for an alternating path: If one of
the extremities of an edge is reached and if the edge
is not traversed then the edge does not belong to
any maximum matching

copyright Jean-Charles Regin 2004 92

Filtering algorithm
u v

a

b

copyright Jean-Charles Regin 2004 93

Filtering algorithm
u v

a

b This edge is removed

We start from v

copyright Jean-Charles Regin 2004 94

Filtering algorithm
u v

a

b This edge is NOT removed

We start from u

copyright Jean-Charles Regin 2004 95

Filtering algorithm

❏ 1) An edge is arbitrary chosen
❏ 2) Search for an alternating path
❏ 3) If no deletion occurs then stop

 Else goto 1)
❏ Complexity O(m) per deletion
❏ We can also use credit/debit

copyright Jean-Charles Regin 2004 96

Improvements

❏ Use the classical alldiff constraint
❏ Search for 2-connected components and cutpoints

copyright Jean-Charles Regin 2004 97

Improvements

❏ Use the classical alldiff constraint
❏ Search for 2-connected components and cutpoints

2-connected component with an EVEN number of nodes

copyright Jean-Charles Regin 2004 98

Improvements

❏ Use the classical alldiff constraint
❏ Search for 2-connected components and cutpoints

2-connected component with an ODD number of nodes

copyright Jean-Charles Regin 2004 99

Results

❏ Best compromise is:
- maintain the consistency by maintaining a
maximum matching in a non bipartite graph
- use the filtering algorithm we propose
- use the classical alldiff AC algorithm
- use the improvements we proposed

copyright Jean-Charles Regin 2004 100

Symmetric alldiff

❏ Consistency for a symmetric alldiff constraint:
O(nm), incremental algorithm (similar to alldiff)

❏ Arc consistency for a symmetric alldiff constraint:
O(nm) (alldiff O(m))

❏ Filtering algorithm: O(m) per deletion

copyright Jean-Charles Regin 2004 101

References

❏ Graph Theory: books of Tarjan, Lawler, Berge,
Golumbic, Gondran & Minoux

❏ Flows: books of Ahuja & Magnanti & Orlin, Ford &
Fulkerson

❏ Integration of OR in CP: book of Milano.

copyright Jean-Charles Regin 2004 102

Conclusion

❏ Filtering algorithms are quite important
❏ Global constraints are quite important
❏ Flows for integers and matchings are powerful
❏ Integration of flow algorithms or matching algorithm

in filtering algorithm dramatically improve CP
❏ A lot of work can be done on this integration!

