
MDDs are Efficient Modeling Tools:
An Application to some Statistical Constraints

Guillaume Perez and Jean-Charles Régin

Université Nice-Sophia Antipolis, I3S, CNRS, Sophia Antipolis, France
guillaume.perez06@gmail.com, jcregin@gmail.com

Abstract. We show that from well-known MDDs like the one modeling a sum,
and operations between MDDs we can define efficient propagators of some com-
plex constraints, like a weighted sum whose values satisfy a normal law. In this
way, we avoid defining ad-hoc filtering algorithms. We apply this idea to different
dispersion constraints and on a new statistical constraint we introduce: the Prob-
ability Mass Function constraint. We experiment out approach on a real world
application. The conjunction of MDDs clearly outperforms all previous methods.

1 Introduction

Several constraints, like spread [16], deviation [21,22,24,23], balance [3,5]
and dispersion [17], have mainly been defined to balance certain features of a solu-
tion. For example, the balanced academic curriculum problem [1] involves courses that
have to be assigned to periods so as to balance the academic load between periods. Most
of the time the mean of the variables is fixed and the goal is to minimize the standard
deviation, the distance or the norm.

The dispersion constraint is a generalization of the deviation and spread
constraints. It ensures that X , a set of variables, has a mean (i.e. µ =

∑
x∈X x) belong-

ing to a given interval and ∆ a norm (i.e.
∑
x∈X(x − µ)p) belonging to another given

interval. If p = 1 then it is a deviation constraint and p = 2 defines a spread
constraint. Usually, the goal is to minimize the value of ∆ or find a value below a given
threshold.

In some problems, variables are independent from a probabilistic point of view and
are associated with a distribution (e.g. a normal law) that specifies probabilities for
their values. Thus, globally the values taken by the variables have to respect that law
and we can define a constraint ensuring this property, either by using a spread, a
dispersion, a KolmogorovSmirnov or a Student’s t-test constraint[19].
However, if only a subset of variables is involved in a constraint, then the values taken
by these variables should be compatible with the distribution (e.g. the normal law), but
we cannot impose the distribution for a subset of values because this is a too strong con-
straint. Therefore, we need to consider interval of values for µ and ∆. The definition of
an interval for µ can be done intuitively. For instance we can consider an error rate of
10%. Unfortunately, this is not the case for ∆. It is hard to control the relation between
two values of ∆, because data are coming from measures and there are some errors and
because it is difficult to apply a continuous law on finite set of values. Since we use

constraint programming solvers we have to make sure that we do not forbid tuples that
could be acceptable. This is why, in practice, the problem is not defined in term of µ
and ∆ but by the probability mass function (PMF). The probability mass function gives
the probability that Xr, a discrete random variable, is exactly equal to some value. In
other words, if Xr takes its values in V , then the PMF gives the probability of each
value of V . The PMF is usually obtained from the histogram of the values. From fP ,
a PMF, we can compute the probability of any tuple by multiplying the probability of
the values it contains, because variables are independent. Then, we can avoid outliers
of the statistical law but imposing that the probability of a tuple belongs to a given
interval [Pmin, Pmax]. With such a constraint we can select a subset of values from a
large set having a mean in a given interval while avoiding outliers of the statistical law.
Roughly, the minimum probability avoids having tuples with values having only very
little chance to be selected and the maximum probability avoids having tuples whose
values have only the strongest probability to be selected. Thus, we propose to define the
PMF constraint, a new statistical constraint from µ, fP , Pmin and Pmax.

Since we define a new constraint we need to define a propagator for it. Instead of
designing an ad-hoc propagator we propose to represent the constraint by an MDD
and to use MDD propagators, like MDD4R [13], for establishing arc consistency of
the constraint. MDDs of constraints can also be intersected in order to represent the
combination of the constraints and MDD operators applied on them. Recent studies
show that such combinations give excellent results in practice [20].

Pesant has proposed a specific algorithm for filtering the dispersion constraint. His
propagator establishes domain consistency on the X variables. Unfortunately, it is ad-
hoc and so it cannot be easily combined with other constraints. Thus, we propose to
also use MDD propagators for the classical version of the dispersion constraint.

The advantage of using MDDs representing the constraints in these cases, is that
these MDDs are defined on sum constraints which are well-known MDDs.

