
An O(n log n) Bound Consistency Algorithm for the
Conjunction of an alldifferent and an Inequality between a

Sum of Variables and a Constant, and its Generalization
Nicolas Beldiceanu1 and Mats Carlsson2 and Thierry Petit 3 and Jean-Charles Ŕegin4

Abstract. This paper gives anO(n log n) bound-consistency filter-
ing algorithm for the conjunctionalldifferent(V0, V1, . . . , Vn−1) ∧
f(V0)⊕ f(V1)⊕ · · · ⊕ f(Vn−1) ≤ cst , (V0, V1, . . . , Vn−1, cst ∈
N

+), where (N,⊕) is a commutative group,f is a unary func-
tion, and both⊕ andf are monotone increasing. This complexity
is equal to the complexity of the bound-consistency algorithm of the
alldifferent constraint.

1 Introduction

Since the early days of constraint programming it has been part of
the folklore to try to capture the interaction of two constraints in or-
der to perform more deduction. This was for instance done in [1]
for a linear constraint for which all variables should be assigned dis-
tinct values.5 In this context, a better evaluation of the minimum and
maximum values of a linear term was suggested, since assigning all
variables to their minimum (resp. maximum) value leads to a poor
bound which totally ignores thealldifferent constraint. More re-
cently, it has been quoted that such patterns can be directlycaptured
by a global constraint such asglobal cardinality with costs [2]
(see the Usage slot of this constraint in [3]). However using
global cardinality with costs for this purpose is not memory and
time effective (i.e., we need to introduce a cost matrix and the worst
case time complexity of the algorithm isO(n(m + n log n)) where
n is number of variables, andm the sum ofdomainsizes). Moti-
vated by these facts, this paper provides a generic bound-consistency
(i.e., a filtering algorithm ensuresbound-consistencyfor a given con-
straintC if and only if for every variableV of C there exists at least
one solution forC such thatV can be assigned to its minimum value
V (resp. maximum valueV) and every other variableU of C is as-
signed to a value in[U,U] [4]) filtering algorithm for the conjunction
alldifferent(V0, V1, . . . , Vn−1)∧f(V0)⊕f(V1)⊕· · ·⊕f(Vn−1) ≤
cst (V0, V1, . . . , Vn−1, cst ∈ N

+), where:

• Vi (0 ≤ i < n) is a variable taking its value in a given fixed
interval [Vi, Vi].

• alldifferent(V0, V1, . . . , Vn−1) is a constraint enforcing variables
V0, V1, . . . , Vn−1 to be assigned distinct integer values.

1 Mines de Nantes, France, email: Nicolas.Beldiceanu@mines-nantes.fr
2 SICS, Sweden, email: Mats.Carlsson@sics.se
3 Mines de Nantes, France, email: Thierry.Petit@mines-nantes.fr
4 3S, CNRS, University of Nice-Sophia Antipolis, email: Jean-

Charles.Regin@unice.fr
5 Note that the same problem arises also when the linear constraint is replaced

by a more general arithmetic constraint.

• (N,⊕) is a commutative group, where in addition⊕ is monotone
increasing,(∀ p, q1, q2 ∈ N

+ : q1 > q2 ⇒ p ⊕ q1 > p ⊕ q2).
⊕−1 denotes the inverse operation.

• f is a monotone increasing function(q1 > q2 ⇒ f(q1) > f(q2)).

Example 1 As an illustrative example, consider ten variables
V0, V1, . . . , V9 which respectively take integer values in intervals
[1, 8], [2, 5], [3, 4], [3, 4], [2, 5], [1, 16], [7, 12], [7, 16], [9, 16],
[12, 16]. Assume that, given these ten variables, we have the follow-
ing conjunction of constraints:

1. alldifferent(V0, V1, . . . , V9) ∧
∑9

i=0 V
2
i ≤ 500,

2. alldifferent(V0, V1, . . . , V9) ∧
∏9

i=0 Vi ≤ 4717500.

For each of these conjunctions, a bound-consistency algorithm would
respectively narrow6 the domains to:

1. V0 ∈ [1, 8], V1 ∈ [2, 5], V2 ∈ [3, 4], V3 ∈ [3, 4], V4 ∈ [2, 5], V5 ∈

[1,10], V6 ∈ [7,11], V7 ∈ [7, 11], V8 ∈ [9,11], V9 ∈ [12, 14].

2. V0 ∈ [1, 6], V1 ∈ [2, 5], V2 ∈ [3, 4], V3 ∈ [3, 4], V4 ∈ [2, 5], V5 ∈

[1,10], V6 ∈ [7, 8], V7 ∈ [7, 8], V8 ∈ [9, 9], V9 ∈ [12,13]. The
details leading to this pruning will be given in Figure 1.

The main question addressed by this paper is how such filtering can
be doneefficientlywith a genericalgorithm that is parametrized by a
binary operation⊕ and a monotone increasing functionf . Section 2
provides anO(n log n) bound-consistency filtering algorithm for
such a pattern, wheren is the number of variables. Motivated by the
common pattern of combiningalldifferent with multiple arithmetic
constraints, Section 3 introduces thealldifferent arith constraint. It
shows how to reuse and enhance the filtering algorithm introduced in
Section 2 in order to partially take into account initial holes as well
as fixed variables. Finally, Section 4 evaluatesalldifferent arith.

