
Noname manuscript No.
(will be inserted by the editor)

Mixing Static and Dynamic Partitioning to Parallelize a

Constraint Programming Solver

Tarek Menouer · Mohamed Rezgui ·
Bertrand Le Cun · Jean-Charles Régin

Received: date / Accepted: date

Abstract This paper presents an external parallelization of Constraint Pro-
gramming (CP) search tree mixing both static and dynamic partitioning. The
principle of the parallelization is to partition the CP search tree into a set of
sub-trees, then assign each sub-tree to one computing core in order to perform
a local search using a sequential CP solver. In this context, static partitioning
consists of decomposing the CP variables domains in order to split the CP
search tree into a set of disjoint sub-trees to assign them to the cores. This
strategy performs well without adding an extra cost to the parallel search,
but the problem is the load imbalance between computing cores. On the other
hand, dynamic partitioning is based on preservation of the search state to gen-
erate, dynamically or on demand, the sub-trees that are assigned to the cores.
This strategy o�ers good load balancing between the di�erent computing cores,
but computing overcosts appear due to the initialisation of the search when
a sub-tree is migrated from one core to another. In this paper, we propose a
new partitioning strategy that mixes the static and dynamic partitioning and
enjoys the bene�ts of each strategy. This mixed partitioning is designed to run
on shared and distributed memory architectures. The performances obtained
are illustrated by solving the CP problems modelled using the FlatZinc for-
mat and solved using the Google OR-Tools solver on top of the parallel Bobpp
framework.

Tarek Menouer and Bertrand Le Cun
Prism Laboratory
University of Versailles Saint-Quentin-en-Yvelines
45 avenue des Etats-Unis, Versailles, 78035, France
E-mail: Tarek.menouer@prism.uvsq.fr,Bertrand.lecun@prism.uvsq.fr

Mohamed Rezgui and Jean-Charles Régin
I3S laboratory
University of Nice Sophia Antipolis
28 Avenue Valombrose, Nice, 06100, France
E-mail: Rezgui@i3s.unice.fr, Jean-Charles.REGIN@unice.fr

2 Tarek Menouer et al.

Keywords Parallelism, Constraint Programming, Work Stealing, Dynamic
Load Balancing.

1 Introduction

Parallel search trees have been widely studied in the di�erent contexts of Di-
vide and Conquer, Branch and Bound, and Constraint programming (CP)1.
Most of these studies propose a parallelization of the entire tree search algo-
rithm that must be used in place of the sequential one, as studies proposed
in [40,4,39,2,10,30,34].

In this paper, we propose an external parallelization of CP search tree 2.
The main part of the search is performed by a sequential CP solver. In other
words, we propose parallel algorithms that are used to dispatch or schedule
the tasks which will be executed by each computing core using a sequential
CP solver.

Parallel search tree algorithms are usually explained in terms of static or
dynamic partitioning. The principle of static partitioning [36] is to partition the
search tree into a �nite set of distinct sub-trees according to the decomposition
of the variables' domains within the CP problem, then assign each sub-tree to
one computing core. The advantage of this strategy is that when a computing
core begins searching a new sub-tree, it starts directly without adding an extra
cost to the parallel search. However, the workload is not well-balanced. The
only way to handle the balancing problem is to generate enough sub-trees to
have a good load balance.

The second strategy is dynamic partitioning [20]. The principle of this
strategy is based on a previously studied Work Stealing technique to partition
the search tree into a set of sub-trees, and schedule them during the execution
of the search algorithm in order to have good load balancing between the dif-
ferent computing cores. For technical reasons within the sequential CP solver
(Google OR-Tools) used to perform the local search, when a computing core
starts the search with a new sub-tree, some extra cost is added to the parallel
search. This additional cost of each Work Stealing operation implies a speci�c
scheduling and partitioning algorithm to obtain a good performance.

The contribution of this paper is to propose a new partitioning strategy to
parallelize the CP search tree that mixes the static and dynamic strategies.
For the needs of High Performance Computing (HPC), this new partitioning
strategy will be run in shared and distributed memory architectures. This
mixed partitioning starts by performing the static partitioning in order to
generate a su�cient number of sub-trees for the di�erent computing cores
used in the resolution, and ensure that these starting sub-trees are the good
sub-trees to be explored (without adding an extra cost to the search). In
the second step, dynamic partitioning is used to ensure good load balancing
between computing cores.

1Constraint Programming is sometimes called Branch and Infer
2This work is funded by PAJERO Bpifrance project

Parallel Constraint Programming Solver 3

We illustrate the performance of the mixed partitioning by using the OR-
Tools solver [41] on top of the parallel Bobpp framework [18].

OR-Tools is an open source sequential CP solver developed by a Google
research team. Bobpp is a framework that provides an interface between solvers
of combinatorial problems and parallel computers.

The next section presents related work. The static and dynamic partition-
ing strategies are described in section 3, mixed partitioning is presented in
section 4. Section 5 presents some experiments using the Bobpp framework to
solve CP problems. Finally, a conclusion and some perspectives are presented
in section 6.

2 Related Work

A CP problem Π is a triplet (X ,D, C), de�ned as follows:

� A set of n variables X = {x1, x2, . . . , xn}
� A set of n �nite domains D = {D(x1), D(x2), . . . , D(xn)} with D(xi) the
set of possible values for the variable xi

� A set of constraints between the variables C = {C1, C2, . . . , Ce}. A con-
straint Ci is de�ned on a subset of variables XCi = {xi1 , xi2 , . . . , xij} of
X with a subset of the Cartesian product D(xi1)×D(xi2)× . . .×D(xij),
that states which combinations of values of variables {xi1 , xi2 , . . . , xij} are
compatible

Each constraint Ci is associated with a �lter algorithm that removes val-
ues from the domains of its variables when it is not possible to satisfy the
constraint. The constraint propagation applies �ltering algorithms of C to re-
duce the domains of variables in turn until no more reduction can be done.
Thereby, it detects the combinations of locally inconsistent values that cannot
be solutions.

