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Abstract. This paper gives a@(n log n) bound-consistency filter- e (N, ®) is a commutative group, where in additianis monotone
ing algorithm for the conjunctionlidifferent(Vo, Vi,..., Va—1) A increasing(v p,q1,02 €E NT : 1 > q2a = p® q1 > p D ).
FVo)® f(Vi) @ - @ f(Va—1) < est, (Vo,Vi,..., Vi1, cst € @~ denotes the inverse operation.

N*), where (N, @) is a commutative groupf is a unary func- e fisamonotone increasing functiép > g2 = f(q1) > f(q2)).
tion, and both& and f are monotone increasing. This complexity

is equal to the complexity of the bound-consistency alpariof the ~ Example 1 As an illustrative example, consider ten variables
alldifferent constraint. Vo, Vi, ..., Vo which respectively take integer values in intervals

[1,8], [2,5], [3,4], [3,4], [2,5], [1,16], [7,12], [7,16], [9,16],
[12,16]. Assume that, given these ten variables, we have the follow-
ing conjunction of constraints:

1. alldifferent(Vo, Vi,..., Vo) A0, Vi2 < 500,

2. alldifferent(Vo, Vi, ..., Vo) /\H?:ovi < 4717500.

For each of these conjunctions, a bound-consistency dlgorivould
respectively narrolthe domains to:

1 Introduction

Since the early days of constraint programming it has beenoba
the folklore to try to capture the interaction of two consttsiin or-
der to perform more deduction. This was for instance doneljn [
for a linear constraint for which all variables should beigssd dis-
tinct values> In this context, a better evaluation of the minimum and 1. Vo € [1,8], V1 € [2,5], V2 € [3,4], V3 € [3,4], V4 € [2,5], V5 €
maximum values of a linear term was suggested, since asgigtli [1,10], Vs € [7,11], V7 € [7,11], V5 € [9,11], Vo € [12,14].
variables to their minimum (resp. maximum) value leads twarp 2. Vo € [1,6], Vi € [2,5], Vo € [3,4], V3 € [3,4], V4 € [2,5], V5 €
bound which totally ignores thelldifferent constraint. More re- [1,10], Vs € [7,8], V7 € [7,8], V& € [9,9], Vo € [12,13]. The
cently, it has been quoted that such patterns can be direaplyred details leading to this pruning will be given in Figure 1.

by a global constraint such agobal_cardinality_with_costs [2]
(see the Usage slot of this constraint in [3]). However using
global_cardinality _with_costs for this purpose is not memory and
time effective (i.e., we need to introduce a cost matrix dveworst
case time complexity of the algorithm @(n(m + nlogn)) where

n is number of variables, anth the sum ofdomainsizes). Moti-
vated by these facts, this paper provides a generic bounsistency
(i.e., afiltering algorithm ensurdmund-consistendypr a given con-
straintC if and only if for every variabld/ of C there exists at least
one solution folC such thafl” can be assigned to its minimum value
V (resp. maximum valu&) and every other variabl& of C is as-
signed to a value ifl, U] [4]) filtering algorithm for the conjunction
alldifferent(Vo, Vi, ..., Va_)Af(Vo)@ f(Vi)®---@ f(Va-1) < 2 Bound Consistency for a Conjunction of an

The main question addressed by this paper is how such fiteen
be doneefficientlywith a genericalgorithm that is parametrized by a
binary operatior® and a monotone increasing functignSection 2
provides anO(nlogn) bound-consistency filtering algorithm for
such a pattern, whereis the number of variables. Motivated by the
common pattern of combininglidifferent with multiple arithmetic
constraints, Section 3 introduces Wédifferent_arith constraint. It
shows how to reuse and enhance the filtering algorithm intred in
Section 2 in order to partially take into account initial é®las well
as fixed variables. Finally, Section 4 evaluat@&lifferent_arith.

est Vo, Va, ..., Va1, cst € NT), where: alldifferent and alinear inequality Constraints
e Vi (0 < i < n) is a variable taking its value in a given fixed A_ssummg each variable has no holes in its domain, this@egitio-
. — vides:
interval [V, V;].
o alldifferent(Vo, Vi, ..., Vyu—1)is @ constraint enforcing variables 1. A priority rule for computing the minimum cost matching the
Vo, Vi, ..., Va—1 to be assigned distinct integer values. special case where is the sum operator anflthe identity func-
tion.