2 Bound Consistency for a Conjunction of an
alldifferent and a linear inequality Constraints

Assuming each variable has no holes in its domain, this section pro-
vides:

1. A priority rule for computing the minimum cost matching for the
special case where⊕ is the sum operator andf the identity func-
tion.

2. A discussion how the same priority rule can be used when(N,⊕)
is a commutative group,f is a unary function, and both⊕ andf
are monotone increasing.

3. AnO(n log n) algorithm implementing this priority rule.

6 Domain reductions are shown in bold.

4. An O(n log n) filtering algorithm that achieves
bound-consistency for a conjunction of an
alldifferent(V0, V1, . . . , Vn−1) constraint and anarithmetic in-
equalityconstraint of the form⊕i∈I,I⊆{0,1,...,n−1}f(Vi) ≤ cst .

2.1 Minimum Cost Matching

This section provides a priority rule for computing a variable-value
assignment using distinct values and minimizing the sum of all the
variables (i.e., aminimum cost matching). Values are traversed in in-
creasing order, a value being assigned to the still unassigned variable
with the smallest maximum. Groups of consecutive values that do
not belong to any variable are skipped.

Priority Rule. We consider the variable-value graphG =
((V,∪D(V)), E) whereV = {V0, . . . , Vn−1} is a set of variables,
∪D(V) the union of domains of variables inV, andE a set of edges.
An edgee belongs toE iff the three following conditions hold: (1)
one extremity ofe is a variableVi ∈ V, and (2) the other extremity
of e is a valuev ∈ ∪D(V), and (3) the valuev is in the domain ofVi.

Note that our variable-value graph is convex since each domain
consists of one single interval of consecutive values. Taking advan-
tage of convexity usually allows to get a better complexity,for in-
stance for a maximum matching in a bipartite graph; see [5].

Definition 1 (var-perfect matching) Given a variable-value graph
G = ((V,∪D(V)), E), a var-perfect matchingis a subsetM of E
of size|V| = n such that there is no pair of edges inM having an
extremity in common.

Definition 2 Given a subsetX of variablesV = {V0, . . . , Vn−1}
and an integer valueprev , we define:

• cur(X ,prev) = minv∈∪D(X)∧v>prev (v), i.e., the smallest value
in ∪D(X) greater thanprev .

• Xcur (X ,prev) = {Vi ∈ X s.t.cur(X ,prev) ∈ D(Vi)}, i.e., the
set of variables inX having valuecur(X , prev) in their domains.

• Xmax
cur (X , prev) = {Vj ∈ Xcur (X , prev) s.t. Vj =

minVi∈Xcur (Vi)}, the subset of variables inXcur (X ,prev) with
the smallest maximum value.

• Vcur (X ,prev)=Vj , Vj∈X
max
cur (X ,prev), s.t.

j=minVi∈X
max

cur (X ,prev)(i), the smallest index of the variables in
Xmax

cur (X , prev).

Notation 1 Given a subsetM ⊆ E and valuev ∈ ∪D(V), we note
v∈̇M iff v is the extremity of at least one edge inM .

Without loss of generality, the next theorem assumes that
there exists a var-perfect matching inG. Its existence can be
checked in practice by using the polynomial feasibility condition of
alldifferent (V0, V1, . . . , Vn−1).

Theorem 1 Given a variable-value graphG = ((V,∪D(V)), E)
such that there exists at least one var-perfect matching, the minimum
value of

∑

vj ∈̇M vj among all maximum matchingsM of G can be
obtained by the following inductive functionh taking three parame-
ters, (i) a set of variablesX initialized toV = {V0, . . . , Vn−1}, (ii) a
set of edgesM , initially empty, and (iii) a valueprev initialized to
min(∪D(V)) − 1:

• If X = ∅ then h(X ,M, prev) = 0.

• Otherwise:

h(X ,M, prev) = cur(X , prev) +

h(X \{Vcur (X , prev)}, M∪{(Vcur (X , prev), cur(X ,prev))},

cur(X , prev))

Proof 1 We prove by induction that (p1) the current setM is a
matching, (p2)M is such that there exists a var-perfect matching
M ′ ofG such thatM ⊆M ′ andM ′ minimizes