Π is solved as follows:
First, all variables of Π are unassigned. For each step, a variable xi is

chosen and a value a ∈ D(xi) is assigned to xi in turn. Each branch of a
search tree computed by this search de�nes an assignment. Next, the constraint
propagation mechanism checks the consistency of the partial assignment with
the constraints C. Each partial assignment creates a node in the search tree.
Thus, we associate the consistency of a node with the consistency implied by
an assignment.

CP algorithms are used to solve combinatorial problems with great com-
plexity, such as scheduling problems [3]. Several methods are proposed in order
to parallelize the CP search-space, as in [33] [32] [35] [25] [42]. In the literature
there are several parallel CP solvers such as Gecode [38], Parallel COMET [22],
ILOG Parallel Solver [32], parallel Mozart solver [37], etc. Each solver uses a
speci�c CP technique, but from a parallel point of view they all use the same
principle based on Work Stealing [8,5,14,12,1].

Work Stealing is the most popular technique used to implement load bal-
ancing between computing cores. Each computing core does some tasks, then

4 Tarek Menouer et al.

when a core has nothing left to do, it steals tasks from another core to keep
busy. Some studies which used Work Stealing to paralellize the exploration of
the CP search space are presented in [43,19,16,6,45].

For example, the study presented by Xie et al. [43] proposes the mas-
ters/workers approach. Each master has its workers. The search space is di-
vided between the di�erent masters, then each master puts its attributed sub-
trees in a work pool to dispatch to the workers. When a node of the sub-tree is
detected that is a root of large sub-tree, the workers generate a large number of
sub-trees and put them in a work pool in order to have better load balancing.
Fischetti et al. [19], propose a worker-pool without communication between
workers. First, the workers decompose the initial problem during a limited
sampling phase, during which each worker visits nodes randomly. Thus, they
can visit redundant nodes. After the sampling phase, each worker is attributed
its nodes by a deterministic function. During the resolution, if a node is de-
tected to be di�cult by an estimated function, it is put into a global queue.
When a worker �nishes the resolution of its node, it receives a hard node from
the global queue and solves it. When the queue is empty and there is no work
to do, the resolution is done. Ja�ar et al. [16] propose the use of a master
which centralizes all pieces of information (bounds, solutions and requests).
The master evaluates which worker has the largest amount of work in order
to give some work to a waiting worker.

There are other works which use new techniques, such as Portfolio par-
allelization. Bordeaux et al. [6], are the �rst authors to present a study on
the scalability of constraint solving on more than 100 processors. They focus
on the resolution of CP and boolean SATis�ability (SAT) problems. They
use two approaches: portfolios and search space splitting. Without commu-
nication and using hashing constraints to split the search tree, their results
show good speedups for up to 30 processors, but not beyond. Yun et al.[45]
introduced the recursive splitting with iterative bisection partitioning method
which decomposes the initial problem into a large number of sub-problems.
This decomposition is based on previous unsuccessful resolutions.

In all previous works, the parallelization is performed inside the search
algorithm. In this paper we propose an external parallelization of OR-Tools
CP solver using a parallel Bobpp framework. The external parallelization is
done without changing the OR-Tools source code.

3 The Partitioning Strategies

This section presents the di�erent partitioning strategies proposed in order to
perform an external parallelization of CP search tree by using the OR-Tools
solver on top of the parallel Bobpp framework.

OR-Tools [41] is an open source library that implements a sequential CP
solver. It is developed in C++ by a Google research team. The purpose of
this library is to explore the search space in order to �nd one or all possible
solutions using various constraint propagation methods.

Parallel Constraint Programming Solver 5

Bobpp [11] is a parallel framework oriented towards solving Combinatorial
Optimization Problems. It is developed in C++ and can be used as the runtime
support. Bobpp provides several search algorithms that can be parallelized
using di�erent parallel programming methods. The goal is to propose a single
framework for most classes of Combinatorial Optimization Problems, which
can be solved in as many di�erent parallel architectures as possible. Figure 1
shows how Bobpp interfaces with high-level applications (QAP, TSP, ...), CP
solvers, and di�erent parallel architectures using several parallel programming
environments like Pthreads as well as MPI or more specialized libraries such
as Athapascan/Kaapi.

Fig. 1 Bobpp Framework

3.1 The Static Partitioning

The principle of static partitioning is to split the CP search tree into a set of
disjoint sub-trees. The root node of each sub-tree is named a BOB-static-node,
which has a partial assignment as a set of pairs (variable, value) checked by
the propagation mechanism. This strategy is explain in detail in [36].

A simple algorithm could be to perform Breadth First Search (BFS) in the
search tree until the n BOB-static-node is reached. Unfortunately, it is not
easy to e�ciently perform BFS, mainly because BFS is not an incremental
algorithm like Depth First Search (DFS). Therefore, we have used Depth-
bounded Depth First Search (DBDFS). Let nk denote the number of BOB-
static-nodes found with DBDFS at depth k. To reach the nth BOB-static-node,
we repeat the DBDFS until we reach a depth k such that nk−1 < n ≤ nk.