1 Mines de NantesFrance, email: Nicolas.Beldiceanu@mines-nantes.fr 2. Adiscussion how the same priority rule can be used th®)

- SICS Sweden, email: Mats.Carlsson@sics.se is a commutative group is a unary function, and bott» and
3 Mines de NantesFrance, email: Thierry.Petit@mines-nantes.fr groupy y ’ f

43S, CNRS, University of Nice-Sophia Antipolis, email: Jean are monotone increasing.
Charles.Regin@unice.fr 3. AnO(nlogn) algorithm implementing this priority rule.
5 Note that the same problem arises also when the linear edmss replaced
by a more general arithmetic constraint. 6 Domain reductions are shown in bold.
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2.1 Minimum Cost Matching

This section provides a priority rule for computing a valéaalue
assignment using distinct values and minimizing the sumlldha
variables (i.e., aninimum cost matchingValues are traversed in in-
creasing order, a value being assigned to the still unasdigariable
with the smallest maximum. Groups of consecutive valuet dba
not belong to any variable are skipped.

Priority Rule. We consider the variable-value grapgh
((V,up(V)), E) whereV = {Vq,...,V,_1} is a set of variables,
Up (V) the union of domains of variables 4 andE a set of edges.
An edgee belongs toF iff the three following conditions hold: (1)
one extremity ofe is a variableV; € V), and (2) the other extremity
of eisavaluev € Up(V), and (3) the value is in the domain ol/;.

e Otherwise:
h(X, M, prev) = cur(X, prev) +

h(X\{Veur (X, prev)}, MU{(Veur (X, prev), cur(X, prev))},
cur(X, prev))

Proof 1 We prove by induction that (pl) the current seft is a
matching, (p2)M is such that there exists a var-perfect matching
M’ of G such thatM € M’ and M’ minimizeszvjéM, vj, (P3)h

is the sum of values ifZ, (p4) prev is the largest value extremity of
an edge inM. Initially at stepk = 0, M = 0 andh = 0, the four
properties p1, p2, p3 and p4 are obviously true. We now asshate
the four properties are true for any\/| = k (k < n) and prove that
they remain true fofM| = k + 1. Before updating the parameters
of h, prev equals the largest value extremity of an edgéin Thus,

by Definition 2,cur (X, prev) is the smallest possible value for a
variable in X’ greater than values that are extremities of some edges
in M: adding{(Veur (X, prev), cur(X, prev))} to M preserves the
fact that M is a matching (so pl is satisfied) and settingv to
Cur(X, prev) satisfies p4. By construction, addingr (X, prev) to

Note that our variable-value graph is convex since each @oma p leads to satisfaction of Property (p3). With respect to Ry (p2),

consists of one single interval of consecutive values. i@kidvan-
tage of convexity usually allows to get a better complexity, in-
stance for a maximum matching in a bipartite graph; see [5].

Definition 1 (var-perfect matching) Given a variable-value graph
G = ((V,Up(V)), E), avar-perfect matchings a subset\ of £
of size|V| = n such that there is no pair of edges M having an
extremity in common.

Definition 2 Given a subsef’ of variablesV = {V%, ..
and an integer valugrev, we define:

L) Vn—l}

cur(X, prev) = min,ey, (x)rvspreo (V), 1.€., the smallest value

in Up (X) greater thanprev.

o Xewr (X, prev) = {V; € X s.t.cur(X, prev) € D(V;)}, i.e., the
set of variables it having valuecur (X, prev) in their domains.

o XIiH(X, prev) {V; € Xew(X,prev) stV
minvy,ex,,, (Vi)}, the subset of variables i, (X, prev) with
the smallest maximum value.

o Veuwr (X, prev)=Vj, V,eXar (X, prev), s.t.

j=miny ¢ ymax y .\ (7), the smallest index of the variables in

cur

X (X, prev).

Notation 1 Given a subsed/ C E and valuev € Up(V), we note
vEM iff v is the extremity of at least one edgelih.

Without loss of generality, the next theorem assumes tha

there exists a var-perfect matching @. Its existence can be
checked in practice by using the polynomial feasibility dition of
alldifferent(Vo, Vi, ..., Va_1).

