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Constraint Programming

❏ In CP a problem is defined from:
- variables with possible values (domain)
- constraints

❏ Domain can be discrete or continuous, symbolic 
values or numerical values

❏ Constraints express properties that have to be 
satisfied
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Problem = conjunction of sub-
problems

❏ In CP a problem can be viewed as a conjunction of 
sub-problems that we are able to solve

❏ A sub-problem can be trivial: x < y or complex: 
search for a feasible flow

❏ A sub-problem = a constraint
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Constraints

❏ Predefined constraints: arithmetic (x < y, x = y +z, |x-y| > k, alldiff, 
cardinality, sequence …

❏ Constraints given in extension by the list of allowed (or forbidden) 
combinations of values

❏  user-defined constraints: any algorithm can be encapsulated
❏ Logical combination of constraints using OR, AND, NOT, XOR 

operators. Sometimes called meta-constraints
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Filtering

❏ We are able to solve a sub-problem: a method is 
available

❏ CP uses this method to remove values from domain 
that do not belong to a solution of this sub-problem: 
filtering or domain-reduction

❏ E.g: x < y and D(x)=[10,20], D(y)=[5,15]
=> D(x)=[10,14], D(y)=[11,15]
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Filtering

❏ A filtering algorithm is associated with each 
constraint (sub-problem).

❏ Can be simple (x < y) or complex (alldiff)
❏ Theoretical basics: arc consistency, remove all the 

values that do not belong to a solution of the 
underlined sub-problem.
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Arc consistency

❏ All the values which do not belong to any solution of 
the constraint are deleted.

❏ Example: Alldiff({x,y,z}) with 
D(x)=D(y)={0,1}, D(z)={0,1,2}
the two variables x and y take the values 0 and 1, 
thus z cannot take these values.
FA by AC => 0 and 1 are removed from D(z)
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Propagation

❏ Domain Reduction due to one constraint can lead to 
new domain reduction of other variables

❏ When a domain is modified all the constraints 
involving this variable are studied and so on ... 
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Why Propagation?

❏ Idea: problem = conjunction of easy sub-problems. 
❏ Sub-problems: local point of view. Problem: global 

point of view. Propagation tries to obtain a global 
point of view from independent local point of view

❏ The conjunction is stronger that the union of 
independent resolution
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Search

❏ Backtrack algorithm with strategies:
try to successively assign variables with values. If a 
dead-end occurs then backtrack and try another 
value for the variable

❏ Strategy:  define which variable and which value will 
be chosen.

❏ After each domain reduction (i.e assignment) filtering 
and propagation are triggered
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Constraint Programming

❏ 3 notions:
- constraint network: variables, domains constraints 
+ filtering (domain reduction)
- propagation
- search procedure (assignments + backtrack)
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Graph Theory

❏ Directed graph or digraph G=(X,U), X set of nodes, U set of 
arcs

❏ A path from v1 to vk is a set of nodes [v1,…,vk] such that 
(vi,vi+1) is an arc for every i in [1,..k-1]

❏ A path is simple if all its nodes are distinct
❏ A path is a cycle iff k >1 and v1=vk
❏ Length(p) is the sum of the costs of the arcs contained in p
❏ A shortest path from s to t is a path from s to t whose length is 

minimum
❏ There is a simple shortest path
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Flows

❏ Let G be a graph in which every arc (i,j) is 
associated with 2 integers: 

❍ l(i,j) the lower bound capacity of the arc
❍ u(i,j) the upper bound capacity of the arc

❏ A flow is a function f satisfying:
❍ For any arc (i,j), f(i,j) represents the amount of some 

commodity that can ``flow'' through the arc. 
Such a flow is permitted only in the indicated direction of 
the arc, i.e., from i to j. 
For convenience, we assume f(i,j)=0 if (i,j) is not an arc.

❍ A conservation law is observed at each node: 
for every node j: ∑ f(i,j) = ∑ f(j,k).
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Flows

❏ The feasible flow problem: 
❍ Does there exist a flow in G that satisfies the capacity 

constraints? 
That is find f such that
for every arc  (i,j) in U(G): l(i,j) ≤  f(i,j) ≤ u(i,j).  

❏ The problem of the maximum flow for an arc (i,j):
❍ Find a feasible flow in G for which the value of f(i,j) is 

maximum. 
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Flows

❏ Without loss of generality, and to overcome 
notational difficulties, we will consider that:

❍ if (i,j) is an arc of G then (j,i) is not an arc of G. 
❍ all boundaries of capacities are nonnegative integers.