This strategy can be compared with the Iterative Deepening Depth-First
Search (IDDFS) [17], which is based on the same principle (iterations of
DBDFS), but with some di�erences. IDDFS stops the search when it �nds
a solution, whereas static partitioning tries to generate n BOB-static-nodes.

As this strategy doesn't add extra cost to the parallel search, we use it
to explore the �rst level of the search tree and to generate BOB-static-nodes,
which are shared between computing cores to perform a parallel search. This

6 Tarek Menouer et al.

 95.46

 99.5
 101.28

 104.53

 120.74

 20 23 24 25 26 27 30 35 40

Ti
m

e
 (

s)

Number of Nodes Generated

Computation Time

Fig. 2 Variation of computation time for solving the problem of Naval battle
(Sb_sb_13_13_5_1) [27] on 12 cores according to the number of sub-trees generated

strategy performs well, but it has some problems. The �rst problem is the
determination of the best number of BOB-static-nodes to generate.

Figure 2 shows an example concerning the variation of computation time
according to the number of sub-trees generated by static partitioning to solve
the Naval battle problem (Sb_sb_13_13_5_1) [27], using 12 cores on an
Intel machine (12 cores and 48 GB of RAM). Thus, each time we increase
the number of sub-trees generated we measure the computation time until an
optimal number of sub-trees is found (in �gure 2 this is 25 sub-trees). After
the optimal value found in this example, as you can see, the computation time
slows down again.

The second problem concerns the load imbalance between computing cores.
Indeed, the load imbalance implies that sometimes one computing core per-
forms almost all of the search while the other computing cores wait until the
�rst core �nishes.

3.2 The Dynamic Partitioning

The principle of the dynamic partitioning is that di�erent computing cores
share the work via the Bobpp Global Priority Queue, called GPQ. The search
tree is decomposed and allocated to the di�erent cores on demand and during
the execution of the search algorithm. Periodically, a working core tests if
waiting core(s) exist(s). If this is the case, the working core stops the search
in the left OR-Tools node. Next, the path from the root node to the highest
right OR-Tools node is saved in what we called the BOB-dynamic-node. This
BOB-dynamic-node is inserted into the GPQ, then the working core continues
the search with the left OR-Tools node. Otherwise, if no waiting cores exist,
the working core performs the search locally using the OR-Tools solver. The
waiting cores are noti�ed by the insertion of a new BOB-dynamic-node in the
GPQ. If a new BOB-dynamic-node is inserted in the GPQ, the waiting core
picks up the node and starts the search. This partitioning strategy is presented
in detail in [20].

Parallel Constraint Programming Solver 7

 75.92

 77.26
 78.13

 80.61

 91.63

 10 15 20 24 25 26 27 28 29 30 36

Ti
m

e
 (

s)

Threshold Value

Computation Time

Fig. 3 Variation of the computation time for solving the problem of Naval battle
(Sb_sb_13_13_5_1) [27] on 12 cores according to the value of the threshold

For technical reasons in the OR-Tools solver, each time a computing core
starts the search with a new BOB-dynamic-node, redundant nodes must be
explored. To limit the exploration of redundant nodes, it is proposed to add a
threshold, which limits the depth of each BOB-dynamic-node. The choice of the
value of the threshold is a di�cult problem. Choosing a very small threshold
makes the algorithm similar to static partitioning, with a limited number of
sub-trees explored by the di�erent computing cores. Conversely, choosing a
high threshold makes the algorithm similar to dynamic partitioning without a
threshold, which makes load balancing easier between the cores but increases
the exploration of the redundant OR-Tools nodes.

Figure 3 shows the variation in computation time according to the value
of the threshold to solve the Naval battle problem (Sb_sb_13_13_5_1) [27]
using 12 cores on an Intel machine (12 cores and 48 GB of RAM). As a
result, the computation time decreases while increasing the threshold value
until an optimal threshold (value of 25) is reached. After this optimal value
the computation time increases again.

4 Mixing Static and Dynamic Partitioning

In short, each of the two previous strategies has the following advantages and
disadvantages:

� Static Partitioning generates good sub-trees to be explored by the com-
puting cores without adding an extra cost to the parallel search, but the
disadvantages are:
� The determination of the best number of sub-trees to generate
� The workload can be imbalanced
� It is developed in [36], to run only for a shard memory architecture

� Dynamic Partitioning gives a well-balanced work, but the problems are:
� Each time a sub-tree migrates from one computing core to another,
redundant nodes are explored and an extra cost is added to the parallel
search

8 Tarek Menouer et al.

Algorithm 1 Mixed Partitioning
Require: N , the threshold of static partitioning
Require: S, the threshold of dynamic partitioning
Let K, represent the current number of sub-trees generated by static partitioning
Let P , represent the depth of the current OR-Tools node
if K < N then

Generate a new sub-tree using static partitioning
else

if ∃ at least one waiting core AND P < S then

Stop the search on the left branch
Create a BOB-dynamic-node
Insert the BOB-dynamic-node in the global queue
Restart the search

else

Continue the sequential exploration of the search-space
end if

end if

� It is also developed in [20], to run only for a shard memory architecture

The following section presents a new partitioning strategy that performs in
shared and distributed memory architectures. The aim of this new strategy is
to mix static and dynamic partitioning in order to generate at the beginning
good initial sub-trees which are explored without adding an extra cost to the
parallel search. Then, in the second step, dynamic partitioning is used to have
good load balancing, as presented in algorithm 1.

Figure 4 shows the variation in computation time according to the num-
ber of sub-trees generated during static partitioning and the value of the
threshold used by dynamic partitioning to solve the Naval battle problem
(Sb_sb_13_13_5_1). This experiment was realised using 12 cores on an In-
tel machine (12 cores and 48 GB of RAM).