Theorem 1 Given a variable-value grapls = ((V,Up(V)), E)
such that there exists at least one var-perfect matchirggrtimimum
value Ovajé]M v; among all maximum matchingd of G' can be
obtained by the following inductive functidntaking three parame-
ters, (i) a set of variableg’ initialized toV = {Vp, ..., V11, (i) a
set of edged//, initially empty, and (iii) a valueprev initialized to
min(Up(V)) — 1:

o If X =10 then h(X, M, prev) = 0.

by Definition 2 we know that.. (X, prev) is the variable minimiz-
ing the size of intervalcur (X, prev), (V;)] among all the variables
Vi € X such thatcur(X, prev) can be assigned t®;. Consider
the integerp > 0 such thatcur (X, prev) = Veur (X, prev) — p. If
p=0,all V;’'sin Xeur (X, prev) exceptVeu- (X, prev) have a max-
imum value in their domain greater thaur (X', prev) since there
exists at least one var-perfect matchingGn If p = 1 the existence
of a var-perfect matching 67 guarantees that there is at most one
variable V., # V.. such thatV/,, = V... In this case, adding
Veur OF V.. is equivalent, while adding any other variable would
lead to a contradiction with Property (p2) at the next step tfie
other case, selecting the variable with the smallest irgtedoes not
decrease the number of possible extended matchings). 8&ssnm-
ing can be generalized by recurrence to anyThus, selecting..,
guarantees that the number of var-perfect matching/sof G' such
thatM C M’ and M’ minimizesy, ., v; is strictly positive. [

2.2 Validity of the Priority Rule: General Case

Given:

1. (N, ®) a commutative group where is monotone increasing,

2. f amonotone increasing function,

3. a set of integer variableg = {Vo, V1,..
alldifferent(Vo, Vi,..., Va_1),

., Va—1} subject to

# matching containing all variable, Vi, ..., V-1 minimizing
f(Vo) ® f(Vi) @ --- & f(Va—1) can be obtained, when it ex-
ists, by using the priority rule introduced in Theorem 1.sFinote
that, given a permutatiow of {0,1,...,n — 1}, since (N, ®)
is a commutative group, we have thatc(o1,.. .13 f(Vi) =
®Dicqo,1,....n-13f (Vo(s)). Now since bothd and f are monotone
increasing, the values minimizing;cyo,1,....n—1} Vi also minimize
Dico,1,..n—13 f(Vi).

veey



2.3 Implementing the Priority Rule

Alg. 1 provides an implementation of the priority rule descrilred
Theorem 1, which achieves a time complexity@fn logn) by us-
ing a heap for incrementally maintaining the set of candidetri-

value (resp. maximum value) is located before (resp. after)Hall
interval.

Notation 2 Letindx (0 < k < n) denote the index of the" vari-
able selected bylg. 1. Letwv,, denote the value assigned to variable

ablesfor which the minimum value is less than or equal to the max-Vinq, byAlg. 1.

imum of (1) the previously matched value plus one, and (2irine
imum value of the not yet matched variableariables are extracte
from this heap by increasing maximum value.

d

1: function min_cost-matching(n, Vo..n—1, cst, ®, es, f) :

int
n : number of variables of the alldifferent,
Vb..n—1 @ variables that must be assigned distinct values,
cst : maximum allowed minimum cost of the matching,
&) : aggregation operator,
e : neutral element of the aggregation operator

f : monotone increasing function applied to each v
able of Vo, .n—1.
L 7/ N
minimum value . . .
. h « empty heap of indices of var. sorted by increasing m
mum value of var.
1< 0; 0" + eq; minval < Vs, — 1;
:forj=0ton—1do
minval < max(minval + 1, V)
whilei < n A Vs, < minval doinserts; in h; i + i+1 end
while ] ) ) ]
ind; < extract variable index with smallest maximum va|
from h
0" + 0" @ f(minval)
if o* > cst V minval > Vind, then return cst + 1 end if
: return o*

+— Vo, Vi,..., V,_1 sorted by increasing

ax

Nogahr w

8:

9:
10:
11

Algorithm 1: return the minimum cost of the matching if it exists
and is less than or equal tet, returncst + 1 otherwise.