❏ If all the upper bounds and all the lower bounds are 
integers and if there exists a feasible flow, then for 
any arc (i,j) there exists a maximum flow from j to i 
which is integral on every arc in G 
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Global Cardinality Constraint

❏ GCC(X,{li},{ui})
❏ Defined on a set X of variables, the number of times 

each value vi can be taken must be in a given 
interval [li, ui]

❏ Example: D(x1)={a,b,c,d}, D(x2)={a,b,c,d},
D(x3)={b,c},D(x4)={c,d}. Values b and c must be 
taken at most 2, values a and d must be taken at 
least 1.
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GCC
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Value Network
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Feasible Flow
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Successive augmentation

❏ Successive augmentation are computed in a 
particular graph:
The residual graph

❏ The residual graph has no lower bounds
❏ In our case this algorithm is equivalent to the best 

ones.
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Residual Graph
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If f(i,j) < u(i,j) then (i,j) and r(i,j)= u(i,j) – f(i,j)
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A Solution
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Properties

❏ The flow value xij of (i,j) can be increased iff there is 
a path from j to i in R - {(j,i)}

❏ The flow value xij of (i,j) can be decreased iff there is 
a path from i to j in R - {(i,j)}

ij

j i
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Arc consistency

❏ The flow value of an arc is constant iff the arc does 
not belong to a directed cycle of the residual graph

❏ Definition of strongly connected components
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Filtering algorithm for GCC

❏ Compute a feasible flow
❏ Compute the strongly connected components 
❏ Remove every arc with a zero flow value for which 

the ends belong to two different components 
❏ Linear algorithm achieving arc consistency
❏ work well due to (0,1) arcs
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GCC after AC
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GCC with costs

❏ GCC with costs =
        Global cardinality constraint 
     + Sum constraint on the assignment costs

❏ AC algorithm which takes into account the globality 
of the constraint + the costs
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Minimum cost Flows

❏ Let G be a graph in which every arc (i,j) is 
associated with 3 integers: 

❍ l(i,j) the lower bound capacity of the arc
❍ u(i,j) the upper bound capacity of the arc
❍ c(i,j) the cost of carrying one unit of flow

❏ The cost of a flow f is cost(f)=∑ f(i,j) c(i,j)
❏ The minimum cost flow problem: 

❍ If there exists a feasible flow, find a feasible flow f such 
that cost(f) is minimum.
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GCC with costs
Peter
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John

Bob

Mike

Julia

M (1,2)

D (1,2)
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Arc consistency
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GCC with costs

❏ Consistency can be computed by searching for a 
minimum cost flow

❏ Arc consistency can be computed by searching for 
shortest paths in a special graph.
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Minimum Cost flow

❏ Similar to feasible flow except that:
shortest paths are considered.

❏ length of an arc = reduced cost of the arc
❏ Reduced costs are used to work with nonnegative 

value (useful for shortest paths algorithms), but the 
principles remains the same with residual costs. 

❏ We will consider here only the residual costs
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Minimum Cost Flow
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A Solution
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Residual Graph
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Residual Costs
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-1 residual cost = - cost if opposite arc
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Residual Costs
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-1 residual cost = - cost if opposite arc
1 residual cost = cost if arc
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Shortest path

❏ d(i,j) = length of the shortest path which does not 
use (i,j) in the residual graph. The length is the sum 
of the residual costs of the arc contained in the path.
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Residual Costs
Peter

Paul
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Bob

Mike

Julia

M (1,2)
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Black Orientation

2

Green Orientation

d(M,D)=3 + (-1) = 2
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Minimum cost flow

❏ If the feasible flow is computed by augmenting the 
flow along shortest paths then the solution is 
optimal.

❏ Complexity O(n S(n,m,χ)) where χ is the maximum 
cost value. 
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Arc consistency

❏ The flow value xij of (i,j) can be increased iff there is 
a path from j to i in R - {(j,i)}

❏ The flow value xij of (i,j) can be decreased iff there is 
a path from i to j in R - {(i,j)}

ij

j i
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Arc consistency

❏ Let optcost be the value of the minimum cost flow, 
and H be the maximum value of the assignments.