Figure 4:a presents the variation in computing time in a 3D format. A
�rst remark is that the optimal number of sub-trees generated with static
partitioning is 25.

In �gure 4:b, the number of sub-trees generated by the static partitioning
is �xed at 25 and we present the computation time obtained by varying the
threshold value used by the dynamic partitioning method. Coincidentally, the
optimal threshold for the dynamic partitioning is also 25.

Figure 4:c shows a table describing computation time values obtained by
varying the number of sub-trees generated during static partitioning and the
value of the threshold used by the dynamic partitioning. Figure 4:c is presented
in order to explain �gure 4:b in detail.

We note in �gures 2, 3 and 4:b) that:

� The computation time obtained in �gure 2 by using an optimal number of
sub-trees generated by the static partitioning is 95.46 seconds

� The computation time obtained in �gure 3 by using the optimal dynamic
partitioning threshold is 75.92 seconds

Parallel Constraint Programming Solver 9

 1
 10 15

 25 30 35 20 23 25 27 29 31 33 35

 46.89

Time(s)

Computation time

NB nodes Threshold value

Time(s)

(a)

 46.89

 52.91

 62.22

 71.74

 5 10 15 20 24 25 26 27 28 29 30 36

Ti
m

e
 (

s)

Threshold Value

Computation Time

(b)

Number of Dynamic Computation
Static sub-trees Threshold Value Time (seconds)

1 24 86,845
15 24 63,375
20 24 49,59
25 24 48,31
30 24 49,08
35 24 49,5
1 25 85,955
15 25 63,285
20 25 48,335
25 25 46,89

30 25 48,24
35 25 48.7
1 26 86,255
15 26 65
20 26 48,555
25 26 47,99
30 26 48,91
35 26 49.5

(c)

Fig. 4 Variation of computation time for solving the Naval battle problem
(Sb_sb_13_13_5_1) [27] on 12 cores according to the number of sub-trees generated by
the static partitioning and threshold value of the dynamic partitioning

10 Tarek Menouer et al.

Fig. 5 Mixed partitioning in a shared memory architecture

� The computation time obtained in �gure 4:a by using the optimal number
of sub-tree generated by the static partitioning and the optimal dynamic
partitioning threshold is 46.89 seconds

So, using a mixed partitioning strategy allows one to obtain a good com-
putation time.

4.1 Mixed Partitioning in a Shared Memory Architecture

To explore the search tree on parallel computers, the primary issue is load
balancing. The idea is to use the GPQ of the parallel Bobpp framework as a
global pool of nodes (tasks) in which each computing core will pick up a node
and perform a local search using a sequential CP solver.

As presented in �gure 5, the mixed partitioning starts by inserting sub-trees
generated using a static partitioning into the Bobpp GPQ. These sub-trees are
represented as BOB-static-nodes. As the search tree generated by the OR-Tools
solver is binary, we propose to �x the number of the sub-trees generated by
the static partitioning to 2×(Number of computing cores used in the search).
The mixed partitioning algorithm does not require re-compilation for each new
target machine or new execution context. For every new execution, the software
checks the number of computing cores used in the search and generates the
BOB-static-nodes. During the second step, in order to keep a good load balance
between the di�erent computing cores, we use dynamic partitioning with an
automatic threshold. In order to accomplish this, the starting value of the
threshold is �xed, then increased each time a load imbalance is detected. This
automatic threshold performs well, it is presented in [20].

If a solution is found, it will be inserted into the Bobpp Goal, which stores
all of the solutions.

4.2 Mixed Partitioning in a Distributed Memory Architecture

Parallel search on a distributed memory architecture relies on the same prin-
ciple as a parallel search on a shared memory architecture. On a distributed

Parallel Constraint Programming Solver 11

Fig. 6 Mixed partitioning in a distributed memory architecture

memory machine, the Bobpp GPQ has to be split among the number of pro-
cessors used and we assign to each processor one Sub Priority Queue (SPQ).
The main di�erence between these two types of memory is the priority queue
management.

On a shared memory, there is one priority queue shared between all cores. In
a distributed memory, we use many SPQs and each SPQ will be shared between
the di�erent cores used by each processor. In order to obtain a good load
balancing between the di�erent BOB-static/dynamic-nodes used by each SPQ,
we use the Work Stealing approach. This means that BOB-static/dynamic-
nodes are moved once a starvation risk is detected.

As soon as the distributed memory of the priority queue is used, Bobpp
is able to execute a shared memory strategy on each processor using a hybrid
parallel programming environment (Pthreads+MPI).

Figure 6 shows how a hybrid environment is used to perform the mixed
partitioning.

5 Experimentation

In order to validate and compare the di�erent approaches used in this study,
experiments were performed using two Linux machines, M1 and M2. The two
machines have the same con�guration: each machine is a bi-processor Intel
Xeon X5650 (2.67 GHz) computer with 12 cores and 48 GB of RAM. The
network uses Ethernet technology with IPV6 protocol to obtain a speed of
188552 Kbit/s. The goal of this experimentation is to show the performances
of our parallelization approach. We use for the implementation the OR-Tools
solver (version: 2727). It is evident that all results depends on the OR-Tools
solver because it is used as the main CP solver. All CP problems solved in this
paper were proposed in the MiniZinc Challenge 2012 [27] and modelled using
the FlatZinc format [28]. The goal of the MiniZinc Challenge is to compare the
performances of solvers and various constraint solving technologies on a set
of problems. FlatZinc is a low-level solver input language designed to specify
problems at the level of an interface to CP solvers. The following computation