2.4 Filtering Algorithm

Definition 3 GivenV a set of variables, &lall intervalis an interval
[/, u] of values such that there is a 98¢ ,,; C V of cardinality u —
1+ 1 whose domains are contained[inu).

Blocks of a Minimum Cost Matching. The bound-consistency
filtering algorithm ofalldifferent [6, 7, 8] adjusts the minimum and
maximum values of the variables bf\ V; ., with respect to a Hall
interval 1, v]. Given a minimum cost matching, consisting of a se
guence of variable-value pairs, computeddy. 1, and assuming the

filtering wrt. Hall intervals was already done, this section introduces

the notion of block of variables. The intuition behind is ttivari-
ables of the same block are in fact equivalertt the filtering related
to the arithmetic constraint(Vo) & f(Vi) @ -+ & f(Va-1) < cst.
The notion of block will permit evaluating the new cost of anini
mum matching under the hypothesis that a variable is assigne
other value, without computing from scratch a new minimuratco
matching. Before defining a block, let us first introduce sorata-
tion and let us recall the property achieved by the boundsistency
algorithm of alldifferent. This property will be needed to show that
our filtering algorithm reaches the fix point in one singlepstaf-
ter applying bound-consistency on the variables ofe&ldifferent
constraint, Property 1 holds:

Property 1 Given a Hall interval[l, u], for any variable whose
range intersectgl, u] without being included irl, u], its minimum

ari-

ue

Definition 4 A block is a set of consecutive variable-value pairs

(Vindpsp)s - -+ » (Vina,» vq) (p < q) that were computed bilg. 1

such that the three following properties are satisfied:

i) (Vina,,vp) is thebeginning of the blockthat isVi € [p,q] :

Vina; 2 vp-

i) (Vind,,vq) is theend of the blockf all variables afterVi,.q,
have their minimum value greater thap,

i) Aj €[p+1,q]suchthatvi € [4,q] : Vipa, > vj.

Intuitively this definition means tha} the minimum value of the
variables matched in a blodR is greater than or equal to the min-
imum value that can be assigned to the variables of the hick
_ thatii) that the block is maximum, arid) that there is no other in-
I"cluded sub-block.

Letm denote the number of blocks of the minimum cost matching
computed byAlg. 1. low, and up, respectively denote the first and
last variables of block in indo..n—1. first, andlast, respectively
denote the smallest and largest matched values of block

Example 2 The sequence of (variable,value) pairs corresponding to
the minimum cost matching of the example in the introducison
(Vo,1), (V1,2), (V,3), (Vs,4), (V4,5), (V5,6), (Vs,7), (V7,8),
(V&,9), (Vo,12). The sequence is decomposed into the following
blocks:

BLocK0: (Vo,1), (V1,2), (V2,3), (V3,4), (Va,5), (V5,6)
(i.e., lowo = 0, up, = 5, first, = 1, lasto = 6); Vo is not the
end of block0 sinceVs = 1, but Vs is the end of block since
Vs, V7, Vs, Vo are all greater thars, the value matched tws),

BLock 1. (Vs,7), (V7,8) (i.e., lowy = 6, up, = 7, first; = 7,
last; = 8),

BLOCK 2: (V3,9) (i.e.,lows = 8, up, = 8, first, =9, lasta = 9),

BLOCK 3: (Vo,12) (i.e.,lows =9, up; = 9, first; = 12, lasts =
12).

Theorem 2 shows how to directly compute the cost of the mini-
mum matching under the hypothesis that we reassign a variala
value that is different from the one that was assigned in thggnal
minimum cost matching bjlg. 1.

Notation 3 Given a valuev, let next, denote the smallest un-
matched value greater than or equal to Given a blockb (0 <
b < m) and a valuev that is not matched to a variable of blotklet
hy(v) denote the minimum cost of the matching under the hypothesis
that a variable of block is assigned to value.