∑

vj ∈̇M′ vj , (p3)h
is the sum of values inM , (p4)prev is the largest value extremity of
an edge inM . Initially at stepk = 0, M = ∅ andh = 0, the four
properties p1, p2, p3 and p4 are obviously true. We now assumethat
the four properties are true for any|M | = k (k < n) and prove that
they remain true for|M | = k + 1. Before updating the parameters
of h, prev equals the largest value extremity of an edge inM . Thus,
by Definition 2,cur(X , prev) is the smallest possible value for a
variable inX greater than values that are extremities of some edges
in M : adding{(Vcur (X , prev), cur(X ,prev))} toM preserves the
fact thatM is a matching (so p1 is satisfied) and settingprev to
Cur(X, prev) satisfies p4. By construction, addingcur(X , prev) to
h leads to satisfaction of Property (p3). With respect to Property (p2),
by Definition 2 we know thatVcur (X , prev) is the variable minimiz-
ing the size of interval[cur(X , prev), (Vi)] among all the variables
Vi ∈ X such thatcur(X , prev) can be assigned toVi. Consider
the integerp ≥ 0 such thatcur(X ,prev) = Vcur (X , prev) − p. If
p = 0, all Vi’s in Xcur (X , prev) exceptVcur (X ,prev) have a max-
imum value in their domain greater thatcur(X ,prev) since there
exists at least one var-perfect matching inG. If p = 1 the existence
of a var-perfect matching inG guarantees that there is at most one
variableV ′

cur 6= Vcur such thatV ′
cur = Vcur . In this case, adding

Vcur or V ′
cur is equivalent, while adding any other variable would

lead to a contradiction with Property (p2) at the next step (in the
other case, selecting the variable with the smallest interval does not
decrease the number of possible extended matchings). This reason-
ing can be generalized by recurrence to anyp. Thus, selectingVcur

guarantees that the number of var-perfect matchingsM ′ of G such
thatM ⊆M ′ andM ′ minimizes

∑

vj ∈̇M′ vj is strictly positive. �

2.2 Validity of the Priority Rule: General Case

Given:

1. (N,⊕) a commutative group where⊕ is monotone increasing,
2. f a monotone increasing function,
3. a set of integer variablesV = {V0, V1, . . . , Vn−1} subject to

alldifferent(V0, V1, . . . , Vn−1),

a matching containing all variablesV0, V1, . . . , Vn−1 minimizing
f(V0) ⊕ f(V1) ⊕ · · · ⊕ f(Vn−1) can be obtained, when it ex-
ists, by using the priority rule introduced in Theorem 1. First note
that, given a permutationσ of {0, 1, . . . , n − 1}, since (N,⊕)
is a commutative group, we have that⊕i∈{0,1,...,n−1}f(Vi) =
⊕i∈{0,1,...,n−1}f(Vσ(i)). Now since both⊕ and f are monotone
increasing, the values minimizing⊕i∈{0,1,...,n−1}Vi also minimize
⊕i∈{0,1,...,n−1}f(Vi).

2.3 Implementing the Priority Rule

Alg. 1 provides an implementation of the priority rule describedin
Theorem 1, which achieves a time complexity ofO(n log n) by us-
ing a heap for incrementally maintaining the set of candidate vari-
ablesfor which the minimum value is less than or equal to the max-
imum of (1) the previously matched value plus one, and (2) themin-
imum value of the not yet matched variables. Variables are extracted
from this heap by increasing maximum value.

1: function min cost matching(n, V0..n−1, cst , ⊕, e⊕, f) :
int
n : number of variables of the alldifferent,
V0..n−1 : variables that must be assigned distinct values,
cst : maximum allowed minimum cost of the matching,
⊕ : aggregation operator,
e⊕ : neutral element of the aggregation operator⊕,
f : monotone increasing function applied to each vari-

able ofV0..n−1.
2: Vs0 , Vs1 , . . . , Vsn−1

← V0, V1, . . . , Vn−1 sorted by increasing
minimum value

3: h ← empty heap of indices of var. sorted by increasing maxi-
mum value of var.

4: i← 0; o⋆ ← e⊕; minval ← Vs0 − 1;
5: for j = 0 to n− 1 do
6: minval ← max(minval + 1, Vsj)

7: while i < n ∧ Vsi ≤ minval do insertsi in h; i← i+1 end
while

8: indj ← extract variable index with smallest maximum value
from h

9: o⋆ ← o⋆ ⊕ f(minval)
10: if o⋆ > cst ∨minval > Vindj

then return cst + 1 end if
11: return o⋆

Algorithm 1: return the minimum cost of the matching if it exists
and is less than or equal tocst , returncst + 1 otherwise.

2.4 Filtering Algorithm

Definition 3 GivenV a set of variables, aHall intervalis an interval
[l, u] of values such that there is a setV[l,u] ⊆ V of cardinalityu −
l + 1 whose domains are contained in[l, u].

Blocks of a Minimum Cost Matching. The bound-consistency
filtering algorithm ofalldifferent [6, 7, 8] adjusts the minimum and
maximum values of the variables ofV \ V[l,u] with respect to a Hall
interval [l, u]. Given a minimum cost matching, consisting of a se-
quence of variable-value pairs, computed byAlg. 1, and assuming the
filtering wrt. Hall intervals was already done, this section introduces
the notion of block of variables. The intuition behind is that vari-
ables of the same block are in fact equivalentwrt. the filtering related
to the arithmetic constraintf(V0)⊕ f(V1)⊕ · · · ⊕ f(Vn−1) ≤ cst .
The notion of block will permit evaluating the new cost of a mini-
mum matching under the hypothesis that a variable is assigned an-
other value, without computing from scratch a new minimum cost
matching. Before defining a block, let us first introduce somenota-
tion and let us recall the property achieved by the bound-consistency
algorithm ofalldifferent . This property will be needed to show that
our filtering algorithm reaches the fix point in one single step. Af-
ter applying bound-consistency on the variables of analldifferent

constraint, Property 1 holds:

Property 1 Given a Hall interval [l, u], for any variable whose
range intersects[l, u] without being included in[l, u], its minimum

value (resp. maximum value) is located before (resp. after)the Hall
interval.

