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Abstract. In this paper, we present CAC, a new configurable, generic
and adaptive algorithm for establishing arc consistency for binary con-
straints. CAC is configurable, that is by combining some parameters
CAC corresponds to any existing AC algorithm: AC-3, AC-4, AC-6,
AC-7, AC-2000, AC-2001, AC-8, AC-3d, AC-3.2 and AC-3.3. CAC is
generic, like AC-5, because it may takes into account the structure of
the constraints. CAC is adaptive because the underlined algorithm can
be changed during the computation in order to use the most efficient
one. This new algorithm leads to a new nomenclature of the AC algo-
rithms which is based on the different features used by the algorithm like
the values that are reconsidered when a domain is modified, or the fact
that bidirectionnality is taken into account, or the way a new support
is sought. This new nomenclature shows that several new possible com-
binations are now possible. In other words, we can easily combine some
ideas of AC-3 with some ideas of AC-7 and some ideas of AC-2001 with
some ideas of AC-6. Some experimental results highlight the advantages
of our approach.

1 Introduction

In this paper we focus our attention on binary constraints. For more than twenty
years, a lot of algorithms establishing arc consistency (AC algorithms) have
been proposed: AC-3 [6], AC-4 [7], AC-5 [9], AC-6 [1], AC-7, AC-Inference, AC-
Identical [2], AC-8 [4], AC-2000: [3], AC-2001 (also denoted by AC-3.1 [10]) [3],
AC-3d [8], AC-3.2 and AC-3.3 [5]. Unfortunately, these algorithms are differently
described and their comparison is not easy. Thus, we propose a configurable,
generic and adaptive AC algorithm, called CAC.

Configurable means that the previous existing algorithms can be represented
by setting some predefined parameters. This has some advantages:

• this unique algorithm can represent all known algorithms.
• it clearly shows the differences between all the algorithms. This extends

the discussion started in [3].
• some new arc consistency algorithms can be easily and quickly derived

from CAC, because some combinations of parameters have never been tested.
• CAC leads to a new nomenclature which is much more explicit than the

current one (”AC-” followed by a number.), because algorithms are now ex-



pressed by combinations of predefined parameters. For instance, AC-3 is re-
named: CAC-pvD-sD and AC-6 becomes CAC-pv∆s-last-sD.

Generic means that CAC is also a framework that can be derived to take into
account some specificity of some binary constraints. In other word, dedicated al-
gorithms can be written, for functional constraints for instance. This corresponds
to a part of the generic aspects of AC-5. In our case, the incremental behavior
of the AC-5 is generalized.

Adaptive means that CAC is able to use different algorithms successively as
suggested in [3]. For instance, AC-2001 can be used then AC-7 and then AC-
2001 depending on which one seems to be the best for the current configuration
of domains and delta domains. We think, indeed, that CP will be strongly
improved if a filtering algorithm is in itself capable to select at each
time its best version, instead of asking the user to do it a priori.

AC-algorithms work in two steps. First, an initialization step is called. This
step consists of finding a support (i.e. a compatible value) for each value. If a
value has no support then it is removed from its domain. Then, in the second
step the consequences of the deletion of a value are studied, that is a new support
is sought for some values. In this paper, we will consider only the second step
which is the most important.

This paper is organized as follows. First, we recall some definitions of CP.
Then, we study all the existing algorithms, and we identify different concepts
of the AC algorithms and detail CAC algorithm. A new nomenclature is pro-
posed. Then, the adaptive behavior of CAC algorithm is considered. At last,
after studying some experiments, we conclude.

2 Preliminaries

A finite constraint networkN is defined as a set of n variables X = {x1, . . . , xn},
a set of current domains D = {D(x1), . . . , D(xn)} where D(xi) is the finite set
of possible values for variable xi, and a set C of constraints between vari-
ables. A constraint C on the ordered set of variables X(C) = (xi1 , . . . , xir )
is a subset T (C) of the Cartesian product D(xi1) × · · · × D(xir ) that specifies
the allowed combinations of values for the variables xi1 , . . . , xir . An element of
T (C) is called a tuple on X(C) and τ [x] denotes the value of the variable x in
the tuple τ . A value a for a variable x is often denoted by (x, a). (x, a) is valid
if a ∈ D(x), and a tuple is valid if all the values it contains are valid. Let C be
a constraint. C is consistent iff there exists a tuple τ of T (C) which is valid. A
value a ∈ D(x) is consistent with C iff x 6∈ X(C) or there exists a valid tuple
τ of T (C) with a τ [x]. A constraint is arc consistent iff ∀xi ∈ X(C), D(xi) 6= ∅
and ∀a ∈ D(xi), a is consistent with C.