Theorem 2 Given as computed b&lg. 1: a matchingM of mini-
mum cosb*, a variableV;,4, (0 < ¢ < n) belonging to blocl,
and its matched value;, the minimum cost of the matching under
the assumption that;,q, is assigned a value; different fromv;
(assumingulldifferent has at least one solution with,q, = u) is:

1. Ifu; isavalue that belongs to the block containing variabg;, ,
the cost is left unchanged, i.e. is equabto

2. Otherwise, the new cost (u;) is computed by first subtracting
from o* the largest matched value of bloekand then adding the
smallest unmatched valuegzt.,, greater than or equal ta;,
i.e.,hy(ui) = (0" @' flasty)) ® f(nexty,).



Proof 2 The proof is done in two steps: (1) after removing variabld 1: proceduremin_cost_matching_filter(n, m, Vo.n_1, cst, 0",

Vina, (i.€., unassigning variabl&’,q, from valuev;, the new min- ®, f, indo. n1, lowo..m—1, UPg. 1, firsto m_1»
imum cost matching/’ can be obtained by compressing the block lasto. m—1) B h
b containing valuev; in such a way that the largest value of block n : number of variables,
b becomes unmatched (i.e., by using’ for removing fromM the m : number of blocks of the minimum cost matching,
contribution oflasts), (2) after reintroducing variablé/;,,,, and as- Vo.n—1  :variables that must be assigned distinct valugs,
o . R cst : maximum allowed min. cost of the matching,
signing it to valueu; the new minimum cost matchindg”’ can be oF - min. cost of the matching returned Byg. 1
obtained by usingp for adding toM’ the contribution of the small- ® - aggregation operator, o
est unmatched value greater than or equakio Step (1).Letd be _ : monotone increasing function applied to each
the block of consecutive variable-value pairs containiatye v;. If variable ofVo.p—1, ,
v; is the largest value of blockwe are done, i.e., the largest value indo..n—1 :variable indices in the order they are considered
lasty, of blockd is now unmatched. Otherwise, by Conditiaix) of by the priority rule, i

asty OF DIC » by \ lowo. m—1 . first variable of a block inndo. ...—1,
the definition of a block (see Definition 4), we know that thesdists upy .1 - lastvariable of a block inndo...—1,
at least one variablé/i,q,, of blockd, that was matched to a value firsto_ ,_1 : first matched value of the variables of a block,
v; greater than value;, that could possibly be matched to value lasto..m—1 : last matched value of the variables of a block|

n

: 14+ m—1 [l eachiteration prunes the maximum value of all variables of

So we match;,q., to v; and continue in a similar way reorganiz-
i blockd (0 < b < m)

ing blockd until the largest value of block becomes unmatched.

g 3: for b = m — 1 downto 0 do
Step (2).First, assume that.; corresponds to an unmatched value| 4. found < false; t « | f~* (est @~ (0" @~ f(lasty)))];
of the matching obtained at the end of Step 1 (i.e., the ntagabid- 5. while —found do
tained after unassigning variablg;,.,). Then we are done, since we| 6: if (l=m—1At>last;)V (i >0Alastiy <tAt<
can directly match,4, to u;. Second, assume that corresponds first,) then
to a matched value that belongs to a bldéidistinct fromb. Since, 7 found < true; maz < t;
by hypothesisglldifferent has a solution wherd/,., is assigned g elsf‘zg;j: i\ri‘gtim—é;jgﬁéti—j 1\;75 > first; then

valueu;, and since, by hypothesis, no variableadidifferent hasa | 1. else ifi = b then

hole in its domain, we know that we necessarily will have mars | 11: found < true; maz < last;;
unmatched value that is greater than the largest vahse,, of block | 12: else
b'. Since we want to minimize the cost of the new matching, vee tak13: Gl
: 9, 14:  for j = lowy t0 up, dO
the smallest unmatched value. O 15: adjust maximum o¥/;,,4, to max

S . o . Algorithm 2: third step for achieving bound-consistency for the con-
Filtering wrt. a Maximum Cost. The filtering algorithm ;ynction.

consists of three phases: (1) It performs bound-consigtenc
alldifferent(Vo, Va,...,Vn_1) alone, using a standard bound- Theorem 3 Bound-consistency for the conjunction
consistency algorithm.(2) It computes the minimum agsof the  alldifferent(Vo, Vi,..., Ve ) Af(Vo)@ f(V1)@- - - @ f (V1) <
matching and fails if this cost is greater thasi. This is achieved by ~ cst is directly obtained after applying the three phases of therdi
usingAlg. 1. (3) Finally,Alg. 2 removes those valuesfrom the do-  ing algorithm (i.e., applying bound-consistency fdidifferent (in
main of the variables of blodk(0 < b < m) such thati,(v) > cst.  O(nlogn)), computing a minimum cost matching, filterimgt. a
In order to adjust the maximum value of each variable of amaximum cost) one time, @(n logn) time complexity.