Notation 2 Let indk (0 ≤ k < n) denote the index of thekth vari-
able selected byAlg. 1. Letvk denote the value assigned to variable
Vindk

by Alg. 1.

Definition 4 A block is a set of consecutive variable-value pairs
(Vindp , vp), . . . , (Vindq , vq) (p ≤ q) that were computed byAlg. 1
such that the three following properties are satisfied:

i) (Vindp , vp) is thebeginning of the block, that is∀i ∈ [p, q] :
Vindi

≥ vp.
ii) (Vindq , vq) is theend of the blockif all variables afterVindq

have their minimum value greater thanvq ,
iii) 6 ∃j ∈ [p+ 1, q] such that∀i ∈ [j, q] : Vindi

≥ vj .

Intuitively this definition means thati) the minimum value of the
variables matched in a blockB is greater than or equal to the min-
imum value that can be assigned to the variables of the blockB,
that ii) that the block is maximum, andiii) that there is no other in-
cluded sub-block.

Letm denote the number of blocks of the minimum cost matching
computed byAlg. 1. lowb andupb respectively denote the first and
last variables of blockb in ind0..n−1. first b and lastb respectively
denote the smallest and largest matched values of blockb.

Example 2 The sequence of (variable,value) pairs corresponding to
the minimum cost matching of the example in the introductionis
(V0, 1), (V1, 2), (V2, 3), (V3, 4), (V4, 5), (V5, 6), (V6, 7), (V7, 8),
(V8, 9), (V9, 12). The sequence is decomposed into the following
blocks:

BLOCK 0: (V0, 1), (V1, 2), (V2, 3), (V3, 4), (V4, 5), (V5, 6)
(i.e., low0 = 0, up0 = 5, first0 = 1, last0 = 6); V0 is not the
end of block0 sinceV5 = 1, but V5 is the end of block0 since
V6, V7, V8, V9 are all greater than6, the value matched toV5),

BLOCK 1: (V6, 7), (V7, 8) (i.e., low1 = 6, up1 = 7, first1 = 7,
last1 = 8),

BLOCK 2: (V8, 9) (i.e., low2 = 8, up2 = 8, first2 = 9, last2 = 9),

BLOCK 3: (V9, 12) (i.e., low3 = 9, up3 = 9, first3 = 12, last3 =
12).

Theorem 2 shows how to directly compute the cost of the mini-
mum matching under the hypothesis that we reassign a variable to a
value that is different from the one that was assigned in the original
minimum cost matching byAlg. 1.

Notation 3 Given a valuev, let nextv denote the smallest un-
matched value greater than or equal tov. Given a blockb (0 ≤
b < m) and a valuev that is not matched to a variable of blockb, let
hb(v) denote the minimum cost of the matching under the hypothesis
that a variable of blockb is assigned to valuev.

Theorem 2 Given as computed byAlg. 1: a matchingM of mini-
mum costo⋆, a variableVindi

(0 ≤ i < n) belonging to blockb,
and its matched valuevi, the minimum cost of the matching under
the assumption thatVindi

is assigned a valueui different fromvi
(assumingalldifferent has at least one solution withVindi

= ui) is:

1. Ifui is a value that belongs to the block containing variableVindi
,

the cost is left unchanged, i.e. is equal too⋆.
2. Otherwise, the new costhb(ui) is computed by first subtracting

fromo⋆ the largest matched value of blockb, and then adding the
smallest unmatched value,nextui

, greater than or equal toui,
i.e.,hb(ui) =

(

o⋆ ⊕−1 f(lastb)
)

⊕ f(nextui
).

Proof 2 The proof is done in two steps: (1) after removing variable
Vindi

(i.e., unassigning variableVindi
from valuevi, the new min-

imum cost matchingM ′ can be obtained by compressing the block
b containing valuevi in such a way that the largest value of block
b becomes unmatched (i.e., by using⊕−1 for removing fromM the
contribution oflastb), (2) after reintroducing variableVindi

and as-
signing it to valueui the new minimum cost matchingM ′′ can be
obtained by using⊕ for adding toM ′ the contribution of the small-
est unmatched value greater than or equal toui. Step (1).Let b be
the block of consecutive variable-value pairs containing valuevi. If
vi is the largest value of blockb we are done, i.e., the largest value
lastb of blockb is now unmatched. Otherwise, by Condition (iii) of
the definition of a block (see Definition 4), we know that thereexists
at least one variableVindi′

of blockb, that was matched to a value
v′i greater than valuevi, that could possibly be matched to valuevi.
So we matchVindi′

to vi and continue in a similar way reorganiz-
ing block b until the largest value of blockb becomes unmatched.
Step (2).First, assume thatui corresponds to an unmatched value
of the matching obtained at the end of Step 1 (i.e., the matching ob-
tained after unassigning variableVindi

