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Résumé

Many real-life Constraint Satisfaction Problems (CSPs) involve some
constraints similar to the alldifferent constraints. These constraints are
called constraints of difference. They are defined on a subset of variables
by a set of tuples for which the values occuring in the same tuple are all
different. In this paper, a new filtering algorithm for these constraints is
presented. It achieves the generalized arc-consistency condition for these
non-binary constraints. It is based on matching theory and its complexity
is low. In fact, for a constraint defined on a subset of p variables having
domains of cardinality at most d, its space complexity is O(pd) and its
time complexity is O(p2 d2). This filtering algorithm has been successfully
used in the system RESYN [Vismara et al., 1992], to solve the subgraph
isomorphism problem.

1 Introduction

The constraint satisfaction problems (CSPs) form a simple formal frame to rep-
resent and solve some problems in artificial intelligence. The problem of the exis-
tence of solutions in a CSP 1s NP-complete. Therefore, some methods have been
developed to simplify the CSP before or during the search for solutions. The
consistency techniques are the most frequently used. Several algorithms achiev-
ing arc-consistency have been proposed for binary CSPs [Mackworth, 1977;
Mohr and Henderson, 1986; Bessiére and Cordier, 1993; Bessiére, 1994] and for
n-ary CSPs [Mohr and Masini, 1988a]. Only limited works have been carried
out on the semantics of constraints : [Mohr and Masini, 1988b] have described
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an improvement of the algorithm AC-4 for special constraints introduced by a
vision problem, [Van Hentenryck et al., 1992] have studied monotonic and func-
tional binary constraints. In this work, we are interested in a special case of
n-ary constraints : the constraints of difference, for which we propose a filtering
algorithm.

A constraint is called constraint of difference if 1t is defined on a subset of
variables by a set of tuples for which the values occuring in the same tuple are
all different. They are present in many real-life problems.

These constraints can be represented as n-ary constraints and filtered by the
generalized arc-consistency algorithm GAC4 [Mohr and Masini, 1988a]. This
filtering efficiently reduces the domains but its complexity can be expensive. In
fact, it depends on the length and the number of all admissible tuples. Let us
consider a constraint of difference defined on p variables, which take their values
in a set of cardinality d. Thus, the number of admissible tuples corresponds to
the number of permutations of p elements selected from d elements without
repetition : de = ﬁ. Therefore some constraint resolution systems, like
CHIP [Van Hentenryck, 1989], represent these n-ary constraints by sets of binary
constraints. In this case, a binary constraint of difference is built for each pair
of variables belonging to the same constraint of difference. But the pruning
performance of arc-consistency, for these constraints is poor. In fact, for a
binary alldifferent constraint between two variables ¢ and j, arc-consistency
removes a value from domain of ¢ only when the domain of j is reduced to a
single value. Let us suppose we have a CSP with 3 variables 1, @2, 3 and one
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Figure 1:

constraint of difference between these variables (see figure 1). The domains of
variables are Dy = {a,b}, Dy = {a,b} and D3 = {a,b,c}. The GAC4 filtering
with the constraint of difference represented by a 3-ary constraint, removes the
values @ and b from the domain of 3, while arc-consistency with the constraint
of difference represented by binary constraints of difference, does not delete any
value.

In this paper we present an efficient way of implementing the generalized



arc-consistency condition for the constraints of difference, in order to benefit
from its pruning performances. Its space complexity is in O(pd) and its time
complexity is in O(p?d?).

The rest of the paper is organized as follows. Section 2 gives some pre-
liminaries on constraint satisfaction problems and matching, and proposes a
restricted definition of arc-consistency, which concerns only the constraints of
difference : the diff-arc-consistency. Section 3 presents a new condition to en-
sure the diff-arc-consistency in CSPs having constraints of difference. In section
4 we propose an efficient implementation to achieve this condition and analyse
its complexity. In section 5, we show its performance and its interest with an
example. A conclusion is given in section 6.

2 Preliminaries

A finite CSP (Constraint Satisfaction Problem) P = (X, D, ) is defined as a set
of n wariables X = {a1,...,x,}, a set of finite domains D = {D, ..., D,,} where
D; is the set of possible values for variable ¢ and a set of constraints between
variables C = {C,Cy, ..., Cpn}. A constraint C; is defined on a set of variables
(%i,,...,x;;) by a subset of the cartesian product D;, x ... x D;,. A solution is
an assignment of value to all variables which satisfies all the constraints. We
will denote by :

o D(X") the union of domains of variablesof X’ C X (i.e D(X') = Ujex' D).