block b (0 < b < m), we need to identify the largest value
such thathy(v) < cst. We look for the largest value such that
(0" e ! f(lasty)) @ f(next,) < cst. By isolatingnext., we get
newt, < f7' (est @' (o* @' f(lasts))). This is tantamount to
finding the largest value such thatrext, is less than or equal to a
given threshold and can be done in tatilm) time over the blocks.

Proof 3 From Theorem 2 and Phase 3 of the algorithm, any bound
v of a variable inVy, Vi, ..., V,,_1 satisfiesh,(v) < cst. We prove
that these three phase are complete (i.e., we do not neectédl re
any filtering algorithm). We show that filteringrt. a maximum cost
(1) neither removes all solutions froaildifferent, (2) nor causes the
bound-consistency filtering afldifferent to perform more filtering.

Example 3 Figure 1 provides the minimum cost function associated(1) follows from the fact thatlg. 1 already computes a solution for
with the last example introduced in the introduction. Wethseblock  the conjunction. Now for proving (2), we distinguish threses:

information provided in Example 2. The filtering't. the different 1. If filtering wrt. a maximum cost decreases the maximum value of

blocks is: ; .
17500 . a variableto an unmatched valug.e., a value that does not be-
e For the blockb = 3 we havet = L@J = 13 (tis un- long to any block), then no new Hall interval is created:; sirtbe
matched) and we adjust the maximum valu&gpfo maz = 13. bound-consistency filtering afldifferent is linked to Hall inter-

vals, no further filtering can occur from such domain redois.
. If filtering wrt. @ maximum cost decreases the maximum value of

e For the blockb = 2 we havel = {%%]%J =9 (tis unmatched)

. . 9
and we adjust the maximum valuelafto maz = 9. a variableto a matched value and does not create any new Hall
e For the blockb = 1 we havet — ié,},ﬁé&?J — 8 (¢ is the last |nte.rva!, then again no further filtering can occur. .
s If filtering wrt. @ maximum cost decreases the maximum value of

matched value of block) and we adjugt the maximum values of

avariableV to a matched value and creates a new Hall interyal
Vs, V7 t0o max = 8.

then we have the following situatiof: and v belong to the same

e For the blockb = 0 we havet = [g},ggﬂ = 6 (¢ is the last blockb, andv is its largest value; furthermore, variables of bldgk
matched value of bloc) and we adjugt the maximum values of  had their maximum values decreased to the largest valueookbl
Vo, Vi, Va, Vs, Vi, Vs to maz = 6. b. We successively show that this new Hall interval cannohgba

the minimum or maximum value of any variabl&: By construc-
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Figure 1. Minimum cost functionsh, (v) (0 < b < 4) associated with thé blocks of the minimum cost matching df € [1,8] A V1 € [2,5]A
Vo € 3,4/ AVa €[3,4] AVa €[2,5] A Vs € [1,16] A Vg € [T,12] A Vz € [7,16] A Vs € [9,16] A Vi € [12,16] A alldifferent(Vo, Vi, ..., Vo) A
?:0 Vi < 4717500; matched values of the minimum cost matching are shown id dwlthevaluesaxis; red points of, (v) (0 < b < 3) areinfeasible
points wrt. the limitd717500; first, andlast, (0 < b < 3) denote the first and last matched values of blackhile low, andup;, (0 < b < 3) denote the
index of the first and last variables of bloakconsequently, the maximum value of variables of blagks, 2 and3 are respectively set @, 8, 9 and13 (note
that assigning 3 to Vy is still feasible since it leads to a cost4954560/12 x 13 = 4717440 < 4717500).