❏ The flow value of an arc (i,j) can be increased if and 
only if:

rcij + d(j,i) + optcost < H

The cost of the directed cycle is computed, that is 
the cost of rerouting the flow.  
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Can (M,John) be increased?
Peter

Paul

Mary

John

Bob

Mike

Julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

-1
4
-1
4
3
-1
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-1 -1

-1

-1 1

t s

Black Orientation

2

Green Orientation
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Can (M,John) be increased?
Peter
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M (1,2)
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N (1,1)

B (0,2)

O (0,2)

-1
4
-1
4
3
-1
3

-1 -1

-1

-1 1

t s

Black Orientation

2

Green Orientation

rc(M,John) + d(John,M)  + optcost = 3 + (-1+4+(-1)) + 7 = 12 > 11: NO
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Arc consistency

❏ Similar reasoning for decreasing the flow value.
❏ Complexity O(m S(n,m,χ))
❏ can be improved!
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AC Improvement

❏ Problem: shortest paths from j to i cannot contain 
(j,i). 

❏ How the computations can be grouped, since the 
graph changes for each computation?
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AC Improvement

❏ Problem: shortest paths from j to i cannot contain 
(j,i). 

❏ How the computations can be grouped, since the 
graph changes for each computation?

❏ The graph does not change for (0,1) arcs!
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AC Improvement

❏ Between variables and values there are only (0,1) 
arcs.

❏ If we search for increasing the flow value of (i,j) then 
xij=0 and (j,i) does not exist in R

❏ If we search for decreasing the flow value of (i,j) 
then xij=1 and (i,j) does not exist in R
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AC Improvement

❏ The computation can be grouped:
For each variable, the shortest paths to all the 
values are computed

❏ Complexity O(n S(n,m,χ)).
❏ Can be improved by searching for shortest path from 

the values that are assigned.
❏ Reduced costs can be used instead of residual cost 

to have only nonnegative costs and to improve the 
search for shortest paths.
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Sum of all different var 

❏ Constraint:
     x1+x2+x3 < H and alldiff(x1,x2,x3).

❏ Can be represented as a gcc with costs.
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Sum of all different var
x1

x2

x3

1

2

3

5

1
1

2
2

3

5

The cost of an arc involving a value is equal to this value

Can be generalized to cardinality constraints
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Scalar Product of all different var
x1

x2

x3

1

2

3

5

3*1=3
4*1=43*2=6

2*2=4
2*3=6

4*5=20

3x1 + 2x2 + 4x3 = s
The cost of an arc involving a value is equal to 

the coefficient of the variable multiplied by the value

Can be generalized to cardinality constraints
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Matching

❏ A matching is a set of edges no two of which have a 
common endpoint.

❏ A matching M covers X if all the nodes is an 
endpoint of M
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Alldiff constraint

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

The value graph:

D(x1)={1,2}
D(x2)={2,3}
D(x3)={1,3}
D(x4)={3,4}
D(x5)={2,4,5,6}
D(x6)={5,6,7}
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Matching
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2

3

4
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6

7
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Arc consistency

Berge’s theorem:
An edge belong to some but not all maximum 
matching, iff, for an arbitrary matching it belongs to 
either an even alternating path which begins at a 
free vertex, or an even alternating cycle.
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Alternating path

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7
Free vertex
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Alternating cycle

x1
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Alldiff constraint
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Arc consistency

x1

x2

x3

x4

x5

x6

1

2

3

4

5

6

7

The value graph:

D(x1)={1,2}
D(x2)={2,3}
D(x3)={1,3}
D(x4)={4}
D(x5)={5,6}
D(x6)={5,6,7}
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Alldiff constraint

❏ Compute a matching which covers X
❏ Compute the strongly connected components 
❏ Remove every unmatched arc for which the ends 

belong to two different components 
❏ Consistency: O(n1/2m)=O(n3/2d) from scratch

                      O(knd) incremental
❏ Linear algorithm achieving arc consistency

O(m)=O(nd)
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The symmetric alldiff

❏ Goal: group entities by pair
❏ Example: aircraft pilots, nurses …

List of compatibility: 
bob   can work with john and peter
john  can work with bob and mike
mike can work with peter and john
peter can work with bob and mike

john

bob
peter

mike
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Possible model

❏ One variable per person
values = variables
D(Vjohn)={bob,mike}
D(Vbob)={john,peter}

❏ Constraints: 
AllDiff(Vjohn,Vbob,Vpeter,Vmike)
+ ∀i,j: (Vi=j <=> Vj=i)
If bob works with john then john works with
bob

john

bob
peter

mike



copyright Jean-Charles Regin 2004 74

Symmetric Alldiff

❏ A Symmetric Alldiff Constraint takes into account 
SIMULTANEOUSLY: 