« X¢ the set of variables on which a constraint C' 1s defined.

. p the arity of a constraint C' : p = |X¢|.

« d the maximal cardinality of domains.

A value a; in the domain of a variable z; is consistent with a given n-ary
constraint if there exists values for all the other variables in the constraint such
that these values with a; fogether simultaneously satisfy the constraint. More
generally, arc-consistency for n-ary CSPs or the generalized arc-consistency is

defined as follows [Mohr and Masini, 1988a):

Definition 1 A CSP P = (X,D,(C) is arc-consistent iff : Vo; € X Va; €
D;,VC € C constraining x; Vu;, ..., xx € Xc,3a;, ..., ap such that Ca;, ..., a;, ..., ap)
holds.

Definition 2 Given a CSPP = (X, D,C), a constraint C is called constraint
of difference if it is defined on a subset of variables X¢ = {a,,...,x;,} by a
set of tuples, denoted by tuples(C) such that : tuples(C) = Dy, x ... x D;, \
{(dl, ,dk) € Dil X oo X Dik s.t.EIu,v | dy, = dv}

From the previous definition, we propose a special arc-consistency which con-
cerns only the constraints of difference :



Definition 3 A CSP P = (X,D,C) is diff-arc-consistent iff all of its con-
straints of difference are arc-consistent.

Definition 4 Given a constraint of difference C, the bipartite graph GV (C) =
(Xe,D(X¢), E) where (z;,a) € E iff a € D; is called value graph of C.

Figure 2 gives an example of a constraint of difference and its value graph.

X={x1,x2,x3,x4,x5,x6}
Dx1={1,2}

Dx2={2,3}

Dx3={1,3}

Dx4={2,4}
Dx5={3,4,5,6}
Dx6={6,7}

Figure 2: A constraint of difference defined on a set X and its value graph

Definition 5 A subset of edges in a graph G s called matching if no two
edges have a vertex in common. A matching of maximum cardinality is called
a maximum matching. A matching M covers a set X if every verter in
X 1s an endpoint of an edge in M.

Note that a matching which covers X in a bipartite graph G = (X,Y, F) is a
maximum matching.

From the definition of a matching and the value graph we present, in the
next section, a new necessary condition to ensure the diff-arc-consistency in
CSPs having constraints of difference.

3 A new condition for CSPs having constraints
of difference

The following theorem establishes a link between the diff-arc-consistency and
the matching notion in the value graph of the constraints of difference.

Theorem 1 Given ¢ CSP P = (X,D,C). P is diff-arc-consistent iff for each
constraint of difference C' of C every edge in GV(C') belongs to a matching which
covers X¢ in GV(C).



proof

= : Let us consider a constraint of difference C' and GV(C') its value graph.
From each admissible tuple of (', a set of pairs can be built. A pair consists of a
variable and its assigned value in the tuple. The set of pairs contains a pair for
each variable. This set corresponds to a set of edges, denoted by A in GV(C).
Since P is diff-arc-consistent, the values in each tuple are all different. Thus,
two edges of A cannot have a vertex in common and A is a matching which
covers X¢. Moreover, each value of each variable in the constraint belongs to
at least one tuple. So, each edge of GV(C') belongs to a matching which covers
Xe.

<=: Let us consider a variable x; and a value a of its domain. For each constraint
of difference ', the pair (2;,a) belongs to a matching which covers X¢ in
GV(C). Since in a matching no two edges have a vertex in common, there
exists values for all the other variables in the constraint such that these values
together simultaneously satisfy the constraint. So P 1s diff-arc-consistent. O

The use of matching theory is interesting because [Hopcroft and Karp, 1973]
have shown how to compute a matching which covers X in a bipartite graph
G = (X,Y, E), with m edges, ! in time O(y/|X|m).