). Then we are done, since we
can directly matchVindi

to ui. Second, assume thatui corresponds
to a matched value that belongs to a blockb′ distinct fromb. Since,
by hypothesis,alldifferent has a solution whereVindi

is assigned
valueui, and since, by hypothesis, no variable ofalldifferent has a
hole in its domain, we know that we necessarily will have to use an
unmatched value that is greater than the largest valuelastb′ of block
b′. Since we want to minimize the cost of the new matching, we take
the smallest unmatched value. �

Filtering wrt. a Maximum Cost. The filtering algorithm
consists of three phases: (1) It performs bound-consistency on
alldifferent(V0, V1, . . . , Vn−1) alone, using a standard bound-
consistency algorithm.(2) It computes the minimum costo⋆ of the
matching and fails if this cost is greater thancst . This is achieved by
usingAlg. 1. (3) Finally,Alg. 2 removes those valuesv from the do-
main of the variables of blockb (0 ≤ b < m) such thathb(v) > cst .

In order to adjust the maximum value of each variable of a
block b (0 ≤ b < m), we need to identify the largest valuev
such thathb(v) ≤ cst . We look for the largest valuev such that
(

o⋆ ⊕−1 f(lastb)
)

⊕ f(nextv) ≤ cst . By isolatingnextv we get
nextv ≤ f−1

(

cst ⊕−1
(

o⋆ ⊕−1 f(lastb)
))

. This is tantamount to
finding the largest valuev such thatnextv is less than or equal to a
given threshold and can be done in totalO(m) time over the blocks.

Example 3 Figure 1 provides the minimum cost function associated
with the last example introduced in the introduction. We usethe block
information provided in Example 2. The filteringwrt. the different
blocks is:

• For the blockb = 3 we havet =
⌊

4717500
4354560

12

⌋

= 13 (t is un-

matched) and we adjust the maximum value ofV9 tomax = 13.

• For the blockb = 2 we havet =
⌊

4717500
4354560

9

⌋

= 9 (t is unmatched)

and we adjust the maximum value ofV8 tomax = 9.

• For the blockb = 1 we havet =
⌊

4717500
4354560

8

⌋

= 8 (t is the last

matched value of block1) and we adjust the maximum values of
V6, V7 tomax = 8.

• For the blockb = 0 we havet =
⌊

4717500
4354560

6

⌋

= 6 (t is the last

matched value of block0) and we adjust the maximum values of
V0, V1, V2, V3, V4, V5 tomax = 6.

1: proceduremin cost matching filter(n, m, V0..n−1, cst , o
⋆,

⊕, f, ind0..n−1, low0..m−1, up0..m−1, first0..m−1,
last0..m−1)
n : number of variables,
m : number of blocks of the minimum cost matching,
V0..n−1 : variables that must be assigned distinct values,
cst : maximum allowed min. cost of the matching,
o⋆ : min. cost of the matching returned byAlg. 1,
⊕ : aggregation operator,
f : monotone increasing function applied to each

variable ofV0..n−1,
ind0..n−1 : variable indices in the order they are considered

by the priority rule,
low0..m−1 : first variable of a block inind0..n−1,
up0..m−1 : last variable of a block inind0..n−1,
first0..m−1 : first matched value of the variables of a block,
last0..m−1 : last matched value of the variables of a block.

2: i← m− 1 // each iteration prunes the maximum value of all variables of
blockb (0 ≤ b < m)

3: for b = m− 1 downto 0 do
4: found ← false; t← ⌊f−1

(

cst ⊕−1
(

o⋆ ⊕−1 f(lastb)
))

⌋;
5: while ¬found do
6: if (i = m− 1 ∧ t > lasti) ∨ (i > 0 ∧ last i−1 < t ∧ t <

first i) then
7: found ← true; max ← t;
8: else ifi > b ∧ last i−1 < first i − 1 ∧ t ≥ first i then
9: found ← true; max ← first i − 1;

10: else ifi = b then
11: found ← true; max ← last i;
12: else
13: i← i− 1
14: for j = lowb to upb do
15: adjust maximum ofVindj

tomax

Algorithm 2: third step for achieving bound-consistency for the con-
junction.

Theorem 3 Bound-consistency for the conjunction
alldifferent(V0, V1, . . . , Vn−1)∧f(V0)⊕f(V1)⊕· · ·⊕f(Vn−1) ≤
cst is directly obtained after applying the three phases of the filter-
ing algorithm (i.e., applying bound-consistency foralldifferent (in
O(n log n)), computing a minimum cost matching, filteringwrt. a
maximum cost) one time, inO(n log n) time complexity.

Proof 3 From Theorem 2 and Phase 3 of the algorithm, any bound
v of a variable inV0, V1, . . . , Vn−1 satisfieshb(v) ≤ cst. We prove
that these three phase are complete (i.e., we do not need to recall
any filtering algorithm). We show that filteringwrt. a maximum cost
(1) neither removes all solutions fromalldifferent , (2) nor causes the
bound-consistency filtering ofalldifferent to perform more filtering.
(1) follows from the fact thatAlg. 1 already computes a solution for
the conjunction. Now for proving (2), we distinguish three cases:

1. If filtering wrt. a maximum cost decreases the maximum value of
a variable to an unmatched value(i.e., a value that does not be-
long to any block), then no new Hall interval is created; since the
bound-consistency filtering ofalldifferent is linked to Hall inter-
vals, no further filtering can occur from such domain reductions.