A filtering algorithm associated with a constraint C is an algorithm which
may remove some values that are inconsistent with C; and that does not remove
any consistent values. If the filtering algorithm removes all the values inconsistent
with C we say that it establishes the arc consistency of C. Propagation is
the mechanism that consists of calling the filtering algorithm associated with
the constraints involving a variable x each time the domain of this variable



is modified. The set of values that have been removed from the domain of a
variable x is called the delta domain of x. This set is denoted by ∆(x). More
information about delta domains can be found in [9]. Function propagation
of Algorithm 1 is a possible implementation of this mechanism. The filtering
algorithm associated with the constraint C defined on x and y corresponds to
Function filter(C, x, y,∆(y)). This function removes the values of D(x) that
are not consistent with the constraint in regards to ∆(y). For a constraint C this
function will also be called with the parameters (C, y, x,∆(x)). We also assume
that function reset(∆(y)) is available. This function sets ∆(y) to the empty
set. The algorithm we propose is given as example, and some others could be
designed.

Algorithm 1: function propagation

propagation()
while ∃y such that ∆(y) 6= ∅ do

pick y with ∆(y) 6= ∅
for each constraint C involving y do

if ¬ filter(C, x, y, ∆(y)) then return false

reset(∆(y))

return true

3 Arc consistency algorithms

Consider a constraint C defined on x and y for which we study the consequences
of the modification of the domain of y.

Algorithm 2: CAC filtering algorithm
filter(in C, x, y, ∆(y)): boolean

get the parameters of C
pvMode ← selectPendingValueMode(C, x, y, ∆(y), pvMode)
sMode ← selectExistSupportMode(C, x, y, ∆(y), sMode)
(x, a) ← pvMode.firstPendingValue(C, x, y, ∆(y))
while (x, a) 6= nil do

if ¬ existValidSupport(C, x, a, y, sMode) then
1 removeFromDomain(x, a)

if D(x) = ∅ then return false

(x, a) ← pvMode.nextPendingValue(C, x, y, ∆(y), a)

return true

Definition 1 We call pending values w.r.t. a variable y, the set of valid
values of a variable x for which a support is sought by an AC algorithm when
the consequences of the deletion of the values of the variable y are studied.



Thanks to this definition, the principles of AC algorithms can be easily expressed:
Check whether there exists a support for every pending value and re-
move those that have none.
Algorithm 2 is a possible implementation of this principle. This is also the core
of the generic CAC algorithm. Functions selectPendingValueMode and se-
lectExistSupportMode can be ignored at this point. They will be detailed
later.

We can now give the principles of Functions firstPendingValue, nextPend-
ingValue and of Function existValidSupport for each existing algorithm. We
will consider a constraint C involving x and y and that y is modified. Therefore,
the pending values belong only to x.
AC-3: The pending values are the values of D(x), and ∆(y) is not used at
all. All the values of D(x) are considered and the search for a valid support is
done by checking in D(y) if there is a support for a value of D(x). There is no
memorization of the previous computations, so the same computations can be
done several times and the time complexity for one constraint is in O(d3)1. The
advantage of this approach is that the space complexity is null.
AC-4: In AC-4 the tuple set is pre-computed and store in a structure that we
call a table. This table contains for every value (x, a) a pointer to the next
tuple involving (x, a). Therefore, the space complexity of AC-4 is in O(d2). The
pending values are for each (y, b) ∈ ∆(y) all the valid values (x, a) such that
((x, a)(y, b)) ∈ T (C). Note that a value (x, a) can be considered several times as
a pending value. The search for a support is immediate because Function ex-
istValidSupport can be implemented in O(1) by associated with every value
(x, a) a counter which counts the number of time (x, a) has a support in D(y).
Then, each time this function is called the counter is decremented (because (x, a)
lost a valid support) and if the counter is equals to zero then there is no sup-
port. AC-4 was the first algorithm reaching an O(d2) time complexity, because
no computation is made twice. However, a lot of computations are systematically
done.
AC-5: This algorithm is mainly a generic algorithm. It has been designed in
order to be able to take into account the specificity or the structure of the
considered constraints. In other words, Function existValidSupport can be
specialized by the user in order to benefit from the exploitation of the structure
of the constraint. For instance, functional constraints are more much simple and
arc consistency for these constraints can be achieved in O(d) per constraint.
Function filter and the propagation mechanism we gave are close to AC-5
ideas.
AC-6: AC-6 was a major step in the understanding of the AC-algorithm prin-
ciples. AC-6 mixes some principles of AC-3 with some ideas of AC-4. AC-6 uses
the idea of AC-4 to determine the pending values, but instead of considering all

