
M
 O

 N
 T

 P
 E

 L
 L

 I
 E

 R

L I R M

Laboratoire d'Informatique, deRobotique et de Micro�electronique deMontpellierUnit�e Mixte CNRS - Universit�e Montpellier II C 09928RAPPORT DE RECHERCHEA �ltering algorithm for constraints ofdi�erence in CSPsA paraitre dans les actes de AAAI-94Jean-Charles R�EGIND�ecembre 1993 R.R.LIRMM 93-068161, Rue Ada - 34392 Montpellier Cedex 5 - FranceT�el: (33) 67 41 85 85 - Fax: (33) 67 41 85 00

A �ltering algorithm for constraints of di�erencein CSPs �Jean-Charles R�EGINGDR 1093 CNRSLIRMM UMR 9928 Universit�e Montpellier II / CNRS161, rue Ada { 34392 Montpellier C�edex 5 { Francee-mail : regin@lirmm.frR�esum�eMany real-life Constraint Satisfaction Problems (CSPs) involve someconstraints similar to the alldi�erent constraints. These constraints arecalled constraints of di�erence. They are de�ned on a subset of variablesby a set of tuples for which the values occuring in the same tuple are alldi�erent. In this paper, a new �ltering algorithm for these constraints ispresented. It achieves the generalized arc-consistency condition for thesenon-binary constraints. It is based on matching theory and its complexityis low. In fact, for a constraint de�ned on a subset of p variables havingdomains of cardinality at most d, its space complexity is O(pd) and itstime complexity is O(p2d2). This �ltering algorithm has been successfullyused in the system RESYN [Vismara et al., 1992], to solve the subgraphisomorphism problem.1 IntroductionThe constraint satisfaction problems (CSPs) form a simple formal frame to rep-resent and solve some problems in arti�cial intelligence. The problem of the exis-tence of solutions in a CSP is NP-complete. Therefore, some methods have beendeveloped to simplify the CSP before or during the search for solutions. Theconsistency techniques are the most frequently used. Several algorithms achiev-ing arc-consistency have been proposed for binary CSPs [Mackworth, 1977;Mohr and Henderson, 1986; Bessi�ere and Cordier, 1993; Bessi�ere, 1994] and forn-ary CSPs [Mohr and Masini, 1988a]. Only limited works have been carriedout on the semantics of constraints : [Mohr and Masini, 1988b] have described�This work was supported by SANOFI-CHIMIE1

an improvement of the algorithm AC-4 for special constraints introduced by avision problem, [Van Hentenryck et al., 1992] have studied monotonic and func-tional binary constraints. In this work, we are interested in a special case ofn-ary constraints : the constraints of di�erence, for which we propose a �lteringalgorithm.A constraint is called constraint of di�erence if it is de�ned on a subset ofvariables by a set of tuples for which the values occuring in the same tuple areall di�erent. They are present in many real-life problems.These constraints can be represented as n-ary constraints and �ltered by thegeneralized arc-consistency algorithm GAC4 [Mohr and Masini, 1988a]. This�ltering e�ciently reduces the domains but its complexity can be expensive. Infact, it depends on the length and the number of all admissible tuples. Let usconsider a constraint of di�erence de�ned on p variables, which take their valuesin a set of cardinality d. Thus, the number of admissible tuples corresponds tothe number of permutations of p elements selected from d elements withoutrepetition : dPp = d!(d�p)! . Therefore some constraint resolution systems, likeCHIP [Van Hentenryck, 1989], represent these n-ary constraints by sets of binaryconstraints. In this case, a binary constraint of di�erence is built for each pairof variables belonging to the same constraint of di�erence. But the pruningperformance of arc-consistency, for these constraints is poor. In fact, for abinary alldi�erent constraint between two variables i and j, arc-consistencyremoves a value from domain of i only when the domain of j is reduced to asingle value. Let us suppose we have a CSP with 3 variables x1, x2, x3 and oneRepresentation by3-ary constraint Representation bybinary constraintsof di�erencea b a b ca b ca b a ba bx1x2 x3 x2 x1 x3Figure 1:constraint of di�erence between these variables (see �gure 1). The domains ofvariables are D1 = fa; bg, D2 = fa; bg and D3 = fa; b; cg. The GAC4 �lteringwith the constraint of di�erence represented by a 3-ary constraint, removes thevalues a and b from the domain of x3, while arc-consistency with the constraintof di�erence represented by binary constraints of di�erence, does not delete anyvalue.In this paper we present an e�cient way of implementing the generalized2