2. If filtering wrt. a maximum cost decreases the maximum value of
a variable to a matched value and does not create any new Hall
interval, then again no further filtering can occur.

3. If filtering wrt. a maximum cost decreases the maximum value of
a variableV to a matched valuev and creates a new Hall interval,
then we have the following situation:V andv belong to the same
blockb, andv is its largest value; furthermore, variables of blockb
had their maximum values decreased to the largest value of block
b. We successively show that this new Hall interval cannot change
the minimum or maximum value of any variable: (i) By construc-

98VV 76VV 54VV 32VV 10V

=5

=0

=6

=1

0

0

0

0

up

low

last

first

hypothesis that a variable of
block b is assigned value v

: minimum product w.r.t. the

Vmatching
cost
minimum

o*=4354560

cost of minimum product matching: o*=1*2*3*4*5*6*7*8*9*12=4354560
B

LO
C

K
 3

B
LO

C
K

 2

B
LO

C
K

 1

B
LO

C
K

 0

Hall intervals

7741440

6773760

6289920

5322240

4838400

16 values12987654321 1514131110

<4717501
4717440

5080320

5443200

5806080

5987520

7076160

7257600

7620480

7983360

8164800

8709120

9434880

10160640

10886400

11612160

m
in

im
um

 p
ro

du
ct

 o
f t

he
 v

ar
ia

bl
es

 o
f t

he
 a

lld
iff

er
en

t

up

low

last

first first

last

low

up up

low

last

first=7

=8

=6

=7

1

1

1

1

2

2

2

2

3

3

3

3

=9

=9

=8

=8

=12

=12

=9

=9

value per

h3 (v)

h (v)2

1h (v)

h (v)0
h (v)b

maximum

block (6, 8, 9 and 13)

(4354560/12)*14

(4354560/12)*16

initial domain (in black) and filtering (in red)

]]]]

the same block

next unmatched value

maximum value in (4354560/6)*10

(4354560/6)*11

(4354560/6)*13

(4354560/6)*14

(4354560/6)*15

(4354560/6)*16

(4354560/8)*10

(4354560/8)*11

(4354560/8)*13

(4354560/8)*14

(4354560/8)*15

(4354560/8)*16

(4354560/9)*10

(4354560/9)*11

(4354560/9)*13

(4354560/9)*14

(4354560/9)*15

(4354560/9)*16

(4354560/12)*13

(4354560/12)*15

13

9

8

8

66

:7..12

:2..5

:3..4

:3..4

:2..5

:1..8

V

V

V

V

V

V

V

V

V

V :7..16

:9..16

:12..16

:1..160

1

2

3

4

5

6

7

8

9

Figure 1. Minimum cost functionshb(v) (0 ≤ b < 4) associated with the4 blocks of the minimum cost matching ofV0 ∈ [1, 8] ∧ V1 ∈ [2, 5]∧
V2 ∈ [3, 4] ∧ V3 ∈ [3, 4] ∧ V4 ∈ [2, 5] ∧ V5 ∈ [1, 16] ∧ V6 ∈ [7, 12] ∧ V7 ∈ [7, 16] ∧ V8 ∈ [9, 16] ∧ V9 ∈ [12, 16] ∧ alldifferent(V0, V1, . . . , V9) ∧∏9

i=0 Vi ≤ 4717500; matched values of the minimum cost matching are shown in bold on thevaluesaxis; red points ofhb(v) (0 ≤ b ≤ 3) areinfeasible
points wrt. the limit4717500; firstb andlastb (0 ≤ b ≤ 3) denote the first and last matched values of blockb, while lowb andupb (0 ≤ b ≤ 3) denote the
index of the first and last variables of blockb; consequently, the maximum value of variables of blocks0, 1, 2 and3 are respectively set to6, 8, 9 and13 (note

that assigning13 to V9 is still feasible since it leads to a cost of4354560/12 × 13 = 4717440 ≤ 4717500).

tion of the blocks, the variables whose minimum value may belong
to this new Hall interval necessarily belong to the same block b.
Pruning their minimum value to a value that is greater than the
largest value of blockb would lead to a contradiction, since the
maximum value of the variables of blockb were decreased to the
largest value of blockb. (ii) After filteringwrt. the maximum cost,
no variable of a blockb′ preceding blockb can have its maxi-
mum value decreased to a value of blockb. Consequently, even if
a new Hall interval was created in blockb, it cannot contain the
maximum values (obtained after applying line 15 ofAlg. 2) of the
variables belonging to blocks that are located beforeb.