12 Tarek Menouer et al.

 9.07
 17.61
 27.07

 153.93

 176.98

 213.09

CSP COP

T
im

e
 (

s)

Constraint Programming Problems

Static Partitioning
Dynamic Partitioning

Mixed Partitioning

Fig. 7 Computation time for solving the Constraint Programming problems depending on
the partitioning strategies

 2.34

 3.25 3.26
 3.56
 3.93

 5.45
 5.91
 6.36

 7.74

 1 4 8 12

S
p
e
e
d
u
p

Threads

Speedup fo Static Partitioning
Speedup for Dynamic Partitioning

Speedup for Mixed Partitioning

Fig. 8 Average speedup obtained using static, dynamic and mixed partitioning for solving
6 Constraint Satisfaction Problems

time presented in this section are given in seconds and are averages of several
runs.

5.1 Solving Constraint Programming Problems using a Shared Memory
Architecture

Figure 7 compares the three partitioning strategies - static, dynamic and mixed
- for solving the two CP problems listed below. 12 cores were used in testing
each strategy:

� The Quasi Group problem (Quasigroup7_10) [27], which is a Constraint
Satisfaction Problem: labelled CSP in �gure 7

� The Level Packing problem (2DLevelPacking_Class8_20_9) [27], which
is a Constraint Optimization Problem: labelled COP in �gure 7

The performance of static partitioning is limited, as shown by its low
speedup compared to other partitioning strategies. The third partitioning
(mixing static and dynamic) is clearly the best partitioning method for solving
Constraint Satisfaction and Optimization Problems.

Figures 8 and 9 show the average speedup obtained using each of the
three partitioning strategies for solving 10 CP problems, 6 are Constraint

Parallel Constraint Programming Solver 13

 2.88

 3.47
 3.97

 4.61

 5.27

 7.02

 1 4 8 12

S
p
e
e
d
u
p

Threads

Speedup fo Static Partitioning
Speedup for Dynamic Partitioning

Speedup for Mixed Partitioning

Fig. 9 Average speedup obtained using static, dynamic and mixed partitioning for solving
4 Constraint Optimization Problems

 2.67

 3.56

 5.1

 5.91

 6.61

 7.74

 1 4 8 12

S
p
e
e
d
u
p

Cores

Speedup for Mixed Partitioning
Speedup for Gecode Solver

Fig. 10 Comparison between an average speedup obtained using mixed partitioning and
Gecode CP solver for solving 6 Constraint Satisfaction Problems

 1.89

 2.72

 3.47

 4.3

 5.27

 7.02

 1 4 8 12

S
p
e
e
d
u
p

Cores

Speedup for Mixed Partitioning
Speedup for Gecode Solver

Fig. 11 Comparison between an average speedup obtained using mixed partitioning and
Gecode CP solver for solving 4 Constraint Optimization Problems

Satisfaction Problems and 4 are Constraint Optimization Problems. Using
mixed partitioning, an average speedup of 7.74 is reached in the resolution of
6 Constraints Satisfaction Problems using 12 cores and an average speedup
of 7.02 is obtained for solving 4 Constraint Optimization Problems using 12
cores.

14 Tarek Menouer et al.

Problems Mixed Partitioning run times (seconds)
1 core 4 cores 8 cores 12 cores

quasigroup7_10.fzn 1377.25 432.43 227.55 162.71
sb_sb_13_13_5_1.fzn 653.58 157.42 93.83 56.65
sb_sb_14_14_6_0.fzn 152.25 51.23 29.63 23.81
sb_sb_15_15_7_4.fzn 284.73 91.86 57.47 49.13
sb_sb_12_12_5_4.fzn 64.51 14.34 8.51 7.46
sb_sb_15_15_7_3.fzn 248.95 71.52 52.12 44.27

Table 1 Execution times obtained using mixed partitioning for solving 6 Constraint Satis-
faction Problems

Problems Gecode solver run times (seconds)
1 core 4 cores 8 cores 12 cores

quasigroup7_10.fzn 239.69 73.66 37.46 24.74
sb_sb_13_13_5_1.fzn 301.44 107.80 60.75 50.85
sb_sb_14_14_6_0.fzn 151.69 57.2 28.23 22.15
sb_sb_15_15_7_4.fzn 411.24 139.56 78.84 66.26
sb_sb_12_12_5_4.fzn 42.33 16.8 9.24 6.90
sb_sb_15_15_7_3.fzn 335.73 175.97 81.38 68.48

Table 2 Execution times obtained using Gecode CP solver for solving 6 Constraint Satis-
faction Problems

Problems Mixed Partitioning run times (seconds)
1 core 4 cores 8 cores 12 cores

2DLevelPacking_Class8_20_9.fzn 102.65 34.01 21.37 14.23
fastfood_�58.fzn 37.28 9.33 5.54 4.53

open_stacks_01_problem_15_15.fzn 46.36 13.27 8.26 7.18
open_stacks_01_wbp_30_15_1.fzn 87.27 25.70 17.58 14.07

Table 3 Execution times obtained using mixed partitioning for solving 4 Constraint Opti-
mization Problems

Problems Gecode solver run times (seconds)
1 core 4 cores 8 cores 12 cores

2DLevelPacking_Class8_20_9.fzn 19.17 9.96 12.01 7.97
fastfood_�58.fzn 21.04 9.34 7.32 6.99

open_stacks_01_problem_15_15.fzn 96.82 40.55 19.75 13.97
open_stacks_01_wbp_30_15_1.fzn 197.71 196.88 127.85 40.57