This theorem gives us an efficient way to represent the constraint of difference
in a CSP. In fact, a constraint of difference can be represent only by its value
graph, with a space complexity in O(pd). Tt also allows us to define a basic
algorithm (algorithm 1) to filter the domains of variables of the set on which
one constraint of difference is defined. This algorithm builds the value graph of
the constraint of difference and computes a matching which covers X in order
to delete every edge which belongs to no matching covering X¢. Figure 3 gives
an application of this filtering.

Algorithm 1: DIFF-INITIALIZATION(C)

% returns false if there is no solution, otherwise true

% the function COMPUTEMAXIMUMMATCHING((G') computes a maximum matching
in the graph G

begin
1 | Build G = (X¢, D(Xc), E)
2 M(G) — CoMPUTEMAXIMUMMATCHING(G)

if |[M(G)| < |X¢| then return false
3 REMOVEEDGESFROMG (G, M (G))
return true
end

The complexity of step 1 is O(d|X¢| + | Xc| + |D(X¢)|). Step 2 costs
O(d|Xclv/|X¢|). And we now show that it is possible to compute step 3 in linear
time. So the complexity for one constraint of difference will be O(d|X¢|\/|Xc|).

1[Alt et al., 1991] give an implementation of Hopcroft and Karp’s algorithm which runs in

time O(|X|1*/mlog|X|). For dense graph this is an improvement by a factor of 4/log|X]|.



4 Deletion of every edge which belongs to no
matching which covers X

In order to simplify the notation, we consider a bipartite graph G = (X,Y, F)
rather than the bipartite graph G = (X¢, D(X¢), E), and a matching M which
covers X in GG. In order to understand how we can delete every edge which

Figure 3: A value graph before and after the filtering.

belongs to no matching, we present a few definitions about matching theory. For
more information the reader can consult [Berge, 1970] or [Lovéasz and Plummer,

1986].

Definition 6 Let M be a matching, an edge in M is a matching edge; every
edge not in M 1s free. A verter is matched if it is incident to a matching edge
and free otherwise. An alternating path or cycle is a simple path or cycle
whose edges are alternately matching and free. The length of an alternating
path or cycle is the number of edges it contains. An edge which belongs to every
mazimum maiching is vital.

Figure 3 gives an example of a matching which covers X in a bipartite graph.
The bold edges are the matching edges. Vertex 7 is free. The path (7, 26,6, 25,5)
is an alternating path which begins at a free vertex. The cycle (1, 23,3, 22,2, 21, 1)
is an alternating cycle. The edge (x4,4) is vital.

Property 1 (Berge 1970) An edge belongs to some of but not all mazimum
matchings, iff, for an arbitrary maximum matching M, 1t belongs to either an
even alternating path which begins at a free vertexr, or an even alternating cycle.

From this property we can find for an arbitrary matching M which covers X,
every edge which belongs to no matching covering X . There are the edges which
belong to neither M (there are not vital), nor an even alternating path which
begins at a free vertex, nor an even alternating cycle.



Proposition 1 Given a bipartite graph G = (X,Y, E) with a matching M
which covers X and the graph Go = (X,Y, Succ), obtained from G by orienting
edges with the function :
Ve € X @ Suce(z) ={yeY /(x,y) € M}
Vy€eY :Suce(y) ={e e X /(z,y) € E— M}
we have the two following properties :
vy Euery directed cycle of Go corresponds to an even alternating cycle of
G, and conversely.
2y Bvery directed simple path of Go, which begins at a free vertex cor-
responds to an even alternating path of G which begins at a free vertex, and
conversely.

proof

If we ignore the parity, it is obvious that the proposition is true. In the first
case, since (G is bipartite it does not have any odd cycle. In the second case,
we must show every directed simple path of G which begins at a free vertex
to corresponds to an even alternating path of G which begins at a free vertex.
M is a matching which covers X, so there is no free vertex in X. Since G is
bipartite and since every path begins at a free vertex, in Y, every odd directed
simple path ends with a vertex in X. From this vertex, we can always find a
vertex in Y which does not belong to the path, because every vertex in X has
one successor and because a vertex in Y has one predecessor. Therefore from
an odd directed simple path we can always build an even directed simple path.0

From this proposition we produce a linear algorithm (algorithm 2), that
deletes every edge which does not belong to any matching which covers X.