AllDiff(Vjohn,Vbob,Vpeter,Vmike)
+ ∀i,j: (Vi=j <=> Vj=i)
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Symmetric Alldiff

❏ Why is it interesting?
D(x)={y,z}, D(y)={x,z}
D(z)={x,y}
Nothing is deduced
There is no solution!

x

y z
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Why is it important?

a

b

c

d
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Why is it important?

a

b

a

b

c c

d d
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Why is it important?

a

b

a

b

c c

d d
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Non bipartite matching

a     b    c 

d

  g                f

e h

  ij
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Non bipartite matching

a     b    c 

d

  g                f

e h

  ij

e is mark even 
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Non bipartite matching

a     b    c 

d

  g                f

e h

  ij

e is mark odd 
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Non bipartite matching

❏ In bipartite graph the edge can be oriented
(from one set to another set)

❏ In non bipartite graph this is impossible!
❏ We loose the efficient algorithm for the alldiff 

constraint
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Non bipartite matching

❏ Idea: Edmond’s algorithm
❏ Improvement by Tarjan and other
❏ Complexity O(nmα(n,m)) easy to implement

O(nm) not to hard
O(n1/2m) : 42 pages of non intuitive demonstration 
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Arc consistency

❏ Pb: find all edges that do not belong to any matching 
which covers X

❏ First solution:
for each edge in turn:
      remove the two extremities, search for a
      matching which covers X-{e1,e2}
Complexity : mO(m)=O(m2) (because incremental 
algorithm)
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Arc consistency

❏ We propose an algorithm in nO(m)=O(nm)
❏ Berge’s theorem:

An edge belong to some but not all maximum 
matching, iff, for an arbitrary matching it belongs to 
either an even alternating path which begins at a 
free vertex, or an even alternating cycle.
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Arc consistency

❏ No free vertex. Thus only even alternating cycles 
have to be identified

❏ Idea: 
  alternating cycle = a matching edge {u,v}
      + alternating path from v to u

❏ Algorithm: for each matching edge {u,v} in turn we 
identify the edge {w,u} that can form a cycle with an 
alternating path from v 
(idem from u)
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a b
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a b
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The search starts from j
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This arc is not traversed
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Arc consistency

❏ Algorithm in O(nm)=O(n2d)
❏ Problems:

   - non incremental algorithm
   - complexity too high for certain applications

❏ Solution: a filtering algorithm with a lower complexity
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Filtering algorithm

❏ New Proposition: 

During the search for an alternating path: If one of 
the extremities of an edge is reached and if the edge 
is not traversed  then the edge does not belong to 
any maximum matching
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Filtering algorithm
u v

a

b



copyright Jean-Charles Regin 2004 93

Filtering algorithm
u v

a

b This edge is removed

We start from v
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Filtering algorithm
u v

a

b This edge is NOT removed

We start from u
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Filtering algorithm

❏ 1) An edge is arbitrary chosen
❏ 2) Search for an alternating path
❏ 3) If no deletion occurs then stop

     Else goto 1)
❏ Complexity O(m) per deletion
❏ We can also use credit/debit
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Improvements

❏ Use the classical alldiff constraint
❏ Search for 2-connected components and cutpoints
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Improvements

❏ Use the classical alldiff constraint
❏ Search for 2-connected components and cutpoints

2-connected component with an EVEN number of nodes
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Improvements

❏ Use the classical alldiff constraint
❏ Search for 2-connected components and cutpoints

2-connected component with an ODD number of nodes
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Results

❏ Best compromise is:
- maintain the consistency by maintaining a 
maximum matching in a non bipartite graph
- use the filtering algorithm we propose
- use the classical alldiff AC algorithm
- use the improvements we proposed
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Symmetric alldiff

❏ Consistency for a symmetric alldiff constraint: 
O(nm), incremental algorithm (similar to alldiff)

❏ Arc consistency for a symmetric alldiff constraint: 
O(nm) (alldiff O(m))

❏ Filtering algorithm: O(m) per deletion
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Conclusion

❏ Filtering algorithms are quite important
❏ Global constraints are quite important 
❏ Flows for integers and matchings are powerful
❏ Integration of flow algorithms or matching algorithm 

in filtering algorithm dramatically improve CP
❏ A lot of work can be done on this integration!