Table 4 Execution times obtained using Gecode CP solver for solving 4 Constraint Opti-
mization Problems

Currently there are many available computing resources, such as data cen-
ters and the cloud computing, so the majority of parallel CP solvers proposed
in the literature, such as Choco [7], CPHYDRA [9] and Numberjack solver [29]
use a Portfolio parallelization [15]. The idea of the Portfolio parallelization is
to run di�erent search strategies in parallel and the �rst strategy to �nd a
solution or meet the needs of the user stops all other strategies. In our ap-
proach we propose an external parallelization of one search strategy instead of

Parallel Constraint Programming Solver 15

a Portfolio parallelization. Few CP solvers exist that o�er a parallelization of
one search strategy and solve problems modelled using FlatZinc format, such
as the Gecode solver [38]. Gecode [38] is an open source parallel CP solver de-
veloped in C++. It proposes an internal parallelization of a search algorithm
using the Work Stealing technique. The idea of this parallelization is described
as follows: when a computing core has nothing to do, it steals work from other
cores which have tasks to perform.

Figures 10 and 11 show a comparison between the average speedup ob-
tained using mixed partitioning, which is an external parallelization of the
OR-Tools solver that is among the best CP solvers selected in the MiniZinc
Challenge 2013 [26], and the Gecode solver (version 4.2.1), which was selected
as the best parallel CP solver from 2008 until 2012 in the MiniZinc Chal-
lenge [26] for solving 6 Constraint Satisfaction Problems and 4 Constraint
Optimization Problems.

Tables 1, 2, 3 and 4 show the absolute run time (giving in seconds) obtained
using the mixed partitioning and Gecode CP solver for solving 6 Constraint
Satisfaction Problems and 4 Constraint Optimization Problems.

The average speedup obtained using the mixed partitioning is better than
the average speedup obtained using the Gecode solver. This result allows val-
idation of the performance of the mixed partitioning.

Our approach has some bene�ts, such as:

� It proposes an external parallelization of the OR-Tools solver without
changing the OR-Tools code, it is used directly with the next OR-Tools
release

� As it is an external parallelization, it is possible to combine the mixed
partitioning and the portfolio parallelization [21]

� It is designed for both shared and distributed memory architectures, as
opposed to the other parallel CP solvers which are designed for only one
memory architecture.

The problems with our approach are:

� The resolution of problems depend on the threshold of static and dynamic
partitioning

� The parallel search algorithm is not deterministic
� Only solves problems modelled using FlatZinc format

Figure 12 shows the load balance for solving the Quasi Group problem
(Quasigroup7_10) [27], which is a Constraint Satisfaction Problem using 12
cores according to the partitioning strategies.

Figure 12:a is obtained using static partitioning. It is clear that this strat-
egy gives a load imbalance between the computing cores. We observe that the
computing time is 213.09 seconds.

Figure 12:b is obtained using dynamic partitioning. With this strategy, the
computation time is 176.98 seconds.

Figure 12 :c is obtained using mixed partitioning. With this strategy, the
load is good balanced and the computation time is 153.93 seconds.

16 Tarek Menouer et al.

 60.16

 213.09

 0 5 11

T
im

e
 (

se
co

n
d

s)

Cores used by static partitioning

Waiting time
Working time

(a)

 2.7

 176.98

-2 0 2 4 6 8 10 12

T
im

e
 (

se
co

n
d

s)

Cores used by dynamic partitioning

Waiting time
Working time

(b)

 0.54

 153.93

 0 5 11

T
im

e
 (

se
co

n
d

s)

Cores used by mixed partitioning

Waiting time
Working time

(c)

Fig. 12 Load balancing for solving the Quasi Group problem (Quasigroup7_10) [27], which
is a Constraint Satisfaction Problem using 12 cores according to the partitioning strategies

 19.2

 26.73

 0 5 11

T
im

e
 (

se
co

n
d

s)

Cores used by static partitioning

Waiting time
Working time

(a)

 1

 17.61

 0 5 11

T
im

e
 (

se
co

n
d

s)

Cores used by static partitioning

Waiting time
Working time

(b)

 0.3

 14.23

 0 5 11

T
im

e
 (

se
co

n
d

s)

Cores used by static partitioning

Waiting time
Working time

(c)

Fig. 13 Load balancing for solving the Level Packing problem (2DLevelPack-
ing_Class8_20_9), which is a Constraint Optimization Problem using 12 cores according
to the partitioning strategies

Parallel Constraint Programming Solver 17

Figure 13 shows the load balance for solving the Level Packing prob-
lem (2DLevelPacking_Class8_20_9) [27], which is a Constraint Optimiza-
tion Problem using 12 cores according to the partitioning strategies (static,
dynamic and mixed).

As a result, for both problems (Constraint Satisfaction and Optimization
Problems), the mixed partitioning allows all cores to work and wait for an
equivalent time.

5.2 Solving Constraint Programming Problems using a Distributed Memory
Architecture

Computer(s) Number of Number of cores/ Total number of speedup
processors processor cores

M1 2 4 8 5.04
M1 3 4 12 5.54

M1&M2 4 4 16 5.93
M1&M2 4 5 20 7.02
M1&M2 2 12 24 10.04

Table 5 Average speedup for solving 6 Constraint Satisfaction Problems using a hybrid
environment

Computer(s) Number of Number of cores/ Total number of speedup
processors processor cores

M1 2 4 8 3.3
M1 3 4 12 3.43

M1&M2 4 4 16 3.6
M1&M2 4 5 20 4.89
M1&M2 2 12 24 7.78

Table 6 Average speedup for solving 4 Constraint Optimization Problems using a hybrid
environment

The static and dynamic partitioning strategies are developed only for
shared memory architectures. In the following section, we present some exper-
iments on a distributed memory architecture with only the mixed partitioning
strategy.