We tested all propagators on a part of a real world application mainly involving
convolutions which is expressed by a knapsack constraint (i.e.

∑
αixi). The results

show the advantage of our generic approach.
The paper is organized as follows. First, we recall some basics about MDDs, MDD

propagators and the dispersion constraint. Then, we introduce simple models using
MDDs for modelling the dispersion constraint with a fixed or a variable mean,
and we show how we can combine them in order to obtain only one MDD. Next, we
present the PMF constraint and show how it can be represented by an MDD and filtered
by MDD propagators. We give some experiments supporting our approach. At last, we
conclude.

2 Preliminaries

Multi-valued decision diagram (MDD) An MDD is a data-structure representing dis-
crete functions. It is a multiple-valued extension of BDDs [6]. An MDD, as used in
CP [7,13,2,10,11,4,9], is a rooted directed acyclic graph (DAG) used to represent some
multi-valued function f : {0...d − 1}r → {true, false}, based on a given integer d.
Given the r input variables, the DAG representation is designed to contain r + 1 layers

of nodes, such that each variable is represented at a specific layer of the graph. Each
node on a given layer has at most d outgoing arcs to nodes in the next layer of the
graph. Each arc is labeled by its corresponding integer. The arc (u, v, a) is from node
u to node v and labeled by a. All outgoing arcs of the layer r reach the true terminal
node (the false terminal node is typically omitted). There is an equivalence between
f(a1, ..., ar) = true and the existence of a path from the root node to the true terminal
node whose arcs are labeled a1, ..., ar.

Fig. 1. An MDD of the tuple set {(a,a),(a,b),(c,a),(c,b),(c,c)}. For each tuple, there is a path from
the root node (node 0) to the terminal node (node tt) whose arcs are labeled by the tuple values.

MDD of a constraint. Let C be a constraint defined on X(C). The MDD associated
with C, denoted by MDD(C), is an MDD which models the set of tuples satisfying
C. More precisely, MDD(C) is defined on X(C), such that layer i corresponds to the
variable xi and the labels of arcs of the layer i correspond to values of xi, and a path of
MDD(C) where ai is the label of layer i corresponds to a tuple (a1, ..., ar) on X(C).
Consistency with MDD(C). A value a of the variable x is valid iff a ∈ D(x) , where
D(x) is the possible values of the variable x. An arc (u, v, a) at layer i is valid iff
a ∈ D(xi). A path is valid iff all its arcs are valid.
Let pathstt(MDD(C)) be the set of paths from s, the root node, to tt in MDD(C). The
value a ∈ D(xi) is consistent with MDD(C) iff there is a valid path in pathstt(MDD(C))
which contains an arc at layer i labeled by a.
MDD propagator. An MDD propagator associated with a constraint C is an algorithm
which removes some inconsistent values of X(C). The MDD propagator establishes
arc consistency of C if and only if it removes all inconsistent values with MDD(C).
This means that it ensures that there is a valid path from the root to the true terminal
node in MDD(C) if and only if the corresponding tuple is allowed by C and valid.
Cost-MDD. A cost-MDD is an MDD whose arcs have an additional information: the
cost c of the arc. That is, an arc is a 4-uplet e = (u, v, a, c), where u is the head, v the
tail, a the label and c the cost. Let M be a cost-MDD and p be a path of M . The cost of
p is denoted by γ(p) and is equal to the sum of the costs of the arcs it contains.
Cost-MDD of a constraint [9]. Let C be a constraint and fC be a function associating a
cost with each value of each variable of X(C). The cost-MDD of C and fC is denoted
by cost-MDD(C, fC) and is MDD(C) whose the cost of an arc labeled by a at layer i

is fC(xi, a).
Cost-MDD propagator [8,15]. A cost-MDD propagator associated with C, fC , a value
H , and a symbol ≺ (which can be ≤ or ≥) is an MDD propagator on MDD(C) which
ensures that for each path p of cost-MDD(C, fC) we have γ(p) ≺ H . A cost-MDD
propagator establishes arc consistency of C iff each arc of cost-MDD(C) belongs to p
a valid path of pathstt(cost-MDD(C)) with γ(p) ≺ H .
MDD of a Generic Sum Constraint [25]. We define the generic sum constraint
Σf,[a,b](X) which is equivalent to a ≤