Step 2 finds all edges belonging to the directed simple paths of G, which
begins at a free vertex. Moreover, it finds some edges belonging to the directed
cycles of Go. Step 3 computes the strongly connected component of G, because
an edge joining two vertices in the same strongly connected component belongs
to a directed cycle and conversely. These edges belong to an even alternating
cycle of G (cf point 1 of proposition 1). After this step the set A of all edges
belonging to some but not all matchings covering X are known. The set RE
of edges to remove from G is: RE = E — (AU M). This is done by step
4. The algorithm complexity is the same as the search for strongly connected
components[Tarjan, 1972] , i.e O(m+n) for a graph with m edges and n vertices.

We have shown how for one constraint of difference C every edge which
belongs to no matching which covers X can be deleted. But a variable can be
constrained by several constraints and it is necessary to propagate the deletions.
In fact, let us consider #; a variable of X, #; can be constrained by several
constraints. Thus, a value of D; can be deleted for reasons independent from C'.
This deletion involves the removal of one edge from GV(C). So, it is necessary
to study the consequences of this modification of the GV (C) structure.



Algorithm 2: REMOVEEDGESFROMG(G, M (G))
% RE is the set of edges removed from G.

% M (G) is a matching of G which covers X

% The function returns RE

begin
1 Mark all directed edges in Go as “unused”.
Set RE to 0.
2 Perform a breadth-first search starting from
free vertices, and mark all traversed edges as “used”.
3 Compute the strongly connected components of Go.

Mark as “used” any directed edge that joins two
vertices in the same strongly connected component.
4 for each directed edge de marked as “unused” do
set e to the corresponding edge of de

if e € M(G) then mark e as “vital”

else

L RE — RE U {e}

remove e from G

return RFE
end

5 Propagation of deletions

The deletion of values for one constraint of difference can involve some modifi-
cations for the other constraints. And for the other constraints of difference we
can do better than repeat the first algorithm by using the fact that before the
deletion, a matching which covers X is known.

The propagation algorithm we propose has two sets as parameters. The
first one represents the set of edges to remove from the bipartite graph, and the
second the set of edges that will be deleted by the filtering. The algorithm needs
a function, denoted by MATCHING COVERING X (G, M1, M3), which computes a
matching Ms, which covers X, from a matching Ay which is not maximum. It
returns true if M, exists and false otherwise. The new filtering is represented
by algorithm 3.

It is divided into three parts. First, it removes edges from the bipartite
graph. Second, it eventually computes a new matching which covers X. Third,
it deletes the edges which does not belongs to any matching covering X¢. The
algorithm returns false if F' R contains a vital edge or if there does not exist a
matching which covers X¢.

Now, let us compute its complexity. Let m be the number of edges of G, and
n be the number of vertices. Let us suppose that we must remove k edges from
G (JER| = k). The complexity of 1 is in O(k). Step 2 involves, in the worst
case, the computation of a matching covering X¢ from a matching of cardinality
|M — k|. This computation has cost O(v/k m) (see theorem 3 of [Hopcroft and
Karp, 1973]). The complexity of step 3 is in O(m).



Algorithm 3: DIFF-PROPAGATION(G, M (G),ER,RE)
% the function returns false if there is no solution
% G is a value graph
% M(G) is a matching which covers X¢
% ER is the set of edges to remove from G
% RE is the set of edges that will be deleted by the filtering
begin
compute M atching — false
1 for each e € FR do
if e € M(G) then
M(G) — M(G) — {e}
if e i1s marked as “vital” then return false
else compute Matching «— true

| remove ¢ from G

2 if compute M atching then
if = MATCHINGCOVERINGX (G, M (G),M') then
| return false

else
| MGy —m

3 RE — REMOVEEDGESFROMG (G, M (G))
return true
end

In the worst case, the edges of (G can be deleted one by one. Then the previous
function will be called m times. So the global complexity is in O(m?). If
p = |X¢| and d is the maximum cardinality of domains of variables of X, then
the complexity is in O(p?d?) for one constraint of difference.

6 An example : the zebra problem

1. There are five houses, each of a different color and inhabited by men of dif-
ferent nationalities, with differents pets, drinks and cigarettes.

. The Englishman lives in the red house.

. The Spaniard owns a dog.

. Coffee is drunk in the green house.

. The Ukrainian drinks tea.

. The green house is immediately to the right of the ivory house.

. The Old-Gold smoker owns snails.