tion of the blocks, the variables whose minimum value maynigel  C is a set of arithmetic constraints of the following forms:

to this new Hall interval necessarily belong to the same lblac

Pruning their minimum value to a value that is greater thaa th ( Z U;i)os Wi, ( Z Uf) 0i Wi, ( H Ui) 0; Wi,

largest value of block would lead to a contradiction, since the U eu U eu Ujeu

maximum value of the variables of blockvere decreased to the “ey uev ey

largest value of block. (:i) After filteringwrt. the maximum cost, where o; is one of the operators:, > or =, and W; is a con-

no variable of a blocky’ preceding blocky can have its maxi-  stant or a variable. Even if we cannot enforce bound-cossist for

mum value decreased to a value of bléckConsequently, even if  41d;ifferent_arith in polynomial time wher; is the equality, com-

a new Hall interval was created in blodk it cannot contain the  jng up with this constraint is motivated by the following seas:

maximum values (obtained after applying line 13\d. 2) of the  Some benchmarks (e.g., magic squares, hexagons, cubesgibim

variables belonging to blocks that are located befbre squares) involve anlldifferent constraint together with arithmetic
constraints. Each arithmetic constraint is an equalityben a left

Phases 1 and 2 have a time complexityin log ), while Phase 3 hand side, corresponding to a sum, and a variable, suchfthetel

has aO(n) complexity. - side only mentions a subset of variables of #iélifferent. This
constraint also occurs in sum coloring of graphs [9].
3 The alldifferent_arith Constraint We_ provid_e foralldifferent_arith the three filtering optiong
A first option, calledG ¢, where only bound-consistency is used.
Rather than just providing a global constraint for diredthndling A second option, calledizcr, Where we also ignore: (1) val-

the conjunctiorulidifferent(Vo, Vi, ..., V1) A f(Vo) @ f(V1) @ ues that initially do not belong to any domain of the variabté
coo @ f(Va-1) < cst, we came up with the following global alldifferent, and (2) all already fixed variables ofidifferent.
constraintalldifferent_arith(V,C), whereV is a set of variables A third option, namedG,-, where we also perform arc-
{Vo, Vi, ..., Va_1} that must be assigned distinct value®in, and  consistency omlidifferent.



Alg. 1, and 2 can be easily extended in order to take into account equality. The cost matrix ofjlobal_cardinality with_costs is

variables that were fixed, as well as all values that couldoeani-
tially assigned by any variables. Note that by Property terahe
bound-consistency algorithm afidifferent is completed, the min-

defined in such a way that each assigned valbas cosv. These
two variants are respectively calléthc and C4¢.
e A third model using one singlelldifferent_arith constraint and

imum and maximum value of each not yet fixed variable does not its three optionsizc, Ggor, Gac-

equal any fixed variable. Nor does it equal any value that was i
tially removed from all domains.