arc-consistency condition for the constraints of di�erence, in order to bene�tfrom its pruning performances. Its space complexity is in O(pd) and its timecomplexity is in O(p2d2).The rest of the paper is organized as follows. Section 2 gives some pre-liminaries on constraint satisfaction problems and matching, and proposes arestricted de�nition of arc-consistency, which concerns only the constraints ofdi�erence : the di�-arc-consistency. Section 3 presents a new condition to en-sure the di�-arc-consistency in CSPs having constraints of di�erence. In section4 we propose an e�cient implementation to achieve this condition and analyseits complexity. In section 5, we show its performance and its interest with anexample. A conclusion is given in section 6.2 PreliminariesA �nite CSP (Constraint Satisfaction Problem) P = (X;D; C) is de�ned as a setof n variables X = fx1; :::; xng, a set of �nite domains D = fD1; :::; Dng whereDi is the set of possible values for variable i and a set of constraints betweenvariables C = fC1; C2; :::; Cmg. A constraint Ci is de�ned on a set of variables(xi1; :::; xij) by a subset of the cartesian product Di1 � :::� Dij . A solution isan assignment of value to all variables which satis�es all the constraints. Wewill denote by :� D(X 0) the union of domains of variables ofX 0 � X (i.eD(X 0) = [i2X0Di).� XC the set of variables on which a constraint C is de�ned.� p the arity of a constraint C : p = jXCj.� d the maximal cardinality of domains.A value ai in the domain of a variable xi is consistent with a given n-aryconstraint if there exists values for all the other variables in the constraint suchthat these values with ai together simultaneously satisfy the constraint. Moregenerally, arc-consistency for n-ary CSPs or the generalized arc-consistency isde�ned as follows [Mohr and Masini, 1988a]:De�nition 1 A CSP P = (X;D; C) is arc-consistent i� : 8xi 2 X; 8ai 2Di; 8C 2 C constraining xi; 8xj; :::; xk 2 XC ; 9aj; :::; ak such that C(aj ; :::; ai; :::; ak)holds.De�nition 2 Given a CSP P = (X;D; C), a constraint C is called constraintof di�erence if it is de�ned on a subset of variables XC = fxi1; :::; xikg by aset of tuples, denoted by tuples(C) such that : tuples(C) = Di1 � :::� Dik nf(d1; :::; dk) 2 Di1 � :::�Dik s:t: 9u; v j du = dvgFrom the previous de�nition, we propose a special arc-consistency which con-cerns only the constraints of di�erence :3