Phases 1 and 2 have a time complexity inO(n log n), while Phase 3
has aO(n) complexity. �

3 Thealldifferent arith Constraint

Rather than just providing a global constraint for directlyhandling
the conjunctionalldifferent(V0, V1, . . . , Vn−1)∧ f(V0)⊕ f(V1)⊕
· · · ⊕ f(Vn−1) ≤ cst , we came up with the following global
constraintalldifferent arith(V, C), whereV is a set of variables
{V0, V1, . . . , Vn−1} that must be assigned distinct values inN

+, and

C is a set of arithmetic constraints of the following forms:

(
∑

Ui∈U

U⊆V

Ui) oi Wi, (
∑

Ui∈U

U⊆V

U
2
i) oi Wi, (

∏

Ui∈U

U⊆V

Ui) oi Wi,

where oi is one of the operators≤, ≥ or =, and Wi is a con-
stant or a variable. Even if we cannot enforce bound-consistency for
alldifferent arith in polynomial time whenoi is the equality, com-
ing up with this constraint is motivated by the following reasons:
Some benchmarks (e.g., magic squares, hexagons, cubes, bimagic
squares) involve analldifferent constraint together with arithmetic
constraints. Each arithmetic constraint is an equality between a left
hand side, corresponding to a sum, and a variable, such the left hand
side only mentions a subset of variables of thealldifferent . This
constraint also occurs in sum coloring of graphs [9].

We provide foralldifferent arith the three filtering options:
A first option, calledGBC , where only bound-consistency is used.
A second option, calledGBCF , where we also ignore: (1) val-

ues that initially do not belong to any domain of the variables of
alldifferent , and (2) all already fixed variables ofalldifferent .

A third option, namedGAC , where we also perform arc-
consistency onalldifferent .

Alg. 1, and 2 can be easily extended in order to take into account
variables that were fixed, as well as all values that could notbe ini-
tially assigned by any variables. Note that by Property 1, after the
bound-consistency algorithm ofalldifferent is completed, the min-
imum and maximum value of each not yet fixed variable does not
equal any fixed variable. Nor does it equal any value that was ini-
tially removed from all domains.

n RBC RAC CBC CAC GBC GBCF GAC

g-2 36.6/12390050.04/12070.05/0 0.04/0 0.01/0 0.01/0 0.01/0
g-4 –/– 0.16/36150.05/0 0.05/0 0.01/0 0.0/0 0.02/0
g-5 5.53/174385 0.03/428 0.04/0 0.06/0 0.01/0 0.01/0 0.01/0
g-6 –/– 1.27/407000.04/0 0.03/0 0.0/1 0.01/1 0.01/1
g-7 29.7/12353580.16/44130.04/0 0.04/0 0.01/20 0.01/20 0.01/4
g-8 –/– –/– 0.04/0 0.05/0 0.01/18 0.01/18 0.01/8
g-9 121.0 61.0 0.05/0 0.06/0 0.01/15 0.01/15 0.02/11

/3824084 /1542016
g-10 –/– 4.12 0.06/0 0.04/0 0.01/4 0.0/4 0.01/3

/109090 0.06/0
g-11 –/– –/– 0.05/0 0.06/0 9.22 8.62 0.02/175

/176985/178916
g-12 –/– 0.75/191680.06/0 0.05/0 0.01/9 0.01/9 0.01/6
g-13 –/– –/– 0.06/0 0.07/0 0.01/12 0.01/12 0.01/0
g-14 –/– –/– 0.05/0 0.07/0 0.01/33 0.01/33 0.01/42

mix2-23 3.92/95479 0.02/230 0.04/0 0.04/0 0.01/0 0.01/0 0.01/0
mix-23 2.56/69671 0.02/288 0.05/0 0.04/0 0.01/0 0.0/0 0.01/0

g-1 –/– 17.6 0.11/0 0.09/0 0.02/0 0.01/0 0.03/0
/373852

g-2 –/– 258.0 0.08/0 0.11/0 0.02/32 0.02/32 0.02/5
/6181267

g-3 –/– –/– 0.09/2 0.1/2 0.02/26 0.02/26 0.02/18
n RBC RAC CBC CAC GBC GBCF GAC

6 0.15/66 0.15/66 3.6/21 3.57/21 0.18/25 0.17/21 0.18/21
7 –/– –/– –/– –/– 267.0 224.0 227.0

/49827 /34659 /34657
8 –/– –/– 197.0/1775202.0/177323.9/240622.2/180621.8/1806
9 –/– –/– 166.0/195 173.0/195 –/– 5.14/195 5.0/195
n RBC RAC CBC CAC GBC GBCF GAC

8 0.0/26 0.01/26 0.04/2 0.02/2 0.01/6 0.0/5 0.0/5
9 0.01/264 0.02/264 0.16/63 0.16/63 0.02/175 0.01/90 0.01/90
10 0.1/1280 0.11/12801.03/329 1.04/329 0.14/889 0.07/403 0.06/403
110.75/65930.7/6593 9.69/20979.88/20971.05/39700.62/23490.4/2349
12 33.0 34.1 –/– –/– 64.5 45.7 29.1

/217318 /217318 /170336 /124053 /124053
n RBC RAC CBC CAC GBC GBCF GAC

0.03/560.02/560.21/15 0.23/15 0.01/23 0.02/15 0.02/15
n RBC RAC CBC CAC GBC GBCF GAC

0.0/2 0.0/2 0.01/20.0/2 0.0/0 0.01/0 0.0/0

Table 1. Benchmark results, from top to bottom: Kakuro, Magic Square,
Golomb, Magic Hexagon, and Magic Product. Column 1 gives theinstance.