. Kools are being smoked in the yellow house.

9. Milk is drunk in the middle house.

10. The Norwegian lives in the first house on the left.

11. The Chesterfield smoker lives next to the fox owner.

12. Kools are smoked in the house next to the house where the horse is kept.

0 =1 O O b= W N



13. The Lucky-Strike smoker drinks orange juice.

14. The Japanese smokes Parliament.

15. The Norwegian lives next to the blue house.

The query is : Who drinks water and who owns the zebra 7

This problem can be represented as a constraint network involving 25 vari-
ables, one for each of the five colors, drinks, nationalities, cigarettes and pets :

Cired |Bjcoffee |N; Englishmanﬂ“l 0Old-Gold A1 dog
C5 green (Bj tea N> Spaniard  [T5 Chesterfield |A5 snails
Cyivory |Bamilk |N3Ukranian [I3 Kools As fox
Cy yellow|B4 orange|Ny Norwegian |1y Lucky—Strike|A4 horse
Cs blue |Bgs water |Ny Japanese [l Parliament |A5 zebra

Each of the variables has domain values {1,2,3 4,5}, each number corre-
sponding to a house position (e.g. assigning the value 2 to the variable horse
means that the horse owner lives in the second house) [Dechter, 1990]. The
assertions 2 to 15 are translated into unary and binary constraints. In addition,
there are three ways of representing the first assertion which means that the
variables in the same cluster must take different values :

1. A binary constraint is built between any pair of variables of the same
cluster ensuring that they are not assigned the same value. In this case
we have a binary CSP.

2. Five b-ary constraints of difference are built (one for each of the clusters).
And the CSP is not binary.

3. The five b-ary constraints of difference are represented by their value
graphs. The space complexity of one constraint is in O(pd).

The first representation is generally used to solve the problem [Dechter, 1990;
Bessiere and Cordier, 1993]. From these three representations we can study the
different results obtained from arc-consistency. They are given in figures 4 and
5. The constraints corresponding to the assertions 2 to 15 are represented in
extension. The constraints of difference among the variables of each cluster are
omitted for clarity.

For the first representation, the result of the filtering by arc-consistency is
given in figure 4.

For the second representation, the filtering algorithm employed is the gen-
eralized arc-consistency. Figure 5 shows the new results. It has pruned more
values that the previous one.

For the third representation, the filtering algorithm employed is arc-consistency
for the binary constraints combined with the new filtering for the constraints of
difference. The obtained results are the same as with the second method.

10
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Figure 4:

Let us denote by a the number of binary constraints corresponding to the
assertions 2 to 15, p the size of a cluster, ¢ the number of clusters, d the number
of values in a domain and O(ed?) the complexity for arc-consistency® in binary
CSPs. Let us compute the complexity for the three methods :

1. For the first representation, the number of binary constraints of difference
added is in O(ep?). So, the filtering complexity is O((a + cp?)d?).

2. In the second case, we can consider that the complexity 1s the sum of
the lengths of all admissible tuples for the five 5-ary constraints. It is in

O(pyp):

3. For the third method arc-consistency is in O(ad?) and the filtering for
the constraints of difference is in O(cp?d?). The total complexity is in
O(ad?) + O(ep?d?). Tt is equivalent to the first one.

The second filtering eliminates more values than the first one. But its complexity
is higher. The representation and the algorithm proposed in this paper give
pruning results equivalent to the second approach with the same complexity as
the first one. So we can conclude that the new filtering is good for problems
looking like the zebra problem.

2[Mohr and Masini, 1988b] reduce this complexity to O(ed) for the binary alldifferent
constraints

11
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Figure 5:

7 Conclusion

In this paper we have presented a filtering algorithm for constraints of difference
in CSPs. This algorithm can be viewed as an efficient way of implementing
the generalized arc-consistency condition for a special type of constraint : the
constraints of difference. It allows us to benefit from the pruning performance
of the previous condition with a low complexity. In fact, its space complexity is
in O(pd) and its time complexity is in O(p*d?) for one constraint defined on a
subset of p variables having domains of cardinality at most d. It has been shown
to be very efficient for the zebra problem. And it has been successfully used to
solve the subgraph isomorphism problem in the system RESYN [Vismara et al.,
1992], a computer-aided design of complex organic synthesis plan.
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