Tables 5 and 6 show the average speedups for solving Constraint Satis-
faction and Optimization Problems using a hybrid (Pthreads+MPI) parallel
programming environment.

There are some studies which present distributed algorithms for solving
CP problems, as in [31,44,37,24,23]. However, to our knowledge, there is no
open source CP solver which o�ers a parallel search algorithm adapted for

18 Tarek Menouer et al.

distributed memory architectures and solves our instances, which are modelled
using FlatZinc format. This is why we can not compare our approach with
other distributed CP solvers.

5.61

185.45

-2 0 2 4 6 8 10 12

T
im

e
 (

se
co

n
d

s)

Threads

Waiting time
Working time

P0 P1

Fig. 14 Load balancing for solving the
Quasi group problem (Quasigroup7_10),
which is a Constraint Satisfaction Prob-
lem using a hybrid parallel programming
environment with 2 processors and 4
cores/processor

0.9

22.07

-2 0 2 4 6 8 10 12

T
im

e
 (

se
co

n
d

s)
Threads

Waiting time
Working time

P0 P1

Fig. 15 Load balancing for solving the
Level Packing problem (2DLevelPack-
ing_Class8_20_9), which is a Constraint
Optimization Problem using a hybrid parallel
programming environment with 2 processors
and 4 cores/processor

Figures 14 and 15 show the load balance when solving Constraint Satis-
faction and Optimization Problems. The same result as in the shared memory
architecture was obtained. All cores work and wait for an equivalent time.

6 Conclusion

This paper presents an external parallelization of a Constraint Programming
solver, called OR-Tools, using the parallel Bobpp framework.

This solution presents a new strategy that mixes static and dynamic parti-
tioning. Static partitioning is used to generate the best sub-trees and start the
search without adding an extra cost. Dynamic partitioning is used to perform
dynamic partitioning of di�erent sub-trees during the execution of the search
algorithm with a good load balance between computing cores.

It would be good to always give the user the same solution for a speci�c
problem. In a sequential resolution, this is easy because it is the �rst solution
obtained. However, in parallel, it is not necessarily the �rst solution. In the
future, this mixed partitioning algorithm used to parallelize the OR-Tools
solver will be adapted to always give the same solution whether using a parallel
or a sequential run if it is asked by the user.

Finally, to enrich and extend the set of problems solved by the Bobpp
framework, it would be interesting to port on top of the Bobpp framework a
boolean SATis�ability (SAT) solver such as Glucose [13] solver.

Parallel Constraint Programming Solver 19

References

1. U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data locality of work stealing.
In Proceedings of the Twelfth Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA '00, pages 1�12, New York, NY, USA, 2000. ACM.

2. P. M. P. Alfonso Ferreira. Solving Combinatorial Optimization Problems in Parallel
Methods and Techniques. Springer, lecture notes in computer science, vol. 1054 edition,
1996.

3. P. Baptiste, C. L. Pape, and W. Nuijten. Constraint-Based Scheduling - Applying
Constraint Programming to Scheduling Problems. International Series in Operations
Research and Management Science, Paris, volume 39- springer edition, 2001.

4. B.Gendron and T.G.Crainic. Parallel branch-and-bound algorithms: Survey and syn-
thesis. Operational Research, 42(06):1042�1066, 1994.

5. R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work
stealing. J. ACM, 46(5):720�748, Sept. 1999.

6. L. Bordeaux, Y. Hamadi, and H. Samulowitz. Experiments with massively parallel
constraint solving. In IJCAI, pages 443�448, 2009.

7. Choco solver
http://www.emn.fr/z-info/choco-solver/, 2013. Accessed: 14-04-2014.

8. G. Chu, C. Schulte, and P. J. Stuckey. Con�dence-based work stealing in parallel
constraint programming. In Principles and Practice of Constraint Programming-CP
2009, pages 226�241. Springer, 2009.

9. e. o'mahony, E. Hebrard, A. Holland, and C. Nugent. Using case-based reasoning in an
algorithm portfolio for constraint solving. In Irish Conference on Arti�cial Intelligence
and Cognitive Science, 2008.

10. A. Ferreira and M. Morvan. Models for Parallel Algorithm Design: An Introduction. In
A. Migdalas, P. Pardalos, and S. Storoy, editors, Parallel Computing in Optimization,
pages 1�26. Kluwer Academic Publisher, Boston (USA), 1997.

11. F. Galea and B. Le Cun. Bob++ : a framework for exact combinatorial optimiza-
tion methods on parallel machines. In International Conference High Performance
Computing & Simulation 2007 (HPCS'07) and in conjunction with The 21st European
Conference on Modeling and Simulation (ECMS 2007), pages 779�785, June 2007.

12. T. Gautier, J. Roch, and G. Villard. Regular versus irregular problems and algorithms.
In A. Ferreira and J. Rolim, editors, Parallel Algorithms for Irregularly Structured
Problems, volume 980 of Lecture Notes in Computer Science, pages 1�25. Springer
Berlin Heidelberg, 1995.

13. Glucose sat solver
https://www.lri.fr/ simon/?page=glucose. Accessed: 14-04-2014.

14. Y. Guo, J. Zhao, V. Cave, and V. Sarkar. Slaw: A scalable locality-aware adaptive
work-stealing scheduler. In Parallel Distributed Processing (IPDPS), 2010 IEEE Inter-
national Symposium on, pages 1�12, April 2010.