Each cell shows CPU time in seconds/backtracks, or –/–, if ittimed out.

4 Evaluation

In order to evaluate our filtering algorithm, we select a number
of benchmarks which mixalldifferent and sum, or product, con-
straints. Unless otherwise stated, variables were assigned using the
order in which they were passed toalldifferent arith and di-
chotomic search for assigning each variable. For these benchmarks
we performed the following evaluations:

• First, with a standard model where thealldifferent and the arith-
metic constraints are stated separately. We test two variants, one
where bound-consistency is used foralldifferent [8], and one
where arc-consistency is used foralldifferent [10]. These two
variants are respectively calledRBC andRAC .

• A second model that adds to the standard model a
global cardinality with costs constraint [2] for each linear

equality. The cost matrix ofglobal cardinality with costs is
defined in such a way that each assigned valuev has costv. These
two variants are respectively calledCBC andCAC .

• A third model using one singlealldifferent arith constraint and
its three optionsGBC , GBCF , GAC .

We experimented our constraint with the Kakuro benchmark and
some problems of the CSPlib: Magic square and variants, Magic
Hexagon, and Golomb.7 We used SICStus Prolog 4.2 on a quad core
2.8 GHz Intel Core i7-860 machine with 8MB cache per core, run-
ning Ubuntu Linux (using only one processor core). A time-out limit
of 5 CPU minutes was given. Table 1 summarizes the results.

Using global cardinality with costs (options CBC and CAC)
leads to a smaller number of backtracks in all the benchmarks, at a
price of a slowdown up to35 times compared to the fastest method.
This was expected since, on the one hand, the filtering algorithm of
global cardinality with costs is very heavy, and on the other hand
it performs arc-consistency8 as opposed to bound-consistency.

The new methods presented in this paper, i.e.,GBC andGBCF ,
usually lead to the fastest answer. Taking into account the fixed vari-
ables (GBCF) sometimes allows to reduce the time by a factor of
two compared toGBC . However, performing in addition full arc-
consistency (i.e.,GAC) usually does not pay off, except for one in-
stance of Kakuro as well as for Golomb.

5 Conclusion

We have provided a genericO(n log n) bound-consistency filtering
algorithm for handling the conjunctionV0, V1, . . . , Vn−1 ∈ N

+∧
alldifferent(V0, V1, . . . , Vn−1)∧f(V0)⊕f(V1)⊕· · ·⊕f(Vn−1) ≤
cst , where⊕ andf have given properties. We have evaluated these
new methods on a number of benchmarks. A challenging question
is whether a combination of this filtering algorithm and dedicated
heuristicscould solve open instances of the bimagic square problem.

REFERENCES
[1] J.-L. Laurière. A language and a program for stating andsolving com-

binatorial problems.Artificial Intelligence, 10(1):29–127, 1978.
[2] J.-C. Régin. Cost-based arc consistency for global cardinality con-

straints.Constraints, 7(3–4):387–405, 2002.
[3] N. Beldiceanu, M. Carlsson, and J.-X. Rampon. Global constraint cat-

alog, 2nd ed. (rev. a). Technical Report T2012-03, SICS, 2012.
[4] C. Bessière. Constraint propagation. In F. Rossi, P. van Beek, and

T. Walsh, editors,Handbook of CP, chapter 3. Elsevier, 2006.
[5] N. Lipski and F. P. Preparata. Efficient algorithms for finding maxi-

mum matchings in convex bipartite graphs and related problems. Acta
Informatica, 15:324–346, 1981.

[6] J.-F. Puget. A fast algorithm for the bound consistency of alldiff con-
straints. InProc. AAAI, pages 359–366. AAAI Press, 1998.

[7] A. Lopez-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek.A fast and
simple algorithm for bounds consistency of thealldifferent constraint.
In Proc. IJCAI, pages 245–250, 2003.

[8] K. Mehlhorn and S. Thiel. Faster algorithms for bound-consistency of
thesortednessand thealldifferentconstraint. InProc. CP, volume 1894
of LNCS, pages 306–319. Springer-Verlag, 2000.

[9] Mohammad R. Salavatipour. On sum coloring of graphs.Discrete Appl.
Math., 127:477–488, May 2003.

[10] J.-C. Régin. A filtering algorithm for constraints of difference in CSP.
In Proc. AAAI, pages 362–367, 1994.

[11] P. Galinier, B. Jaumard, R. Morales, and G. Pesant. A constraint-based
approach to the Golomb ruler problem. InProc. CPAIOR, 2001.

7 For Golomb we combine the essentialalldifferent constraint on all the
deltas with the redundant linear constraints on the deltas [11].

8 More precisely, it performs arc-consistency independently for the≤ side
and the≥ side of the equality, but not for the conjunction of the two sides.