De�nition 3 A CSP P = (X;D; C) is di�-arc-consistent i� all of its con-straints of di�erence are arc-consistent.De�nition 4 Given a constraint of di�erence C, the bipartite graph GV (C) =(XC ; D(XC); E) where (xi; a) 2 E i� a 2 Di is called value graph of C.Figure 2 gives an example of a constraint of di�erence and its value graph.Dx1=f1,2gDx2=f2,3gDx3=f1,3gDx4=f2,4gDx5=f3,4,5,6gDx6=f6,7g x1x2x3x4x5x6 1234567X=fx1,x2,x3,x4,x5,x6g
Figure 2: A constraint of di�erence de�ned on a set X and its value graphDe�nition 5 A subset of edges in a graph G is called matching if no twoedges have a vertex in common. A matching of maximum cardinality is calleda maximum matching. A matching M covers a set X if every vertex inX is an endpoint of an edge in M .Note that a matching which covers X in a bipartite graph G = (X;Y;E) is amaximummatching.From the de�nition of a matching and the value graph we present, in thenext section, a new necessary condition to ensure the di�-arc-consistency inCSPs having constraints of di�erence.3 A new condition for CSPs having constraintsof di�erenceThe following theorem establishes a link between the di�-arc-consistency andthe matching notion in the value graph of the constraints of di�erence.Theorem 1 Given a CSP P = (X;D; C). P is di�-arc-consistent i� for eachconstraint of di�erence C of C every edge in GV (C) belongs to a matching whichcovers XC in GV (C). 4

proof) : Let us consider a constraint of di�erence C and GV (C) its value graph.From each admissible tuple of C, a set of pairs can be built. A pair consists of avariable and its assigned value in the tuple. The set of pairs contains a pair foreach variable. This set corresponds to a set of edges, denoted by A in GV (C).Since P is di�-arc-consistent, the values in each tuple are all di�erent. Thus,two edges of A cannot have a vertex in common and A is a matching whichcovers XC . Moreover, each value of each variable in the constraint belongs toat least one tuple. So, each edge of GV (C) belongs to a matching which coversXC .(: Let us consider a variable xi and a value a of its domain. For each constraintof di�erence C, the pair (xi; a) belongs to a matching which covers XC inGV (C). Since in a matching no two edges have a vertex in common, thereexists values for all the other variables in the constraint such that these valuestogether simultaneously satisfy the constraint. So P is di�-arc-consistent. 2The use of matching theory is interesting because [Hopcroft and Karp, 1973]have shown how to compute a matching which covers X in a bipartite graphG = (X;Y;E), with m edges, 1 in time O(pjXjm).This theorem gives us an e�cient way to represent the constraint of di�erencein a CSP. In fact, a constraint of di�erence can be represent only by its valuegraph, with a space complexity in O(pd). It also allows us to de�ne a basicalgorithm (algorithm 1) to �lter the domains of variables of the set on whichone constraint of di�erence is de�ned. This algorithm builds the value graph ofthe constraint of di�erence and computes a matching which covers XC in orderto delete every edge which belongs to no matching covering XC . Figure 3 givesan application of this �ltering.Algorithm 1: Diff-Initialization(C)% returns false if there is no solution, otherwise true% the function ComputeMaximumMatching(G) computes a maximum matchingin the graph Gbegin1 Build G = (XC ;D(XC); E)2 M(G) ComputeMaximumMatching(G)if jM(G)j < jXC j then return false3 RemoveEdgesFromG(G,M(G))return trueendThe complexity of step 1 is O(djXCj + jXC j + jD(XC)j). Step 2 costsO(djXCjpjXC j). And we now show that it is possible to compute step 3 in lineartime. So the complexity for one constraint of di�erence will be O(djXC jpjXCj).1[Alt et al., 1991] give an implementation of Hopcroft and Karp's algorithm which runs intime O(jXj1:5pm log jXj). For dense graph this is an improvement by a factor ofplog jXj.5