∑
xi∈X f(xi) ≤ b, where f is a non nega-

tive function. The MDD of the constraint
∑
xi∈X f(xi) is defined as follows. For the

layer i, there are as many nodes as there are values of
∑i
k=1 f(xk). Each node is as-

sociated with such a value. A node np at layer i associated with value vp is linked to
a node nq at layer i + 1 associated with value vq if and only if vq = vp + f(ai) with
ai ∈ D(xi). Then, only values v of the layer |X| with a ≤ v ≤ b are linked to tt. The
reduction operation is applied after the definition and delete invalid nodes [14]. The
construction can be accelerated by removing states that are greater than b or that will
not permit to reach a. For convenience, Σid,[α,α](X) is denoted by Σα(X).

0

3

3

7

7

10

7

6

3 3

14

7

17

7

13

3 37

20

37

Fig. 2. MDD of the
∑
xi = nµ constraint

Figure 2 is an example of MDD(Σ20(X)) with {3, 7} as domains. Since fC in non
negative, the number of nodes at each layer of MDD(Σf,[a,b](X)) is bounded by b.

Dispersion Constraint [17]. Given X = {x1, ..., xn}, a set of finite-domain integer
variables, µ and ∆, bounded-domain variables and p a natural number. The constraint
DISPERSION(X,µ,∆, p) states that the collection of values taken by the variables of X
exhibits an arithmetic mean µ =

∑n
i=1 xi and a deviation ∆ =

∑n
i=1 |xi − µ|p.

The deviation constraint is a dispersion constraint with p = 1 and a spread
constraint is a dispersion constraint with p = 2.

The main complexity of the dispersion constraint is the relation between µ
and ∆ variables, because µ is defined from the X variables, and ∆ is defined from X
and from µ. So, some information is lost when these two definitions are considered

separately. However, when µ is assigned, the problem becomes simpler because we can
independently consider the definitions of µ and∆. Therefore, we propose to study some
models depending on the fact that µ is fixed or not.

3 Dispersion Constraint with fixed mean

Arc consistency for the X variables has been established by Pesant [17], who proposed
an ad-hoc dynamic programming propagator for this constraint. However, it exists a
simpler method avoiding such problems of ad-hoc algorithms: we define a cost-MDD
from µ and ∆ and obtain a propagator having the same complexity.

3.1 MDD on µ and ∆ as cost

The mean µ is defined as a sum constraint. Since µ is fixed, we propose to use the
cost-MDD of the constraint

∑
xi = nµ and the cost function defined by ∆.

The constraint
∑
xi = nµ can be represented by MDD(Σnµ(X)).

∆ as cost. We represent the dispersion constraint by cost-MDD(Σµ(X), ∆). There
are two possible ways to deal with the boundaries of∆. Either we define two cost-MDD
propagators on cost-MDD(Σµ(X), ∆), one with a and ≥, and one with b and ≤; or we
define only one cost-MDD propagator on cost-MDD(Σµ(X), ∆) which integrates the
costs at the same time as proposed by Hoda et al [11].

These methods are simpler than Pesant’s algorithm because they do not require
to develop any new algorithm. If we use an efficient algorithm [15] for maintaining
arc consistency for cost-MDDs then we obtain the the same worst case complexity as
Pesant’s algorithm but better result in practice.

3.2 MDD on µ intersected with MDD on ∆

Since µ is fixed, then the definition of∆ corresponds to a generic sum as previously de-
fined. Thus, the dispersion constraint can be model by defining the MDD ofΣµ(X) and
the MDD ofΣ∆,[∆,∆](X) and then by intersecting them. Replacing a cost-MDD by the
intersection of two MDDs may strongly improve the computational results [15]. In ad-
dition, we can intersect the resulting MDD with some other MDDs in order to combine
more the constraints. This method is the first method establishing arc consistency for
both µ and ∆. The drawback is the possible size of the intersection.

With similar models we can also give an efficient implementation of the Student’s
t-test constraint and close the open question of Rossi et al.[19].

4 Dispersion Constraint with variable mean

In order to deal with a variable mean, we can consider all acceptable values for nµ,
that is the integers in [nbµc, ndµe], and for each value we separately apply the pre-
vious models for the fixed mean. Unfortunately, this often leads to a large number of
constraints. Therefore it is difficult to use this approach in practice. In addition, note

that there is no advantage in making the union of these constraints because they are
independent.