n Rpc Rac |Cgc|Cac| Gee | Ger| Gac
g-2 [36.6/123900p0.04/1207]0.050[0.040| 0.020 | 0.040 | 0.070
g-4 —/- 0.16/3615/0.050[0.050] 0.010 | 0.00 | 0.020
g-5 [5.53/174384 0.03/428[0.040[0.060| 0.020 | 0.040 | 0.070
g-6 —/— 1.27/4070(0.040[0.030] 0.0/1 | 0.01/1] 0.01/1
g-7 [29.7/123535B0.16/4413/0.040[0.040]0.02720[0.0720] 0.074
g-8 —/- —/- 0.040[0.050[0.07/18{0.07/18] 0.01/8
g-9 121.0 61.0 [0.050]0.060[0.0¥/15[0.0¥15] 0.02/11
/3824084 | /1542016
g-10 —/— 4,12 0.060[0.040[ 0.01/4] 0.04 | 0.01/3
/109090 |0.060
g-11 —/— —/— 0.050[0.060] 9.22 8.62 [0.0217
/176985/178916
g-12 —/- 0.75/191680.060]0.050] 0.01/9 | 0.01/9 | 0.01/6
g-13 —/— —/— 0.060[0.070[0.01/12[0.01/12] 0.010
g-14 —/— —/— 0.050[0.070[0.01/33]0.01/33] 0.017/42
mix2-23 3.92/95479] 0.02/230[0.040]0.040] 0.01/0 | 0.014/0 | 0.0170
mix-23| 2.56/69671| 0.02/288]0.050[0.040| 0.010 | 0.00 | 0.010
g-1 - 17.6 0.110]0.090] 0.020 | 0.02/0 | 0.030
/373852
g-2 —/- 258.0 [0.080[0.110[0.0232[0.0232| 0.025
16181267
g-3 —/- —/— 0.092[0.12]0.0226]0.0226] 0.0218
n| Rpc | Rac Cse Cac Gpo Gpor Gac
6]0.1966]|0.1566] 3.6R21 3.57R1 | 0.18/25] 0.17R21 | 0.1821
7 —I- —/- —/— —/— 267.0 224.0 227.0
/49827 | /34659 | /34657
8] —/I- —/— |197.0/177%202.0177323.9/2406422.2/180621.81804
9] —/- —/— ]166.0195]173.0195 —/— 5.14A95] 5.00195
n| Rpc Rac Cge Cac Gpo Gper | Gac
8| 0.026 | 0.01/26| 0.04R2 0.022 0.01/6 0.05 0.05
9]0.01/264]0.02/264] 0.1663 | 0.1663 | 0.02/175] 0.01/90 | 0.07790
10/ 0.1/1280[0.11/128(1.03B829] 1.04329] 0.14/889| 0.07/403]0.06403
11]0.75/65980.7/6593[9.6920979.8820971.05/397(0.62/23490.472349
12l 33.0 34.1 - - 64.5 45.7 29.1
/217318| /217318 /170336 /124053|/124053
n| Rpc | Rac | Cc | Cac | Gee |Geor| Gac
0.03/560.02/560.21/15/0.23/45{0.01/23]0.02/15|0.02/15|
n|Rpc|Rac| Csc |Cac|Gee|Gaor|Gac
0.02[0.0/2[0.01/20.0/2]0.0/0[0.010[0.00

Table 1. Benchmark results, from top to bottom: Kakuro, Magic Square
Golomb, Magic Hexagon, and Magic Product. Column 1 givesrts&nce.
Each cell shows CPU time in seconds/backtracks, or —/—tifhiéd out.

4 Evaluation

In order to evaluate our filtering algorithm, we select a namb
of benchmarks which mixlidifferent and sum, or product, con-
straints. Unless otherwise stated, variables were agsigsiag the
order in which they were passed tdidifferent_arith and di-
chotomic search for assigning each variable. For thesehbegks
we performed the following evaluations:

e First, with a standard model where th8different and the arith-
metic constraints are stated separately. We test two \ariane
where bound-consistency is used falidifferent [8], and one
where arc-consistency is used folldifferent [10]. These two
variants are respectively calléthc andR ¢

e A second model that adds to the standard model
global _cardinality _with_costs constraint [2] for each linear

We experimented our constraint with the Kakuro benchmartk an
some problems of the CSPIib: Magic square and variants, Magi
Hexagon, and GolombWe used SICStus Prolog 4.2 on a quad core
2.8 GHz Intel Core i7-860 machine with 8MB cache per core; run
ning Ubuntu Linux (using only one processor core). A time{onit
of 5 CPU minutes was given. Table 1 summarizes the results.

Using global_cardinality —with_costs (options Czc and Cyx¢)
leads to a smaller number of backtracks in all the benchmaiia
price of a slowdown up t85 times compared to the fastest method.
This was expected since, on the one hand, the filtering afgorof
global_cardinality —with_costs is very heavy, and on the other hand
it performs arc-consistentyas opposed to bound-consistency.

The new methods presented in this paper, ¢ and Gper,
usually lead to the fastest answer. Taking into account Xeel fiari-
ables Gpcr) sometimes allows to reduce the time by a factor of
two compared toGzc. However, performing in addition full arc-
consistency (i.e.G4¢) usually does not pay off, except for one in-
stance of Kakuro as well as for Golomb.

5 Conclusion

We have provided a generi@(n log n) bound-consistency filtering
algorithm for handling the conjunctiob, Vi,..., V-1 € NTA
alldifferent(Vo, Vi, ..., Vac ) Af(Vo)® f(V1)®- - B f(Vim1) <

cst, whered and f have given properties. We have evaluated these
new methods on a number of benchmarks. A challenging questio
is whether a combination of this filtering algorithm and dadéd
heuristicscould solve open instances of the bimagic square problem.
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