4 Deletion of every edge which belongs to nomatching which covers XIn order to simplify the notation, we consider a bipartite graph G = (X;Y;E)rather than the bipartite graph G = (XC ; D(XC); E), and a matchingM whichcovers X in G. In order to understand how we can delete every edge whichx1x2x3x4x5x6 1234567 x1x2x3x4x5x6 1234567Figure 3: A value graph before and after the �ltering.belongs to no matching, we present a few de�nitions about matching theory. Formore information the reader can consult [Berge, 1970] or [Lov�asz and Plummer,1986].De�nition 6 Let M be a matching, an edge in M is a matching edge; everyedge not in M is free. A vertex is matched if it is incident to a matching edgeand free otherwise. An alternating path or cycle is a simple path or cyclewhose edges are alternately matching and free. The length of an alternatingpath or cycle is the number of edges it contains. An edge which belongs to everymaximum matching is vital.Figure 3 gives an example of a matching which covers X in a bipartite graph.The bold edges are the matching edges. Vertex 7 is free. The path (7; x6; 6; x5; 5)is an alternating path which begins at a free vertex. The cycle (1; x3; 3; x2;2; x1;1)is an alternating cycle. The edge (x4; 4) is vital.Property 1 (Berge 1970) An edge belongs to some of but not all maximummatchings, i�, for an arbitrary maximum matching M , it belongs to either aneven alternating path which begins at a free vertex, or an even alternating cycle.From this property we can �nd for an arbitrary matching M which covers X,every edge which belongs to no matching covering X. There are the edges whichbelong to neither M (there are not vital), nor an even alternating path whichbegins at a free vertex, nor an even alternating cycle.6

Proposition 1 Given a bipartite graph G = (X;Y;E) with a matching Mwhich covers X and the graph GO = (X;Y; Succ), obtained from G by orientingedges with the function :8x 2 X : Succ(x) = fy 2 Y = (x; y) 2Mg8y 2 Y : Succ(y) = fx 2 X = (x; y) 2 E �Mgwe have the two following properties :1) Every directed cycle of GO corresponds to an even alternating cycle ofG, and conversely.2) Every directed simple path of GO, which begins at a free vertex cor-responds to an even alternating path of G which begins at a free vertex, andconversely.proofIf we ignore the parity, it is obvious that the proposition is true. In the �rstcase, since G is bipartite it does not have any odd cycle. In the second case,we must show every directed simple path of GO which begins at a free vertexto corresponds to an even alternating path of G which begins at a free vertex.M is a matching which covers X, so there is no free vertex in X. Since G isbipartite and since every path begins at a free vertex, in Y , every odd directedsimple path ends with a vertex in X. From this vertex, we can always �nd avertex in Y which does not belong to the path, because every vertex in X hasone successor and because a vertex in Y has one predecessor. Therefore froman odd directed simple path we can always build an even directed simple path.2From this proposition we produce a linear algorithm (algorithm 2), thatdeletes every edge which does not belong to any matching which covers X.Step 2 �nds all edges belonging to the directed simple paths of GO, whichbegins at a free vertex. Moreover, it �nds some edges belonging to the directedcycles ofGO. Step 3 computes the strongly connected component ofGO, becausean edge joining two vertices in the same strongly connected component belongsto a directed cycle and conversely. These edges belong to an even alternatingcycle of G (cf point 1 of proposition 1). After this step the set A of all edgesbelonging to some but not all matchings covering X are known. The set REof edges to remove from G is: RE = E � (A [M). This is done by step4. The algorithm complexity is the same as the search for strongly connectedcomponents[Tarjan, 1972] , i.e O(m+n) for a graph withm edges and n vertices.We have shown how for one constraint of di�erence C every edge whichbelongs to no matching which covers XC can be deleted. But a variable can beconstrained by several constraints and it is necessary to propagate the deletions.In fact, let us consider xi a variable of XC , xi can be constrained by severalconstraints. Thus, a value of Di can be deleted for reasons independent from C.This deletion involves the removal of one edge from GV (C). So, it is necessaryto study the consequences of this modi�cation of the GV (C) structure.7