Thus, we propose another model using the probability mass function.

5 Probability Mass Function (PMF) constraint

In this section we define the PMF constraint which aims at respecting a variable mean
and avoiding outliers according to a statistical law given by a probability mass function.

Given a discrete random variable X taking values inX = {v1, ...vm} its probability
mass function P: X → [0, 1] is defined as P (vi) = Pr[X = vi] and satisfies the
following condition: P (vi) ≥ 0 and

∑m
i=1 P (vi) = 1

The PMF gives for each value v, P (v) the probability that v is taken. Let fP be a
PMF and consider a set of variables independent from a probabilistic point of view and
associated with fP that specifies probabilities for their values. Since the variables are
independent, we can define the probability of an assignment of all the variables (i.e. a
tuple) as the product of the probabilities of the assigned values. Then, in order to avoid
outliers we can constrain this probability to be in a given interval.

Definition 1 Given a set of finite-domain integer variables X = {x1, x2, ..., xn} that
are independent from a probabilistic point of view, a probability mass function fP , a
bounded variable µ (not necessarily fixed), a minimum probability Pmin and a max-
imum probability Pmax. The constraint PMF(X, fP , µ, Pmin, Pmax) states that the
probabilities of the values taken by the variables of X is specified by fP , the collection
of values taken by the variables of X exhibits an arithmetic mean µ and that Πxi∈Xxi
the probability of any allowed tuple satisfies Pmin ≤ Πxi∈XfP (xi) ≤ Pmax.

This constraint can be represented by cost-MDD(Σid,[µ,µ](X), logP) where logP
is the logarithm of the PMF that is logP (x) = log(fP (x)). We take the logarithm be-
cause in this way we have a sum function instead of a product function: log(ΠfP (xi)) =∑

log(fP (x)) =
∑
logP (x). Then, we define a cost-MDD propagator on

cost-MDD(Σid,[µ,µ](X),logP with log(Pmin) and ≥ and with log(Pmax) and ≤.

6 Experiments

The experiments were run on a macbook pro (2013) Intel core i7 2.3GHz with 8 Go.
The constraint solver used is or-tools. MDD4R [13] is used as MDD propagator and
cost-MDD4R as cost-MDD propagator [15].

The data come from a real life application: the geomodeling of a petroleum reservoir
[12]. The problem is quite complex and we consider here only a subpart. Given a seis-
mic image we want to find the velocities. Velocities values are represented by a prob-
ability mass function (PMF) on the model space. Velocities are discrete values of vari-
ables. For each cell cij of the reservoir, the seismic image gives a value sij and the from
the given seismic wavelet (αk) we define a sum constraint

∑22
k=1 αklog(xi−11+k−1j) =

sij . Locally, that is for each sum, we have to avoid outliers w.r.t. the PMF for the ve-
locities. Globally we can use the classical dispersion constraint. The problem is huge
(millions of variables) so we consider here only a very small part.

The first experiment involves 22 variables and a constraint Cα:
∑n
i=1 αixi = I ,

where I is an tight interval (i.e. a value with an error variation). Cα is represented by
mddα = MDD(Σai,I(X)) where ai(xi) = αixi.

First, we impose that the variables have to be distributed with respect to a normal
distribution with µ, a fixed mean.

Mσ<,σ> represents the model of Section 3.2: one cost-MDD propagator on
mddµ = cost-MDD(Σnµ(X), σ) with σ and ≤ and one with σ and ≥. This model
is similar to Pesant’s model.

MGCC involves a GCC constraint [18] where the cardinalities are extracted from
the probability mass function.

Mµ∩σ represents the mean constraint by mddσ = MDD(Σnµ(X)). It represents
the sigma constraint by the MDD(Σσ(X)). Then the two MDDs are intersected. An
MDD propagator is used on this MDD, named mddµσ . See Section 3.3.

Mµ∩σ∩α intersectsmddα, the MDD of the constraint Cα, withmddµσ the previous
MDD to obtain mddsol. In this case, all constraints are combined.

Then, we consider a PMF constraint and that µ is variable:
Mlog. We define a cost-MDD propagator onmddIµ = cost-MDD(Σid,[µ,µ](X), logP)

with log(Pmin) and ≥ and with log(Pmax) and ≤. See Section 5.
Mlog∩α. We definemddIlog = MDD(ΣlogP,Ilog (X)) and we intersect it withmddIµ .