15. B. Hurley, L. Kottho�, Y. Malitsky, and B. O'Sullivan. Proteus: A hierarchical portfolio
of solvers and transformations. arXiv preprint arXiv:1306.5606, 2013.

16. J. Ja�ar, A. E. Santosa, R. H. C. Yap, and K. Q. Zhu. Scalable distributed depth-�rst
search with greedy work stealing. In ICTAI, pages 98�103, 2004.

17. R. E. Korf. Depth-�rst iterative-deepening: an optimal admissible tree search. Artif.
Intell., 27(1):97�109, Sept. 1985.

18. B. Le Cun, T. Menouer, and P. Vander-Swalmen. Bobpp. http://forge.prism.uvsq.

fr/projects/bobpp. Accessed: 14-04-2014.
19. M. M. Matteo Fischetti and D. Salvagnin. Self-splitting of workload in parallel compu-

tation. In CPAIOR'14, 2014.
20. T. Menouer and B. L. Cun. Anticipated dynamic load balancing strategy to paral-

lelize constraint programming search. In 2013 IEEE 27th International Symposium
on Parallel and Distributed Processing Workshops and PhD Forum, pages 1771�1777,
2013.

21. T. Menouer and B. L. Cun. Adaptive n to p portfolio for solving constraint programming
problems on top of the parallel bobpp framework. In 2014 IEEE 28th International
Symposium on Parallel and Distributed Processing Workshops and PhD Forum, 2014.

20 Tarek Menouer et al.

22. L. Michel, A. See, and P. Hentenryck. Parallelizing constraint programs transparently.
In C. Bessière, editor, Principles and Practice of Constraint Programming � CP 2007,
volume 4741 of Lecture Notes in Computer Science, pages 514�528. Springer Berlin
Heidelberg, 2007.

23. L. Michel, A. See, and P. V. Hentenryck. Transparent parallelization of constraint
programs on computer clusters, 2008.

24. L. Michel, A. See, and P. Van Hentenryck. Distributed constraint-based local search. In
F. Benhamou, editor, Principles and Practice of Constraint Programming - CP 2006,
volume 4204 of Lecture Notes in Computer Science, pages 344�358. Springer Berlin
Heidelberg, 2006.

25. L. Michel, A. See, and P. Van Hentenryck. Transparent parallelization of constraint
programming. INFORMS JOURNAL ON COMPUTING, 21(3):363�382, 2009.

26. Minizinc challenge
http://www.minizinc.org/challenge.html. Accessed: 14-04-2014.

27. Minizinc challenge
http://www.minizinc.org/challenge2012/challenge.html, 2012. Accessed: 14-04-
2014.

28. NICTA. Speci�cation of zinc and minizinc. Technical report, Victoria Research Lab,
Melbourne, Australia, 2011.

29. Numberjack solver
http://numberjack.ucc.ie/, 2013. Accessed: 14-04-2014.

30. P. M. Pardalos. Parallel Processing of Discrete Problems. Springer-Verlag, volume 106
of the ima volumes in mathematics and its applications edition, 1999.

31. V. Pedro and S. Abreu. Distributed work stealing for constraint solving. CoRR,
abs/1009.3800, 2010.

32. L. Perron. Search procedures and parallelism in constraint programming. Principles
and Practices of Constraint Programming, 1999.

33. I. P.Gent, C. Je�erson, I. Miguel, N. C. Moore, P. Nightingale, P. Prosser, and
C. Unsworth. A preliminary review of literature on parallel constraint solving. Proceed-
ings PMCS'11 Workshop on Parallel Methods for Constraint Solving, 2011.

34. M. R. P.M. Pardalos and K. Ramakrishnan. Parallel Processing of Discrete Optimiza-
tion Problems. American Mathematical Society, dimacs series vol. 22 edition, 1995.

35. C. C. Rolf. Parallelism in Constraint Programming. PhD thesis, Department of Com-
puter Science, Lund University, Oct 2011.

36. J.-C. Régin, M. Rezgui, and A. Malapert. Embarrassingly parallel search. In 19th
International Conference CP 2013 Uppsala Sweden, 2013.

37. C. Schulte. Parallel search made simple. In University of Singapore, pages 41�57, 2000.
38. C. Schulte, G. Tack, and M. Z. Lagerkvist. Modeling and Programming with Gecode.
39. O. V. Shylo, T. Middelkoop, and P. M. Pardalos. Restart strategies in optimization:

parallel and serial cases. Parallel Computing, 37(1):60 � 68, 2011.
40. C. R. Theodor Crainic, Bertrand Le Cun. Parallel Branch and Bound Algorithms,

chapter 1, pages 1�28. John Wiley and Sons, USA, 2006.
41. N. van Omme, L. Perron, and V. Furnon. Or-tools. Technical report, Google, 2012.
42. P. Vander-Swalmen, G. Dequen, and M. Krajecki. Designing a parallel collaborative

sat solver. In 17th International Conference on Parallel and Distributed Processing
Techniques and Applications, USA, 2011. CSREA Press.

43. F. Xie and A. Davenport. Solving scheduling problems using parallel message-passing
based constraint programming. In Proceedings of the Workshop on Constraint Satisfac-
tion Techniques for Planning and Scheduling Problems COPLAS, pages 53�58, 2009.

44. M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint
satisfaction problem: Formalization and algorithms. IEEE Transactions on Knowledge
and Data Engineering, 10:673�685, 1998.

45. X. Yun and S. L. Epstein. A hybrid paradigm for adaptive parallel search. In CP, pages
720�734, 2012.