Algorithm 2: RemoveEdgesFromG(G,M(G))% RE is the set of edges removed from G.% M(G) is a matching of G which covers X% The function returns REbegin1 Mark all directed edges in GO as \unused".Set RE to ;.2 Perform a breadth-�rst search starting fromfree vertices, and mark all traversed edges as \used".3 Compute the strongly connected components of GO.Mark as \used" any directed edge that joins twovertices in the same strongly connected component.4 for each directed edge de marked as \unused" doset e to the corresponding edge of deif e 2M(G) then mark e as \vital"elseRE RE [fegremove e from Greturn REend5 Propagation of deletionsThe deletion of values for one constraint of di�erence can involve some modi�-cations for the other constraints. And for the other constraints of di�erence wecan do better than repeat the �rst algorithm by using the fact that before thedeletion, a matching which covers X is known.The propagation algorithm we propose has two sets as parameters. The�rst one represents the set of edges to remove from the bipartite graph, and thesecond the set of edges that will be deleted by the �ltering. The algorithm needsa function, denoted by MatchingCoveringX(G;M1;M2), which computes amatching M2, which covers X, from a matching M1 which is not maximum. Itreturns true if M2 exists and false otherwise. The new �ltering is representedby algorithm 3.It is divided into three parts. First, it removes edges from the bipartitegraph. Second, it eventually computes a new matching which covers XC . Third,it deletes the edges which does not belongs to any matching covering XC . Thealgorithm returns false if ER contains a vital edge or if there does not exist amatching which covers XC .Now, let us compute its complexity. Let m be the number of edges of G, andn be the number of vertices. Let us suppose that we must remove k edges fromG (jERj = k). The complexity of 1 is in O(k). Step 2 involves, in the worstcase, the computation of a matching covering XC from a matching of cardinalityjM � kj. This computation has cost O(pkm) (see theorem 3 of [Hopcroft andKarp, 1973]). The complexity of step 3 is in O(m).8

Algorithm 3: Diff-Propagation(G,M(G),ER,RE)% the function returns false if there is no solution% G is a value graph% M(G) is a matching which covers XC% ER is the set of edges to remove from G% RE is the set of edges that will be deleted by the �lteringbegincomputeMatching false1 for each e 2 ER doif e 2M(G) thenM(G) M(G)� fegif e is marked as \vital" then return falseelse computeMatching trueremove e from G2 if computeMatching thenif : MatchingCoveringX(G,M(G),M 0) thenreturn falseelseM(G) M 03 RE RemoveEdgesFromG(G,M(G))return trueendIn the worst case, the edges of G can be deleted one by one. Then the previousfunction will be called m times. So the global complexity is in O(m2). Ifp = jXC j and d is the maximumcardinality of domains of variables of XC , thenthe complexity is in O(p2d2) for one constraint of di�erence.6 An example : the zebra problem1. There are �ve houses, each of a di�erent color and inhabited by men of dif-ferent nationalities, with di�erents pets, drinks and cigarettes.2. The Englishman lives in the red house.3. The Spaniard owns a dog.4. Co�ee is drunk in the green house.5. The Ukrainian drinks tea.6. The green house is immediately to the right of the ivory house.7. The Old-Gold smoker owns snails.8. Kools are being smoked in the yellow house.9. Milk is drunk in the middle house.10. The Norwegian lives in the �rst house on the left.11. The Chester�eld smoker lives next to the fox owner.12. Kools are smoked in the house next to the house where the horse is kept.9