Then, we intersect it with mddα, the MDD of Cα, to obtain mddlogα.
Table 3 shows the result of these experiments. As we can see when the problem

involves many solutions, all the methods perform well (excepted MGCC). We can see
that an advantage of the intersection methods is that they contain all the solutions of
problem. Table 4 shows the different sizes of the MDDs.

Fixed µ Variable µ
Sat? #sol Mσ<,σ> MGCC Mµ∩σ Mµ∩σ∩α Mlog Mlog∩α

Build 50 31 138 2,203 34 317,921
Sat 10 sol 14 T-O 16 0 14 0

All sol T-O T-O T-O 0 T-O 0
Build 55 28 121 151 37 133,752

UnSat 10 sol T-O T-O T-O 0 T-O 0
All sol T-O T-O T-O 0 T-O 0

Fig. 3. Comparison solving times (in ms) of models. 0 means that this is immediate. T-O indicates
a time-out of 500s.

Random instances. The intersection methods Mµ∩σ and Mµ∩σ∩α have been tested
on random bigger instances. Table 5 and 6 gives some results showing how this method
scales with the number of variables. In the first line, the couple is #var/#val. Times are in
ms. Experiments of Table 5 set 0 < σ < 4n for having a delta depending on the number
of variables like in [17], whereas experiments of Table 6 impose 100 < σ < 400, these
numbers come from our real world problem.

These experiments show that the Mµ∩σ model can often be a good trade-off be-
tween space and time. Using the lower bound of the expected size of the MDD [15], we

Fixed µ Variable µ
Sat? N/A mddα mddµ mddσ mddµσ mddsol mddIµ mddIlog mddlogα
Sat #nodes 3 3 5 67 521 2 18 24,062
Sat #arcs 44 27 55 660 4,364 30 268 341,555
UnSat #nodes 3 2 5 67 0 2 18 0
UnSat #arcs 46 27 55 660 0 30 268 0

Fig. 4. Comparison of MDD sizes (in thousands) of different models. 0 means that the MDD is
empty.

can estimate and decide if it is possible to process Mµ∩σ∩α. The last two columns of
Table 5 show that it is not always possible to build such an intersection.

0 < σ < 4n

Method n/d 20/20 30/20 40/30 40/40 50/40 50/50 100/40 100/100
T(ms) 26 132 391 401 848 875 12,780 14,582

Mµ∩σ #nodes 18 63 153 1578 306 311 2,285 2,532
#arcs 198 808 2,308 2,427 5,196 5,354 53,757 62,057
T(ms) 561 3,084 11,864 10,789 58,092 60,513 M-O M-O

Mµ∩σ∩α #nodes 163 764 0 0 0 0 M-O M-O
#arcs 1,788 8,416 0 0 0 0 M-O M-O

Fig. 5. Time (in ms) and size (in thousands) of the MDDs of models Mµ∩σ and Mµ∩σ∩α. 0
means that the MDD is empty. M-O means memory-out.

100 < σ < 400

Method n/d 20/20 30/20 40/30 40/40
T(ms) 162 333 586 602

Mµ∩σ #nodes 81 184 326 338
#arcs 823 1,865 3,329 3,479
T(ms) 2,663 10,379 21,063 26,393

Mµ∩σ∩α #nodes 1,098 2,555 35 0
#arcs 11,166 23,764 151 0

Fig. 6. Time (in ms) and size (in thousands) of the MDDs of models Mµ∩σ and Mµ∩σ∩α.
Mµ∩σ∩α is empty because there is no solution.

7 Conclusion

We have shown that modeling constraints by MDDs has several advantages in practice.
It avoids to develop ad-hoc algorithms, gives competitive results and leads to efficient
combination of constraints outperforming the other approaches. We have emphasized
our approach on statistical constrains including the new PMF constraint we proposed.