13. The Lucky-Strike smoker drinks orange juice.14. The Japanese smokes Parliament.15. The Norwegian lives next to the blue house.The query is : Who drinks water and who owns the zebra ?This problem can be represented as a constraint network involving 25 vari-ables, one for each of the �ve colors, drinks, nationalities, cigarettes and pets :C1 red B1 co�ee N1EnglishmanT1Old-Gold A1 dogC2 green B2 tea N2 Spaniard T2Chester�eld A2 snailsC3 ivory B3milk N3Ukranian T3Kools A3 foxC4 yellowB4 orangeN4Norwegian T4 Lucky-StrikeA4 horseC5 blue B5water N5 Japanese T5Parliament A5 zebraEach of the variables has domain values f1; 2; 3; 4;5g, each number corre-sponding to a house position (e.g. assigning the value 2 to the variable horsemeans that the horse owner lives in the second house) [Dechter, 1990]. Theassertions 2 to 15 are translated into unary and binary constraints. In addition,there are three ways of representing the �rst assertion which means that thevariables in the same cluster must take di�erent values :1. A binary constraint is built between any pair of variables of the samecluster ensuring that they are not assigned the same value. In this casewe have a binary CSP.2. Five 5-ary constraints of di�erence are built (one for each of the clusters).And the CSP is not binary.3. The �ve 5-ary constraints of di�erence are represented by their valuegraphs. The space complexity of one constraint is in O(pd).The �rst representation is generally used to solve the problem [Dechter, 1990;Bessi�ere and Cordier, 1993]. From these three representations we can study thedi�erent results obtained from arc-consistency. They are given in �gures 4 and5. The constraints corresponding to the assertions 2 to 15 are represented inextension. The constraints of di�erence among the variables of each cluster areomitted for clarity.For the �rst representation, the result of the �ltering by arc-consistency isgiven in �gure 4.For the second representation, the �ltering algorithm employed is the gen-eralized arc-consistency. Figure 5 shows the new results. It has pruned morevalues that the previous one.For the third representation, the �ltering algorithm employed is arc-consistencyfor the binary constraints combined with the new �ltering for the constraints ofdi�erence. The obtained results are the same as with the second method.10

2 (=) 3 (=) 4 (=) 5 (=) 6 (-1) 7 (=) 8 (=) 9N1 C1 N2 A1 B1 C2 N3 B2 C2 C3 T1 A2 T3 C4 B33 3 2 2 4 4 2 2 4 3 1 1 1 1 34 4 3 3 5 5 4 4 5 4 2 2 3 35 5 4 4 5 5 3 3 4 45 5 4 4 5 55 510 11 (�1) 12 (�1) 13 (=) 14 (=) 15 (�1)N4 T2 A3 A4 T3 T4 B4 N5 T5 N4 C5 A5 B51 1 2 2 1 1 1 2 2 1 2 1 12 1 2 3 2 2 3 3 2 22 3 3 4 4 4 4 4 3 43 2 4 3 5 5 5 5 4 53 4 4 5 54 3 5 44 55 4 Figure 4:Let us denote by a the number of binary constraints corresponding to theassertions 2 to 15, p the size of a cluster, c the number of clusters, d the numberof values in a domain and O(ed2) the complexity for arc-consistency2 in binaryCSPs. Let us compute the complexity for the three methods :1. For the �rst representation, the number of binary constraints of di�erenceadded is in O(cp2). So, the �ltering complexity is O((a + cp2)d2).2. In the second case, we can consider that the complexity is the sum ofthe lengths of all admissible tuples for the �ve 5-ary constraints. It is inO(d!(d�p)!p).3. For the third method arc-consistency is in O(ad2) and the �ltering forthe constraints of di�erence is in O(cp2d2). The total complexity is inO(ad2) +O(cp2d2). It is equivalent to the �rst one.The second �ltering eliminates more values than the �rst one. But its complexityis higher. The representation and the algorithm proposed in this paper givepruning results equivalent to the second approach with the same complexity asthe �rst one. So we can conclude that the new �ltering is good for problemslooking like the zebra problem.2[Mohr and Masini, 1988b] reduce this complexity to O(ed) for the binary alldi�erentconstraints 11

2 (=) 3 (=) 4 (=) 5 (=) 6 (-1) 7 (=) 8 (=) 9N1 C1 N2 A1 B1 C2 N3 B2 C2 C3 T1 A2 T3 C4 B33 3 3 3 4 4 2 2 4 3 3 3 1 1 34 4 4 4 5 5 4 4 5 4 4 45 5 5 5 5 5 5 510 11 (�1) 12 (�1) 13 (=) 14 (=) 15 (�1)N4 T2 A3 A4 T3 T4 B4 N5 T5 N4 C5 A5 B51 2 1 2 1 2 2 2 2 1 2 1 12 3 4 4 3 3 33 4 5 5 4 4 44 3 5 5 54 55 4 Figure 5:7 ConclusionIn this paper we have presented a �ltering algorithm for constraints of di�erencein CSPs. This algorithm can be viewed as an e�cient way of implementingthe generalized arc-consistency condition for a special type of constraint : theconstraints of di�erence. It allows us to bene�t from the pruning performanceof the previous condition with a low complexity. In fact, its space complexity isin O(pd) and its time complexity is in O(p2d2) for one constraint de�ned on asubset of p variables having domains of cardinality at most d. It has been shownto be very e�cient for the zebra problem. And it has been successfully used tosolve the subgraph isomorphism problem in the system RESYN [Vismara et al.,1992], a computer-aided design of complex organic synthesis plan.8 AcknowledgmentsWe would like to thank particularly Christian Bessi�ere and also Marie-CatherineVilarem, Tibor K�ok�eny for their comments which helped improve this paper.Bibliographie[Alt et al., 1991] H. Alt, N. Blum, K. Melhorn, and M. Paul. Computing amaximumcardinality matching in a bipartite graph in time o(n1;5pm= logn).Information Processing Letters, 37:237{240, 1991.[Berge, 1970] C. Berge. Graphe et Hypergraphes. Dunod, Paris, 1970.[Bessi�ere and Cordier, 1993] C. Bessi�ere and M.O. Cordier. Arc-consistency andarc-consistency again. In Proceedings AAAI, pages 108{113,Washington, DC,1993. 12

[Bessi�ere, 1994] C. Bessi�ere. Arc-consistency and arc-consistency again. Arti�-cial Intelligence, 65(1):179{190, 1994.[Dechter, 1990] R. Dechter. Enhencement schemes for constraint processing: Backjumping, learning, and cutset decomposition. Arti�cial Intelligence,41:273{312, 1990.[Hopcroft and Karp, 1973] J.E. Hopcroft and R.M. Karp. n5=2 algorithm formaximummatchings in bipartite graphs. SIAM Journal of Computing, 2:225{231, 1973.[Lov�asz and Plummer, 1986] L. Lov�asz and M.D. Plummer. Matching Theory.North Holland mathematics studies 121, 1986.[Mackworth, 1977] A.K. Mackworth. Consistency in networks of relations. Ar-ti�cial Intelligence, 8:99{118, 1977.[Mohr and Henderson, 1986] R. Mohr and T.C. Henderson. Arc and path con-sistency revisited. Arti�cial Intelligence, 28:225{233, 1986.[Mohr and Masini, 1988a] R. Mohr and G. Masini. Good old discrete relax-ation. In Proceedings ECAI, pages 651{656, 1988.[Mohr and Masini, 1988b] R. Mohr and G. Masini. Running e�ciently arc con-sistency. Syntactic and Structural Pattern Recognition, F45:217{231, 1988.[Tarjan, 1972] R.E. Tarjan. Depth-�rst search and linear graph algorithms.SIAM Journal of Computing, 1:146{160, 1972.[Van Hentenryck et al., 1992] P. Van Hentenryck, Y. Deville, and C.M. Teng.A generic arc-consistency algorithm and its specializations. Arti�cial Intelli-gence, 57:291{321, 1992.[Van Hentenryck, 1989] P. Van Hentenryck. Constraint Satisfaction in LogicProgramming. M.I.T. Press, 1989.[Vismara et al., 1992] P. Vismara, J-C. R�egin, J. Quinqueton, M. Py, C. Lau-ren�co, and L. Lapied. RESYN : Un syst�eme d'aide �a la conception de plans desynth�ese en chimie organique. In Proceedings 12th International ConferenceAvignon'92, volume 1, pages 305{318, Avignon, 1992. EC2.
13