References

1. Problem 30 of CSPLIB. (www.csplib.org).
2. Henrik Reif Andersen, Tarik Hadzic, John N. Hooker, and Peter Tiedemann. A constraint

store based on multivalued decision diagrams. In CP, pages 118–132, 2007.
3. N. Beldiceanu, M. Carlsson, S. Demassey, and T. Petit. Global constraint catalog: Past,

present and future. Constraints, 12(1):21–62, 2007.
4. David Bergman, Willem Jan van Hoeve, and John N. Hooker. Manipulating mdd relaxations

for combinatorial optimization. In CPAIOR, pages 20–35, 2011.
5. Christian Bessiere, Emmanuel Hebrard, George Katsirelos, Zeynep Kiziltan, Émilie Picard-

Cantin, Claude-Guy Quimper, and Toby Walsh. The balance constraint family. In Barry
O’Sullivan, editor, Principles and Practice of Constraint Programming - 20th International
Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings, volume 8656 of
Lecture Notes in Computer Science, pages 174–189. Springer, 2014.

6. Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, C35(8):677–691, 1986.

7. K. Cheng and R. Yap. An mdd-based generalized arc consistency algorithm for positive and
negative table constraints and some global constraints. Constraints, 15:265–304, 2010.

8. Sophie Demassey, Gilles Pesant, and Louis-Martin Rousseau. A cost-regular based hybrid
column generation approach. Constraints, 11(4):315–333, 2006.

9. G. Gange, P. Stuckey, and Radoslaw Szymanek. Mdd propagators with explanation. Con-
straints, 16:407–429, 2011.

10. Tarik Hadzic, John N. Hooker, Barry O’Sullivan, and Peter Tiedemann. Approximate com-
pilation of constraints into multivalued decision diagrams. In CP, pages 448–462, 2008.

11. Samid Hoda, Willem Jan van Hoeve, and John N. Hooker. A systematic approach to mdd-
based constraint programming. In CP, pages 266–280, 2010.

12. Wayne D. Pennington. Reservoir geophysics. 66(1), 2001.
13. G. Perez and J-C. Régin. Improving GAC-4 for table and MDD constraints. In Principles

and Practice of Constraint Programming - 20th International Conference, CP 2014, Lyon,
France, September 8-12, 2014. Proceedings, pages 606–621, 2014.

14. G. Perez and J-C. Régin. Efficient operations on mdds for building constraint programming
models. In International Joint Conference on Artificial Intelligence, IJCAI-15, pages 374–
380, Argentina, 2015.

15. G. Perez and J-C. Régin. Soft and cost mdd propagators. In Proc. AAAI’17, 2017.
16. G. Pesant and J-C. Régin. Spread: A balancing constraint based on statistics. In CP’05,

pages 460–474, 2005.
17. Gilles Pesant. Achieving domain consistency and counting solutions for dispersion con-

straints. INFORMS Journal on Computing, 27(4):690–703, 2015.
18. J-C. Régin. Generalized arc consistency for global cardinality constraint. In Proceedings

AAAI-96, pages 209–215, Portland, Oregon, 1996.
19. Roberto Rossi, Steven David Prestwich, and S. Armagan Tarim. Statistical constraints.

In ECAI 2014 - 21st European Conference on Artificial Intelligence, 18-22 August 2014,
Prague, Czech Republic - Including Prestigious Applications of Intelligent Systems (PAIS
2014), pages 777–782, 2014.

20. Pierre Roy, Guillaume Perez, Jean-Charles Régin, Alexandre Papadopoulos, François Pa-
chet, and Marco Marchini. Enforcing structure on temporal sequences: The allen constraint.
In Principles and Practice of Constraint Programming - 22nd International Conference, CP
2016, Toulouse, France, September 5-9, 2016, Proceedings, pages 786–801, 2016.

21. P. Schaus, Y. Deville, P. Dupont, and J-C. Régin. The deviation constraint. In CPAIOR’07,
pages 260–274, 2007.

22. P. Schaus, Y. Deville, P. Dupont, and J-C. RÃ c©gin. Future and Trends of Constraint Pro-
gramming, chapter Simplification and extension of the SPREAD Constraint, pages 95–99.
ISTE, 2007.

23. P. Schaus and J-C. Régin. Bound-consistent spread constraint. 2(3), 2014.
24. Pierre Schaus, Yves Deville, and Pierre Dupont. Bound-consistent deviation constraint. In

Principles and Practice of Constraint Programming - CP 2007, 13th International Confer-
ence, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings, pages 620–634,
2007.

25. M. Trick. A dynamic programming approach for consistency and propagation for knapsack
constraints. In CPAIOR’01, 2001.

	MDDs are Efficient Modeling Tools: An Application to some Statistical Constraints