1 In this paper, we will always express the complexities per constraint, because a con-
straint network can involved several types of constraints. The usual way to express
complexities can be obtained by multiplying the complexity we give by the number
of binary constraints of the network.



the values supported by the values in ∆(y), it exploits the fact that the knowl-
edge of one support is enough. AC-6 can be viewed as a lazy computation of
supports. AC-6 introduces another data structure which is a variation of the ta-
ble: the S-list: for every value (y, b), the S-list associated with (y, b), denoted by
S-list[(y, b)], is the list of values that are currently supported by (y, b). Contrary
to AC-4, in AC-6 the knowledge of only one support is enough, then a value
(x, a) is supported by only one value of D(y), so there is only value of D(y)
that contains (x, a) in its S-list. Then, the pending values are the valid values
contained in the S-lists of the values in ∆(y), and, for a given ∆(y), a value (x, a)
can be considered only once as a pending value. Function existValidSupport
is an improvement of the AC-3’s one, because the checks in the domains are
made w.r.t an ordering and are started from the support that just has been
lost, which is the delta value containing the current value in its S-list. The space
complexity of AC-6 is in O(d) and its time complexity is in O(d2).
AC-7: This is an improvement of AC-6. AC-7 exploits the fact that if (x, a) is
supported by (y, b) then (y, b) is also supported by (x, a). Thus, when search-
ing for a support for (x, a), AC-7 proposes, first, to search for a valid value in
S-list[(x, a)], and every non valid value which is reached is removed from the
S-list. We say that the support is sought by inference. This idea contradicts
an invariant of AC-6: a support found by inference is no longer necessarily the
latest checked value in D(y). Therefore, AC-7 introduces explicitly the notion
of latest check value by the data last associated with every value. AC-7 en-
sures the property: If last[(x, a)] = (y, b) then there is no support (y, a) in D(y)
with a < b. If no support is found by inference, then AC-7 uses an improve-
ment of the AC-6’s method to find a support in D(y). When we want to know
whether (y, b) is a support of (x, a), we can immediately give a negative answer
if last[(y, b)] > (x, a), because in this case we know that (x, a) is a not a support
of (y, b) and so that (y, b) is not a support for (x, a). The properties on which
AC-7 is based are often called bidirectionnalities. Hence, AC-7 is able to save
some checks in the domain in regards to AC-6, while keeping the same space
and time complexity.
AC-Inference: This algorithm uses the S-lists of AC-6 to determine in the same
way the values for which a support must be sought, but the search for a new
support is different from the AC-6’s method. For every value (x, a), two lists
of values are used: P-list[(x, a)] and U-list[(x, a)]. P-list[(x, a)] contains some
supports of (x, a), where as U-list[(x, a)] contains the values for which their com-
patibility with (x, a) has never been tested. When a support is sought for (x, a),
it checks first if there is a valid value in P-list[(x, a)], and every non valid value
that is reached is removed from the P-list. If there is no valid value is found in
the P-list, then the values of U-list[(x, a)] are successively considered until a valid
support is found. Every value of the U-list[(x, a)] which is checked is removed
from the U-list. When a new support is found, then some inference rules can be
applied to deduce new supports and the U-list and P-list are accordingly mod-
ified. For instance if (x, a) is found to be a support for (y, b) then it is inferred
that (y, b) is a support for (x, a). Some other inference rules can be used like



commutativity or reflexivity (see in [2].) The space and time complexities are in
O(d2) per constraint.
AC-Identical: This is an extension of AC-Inference which exploits the fact that
the same constraint can be defined on different variables. In this case, any knowl-
edge obtain from one constraint is inferred for the other similar constraints.
AC-2000: This is a modification of AC-3. The pending values are the values
of D(x) that have a support in ∆(y). No extra data is used, so it is costly to
compute the pending values. Thus, AC-2000 proposes to use this set of pend-
ing values only if |∆(y)| < 0.2|D(x)|; otherwise D(x) is considered as in AC-3.
Therefore, AC-2000 is the first adaptive AC algorithm.
AC-2001: This algorithm is based on AC-3 and uses the last data of AC-6.
That is, the pending values are the same as for AC-3 and function existValid-
Support is similar as the AC-6’one, except that it is checked if the last value
is valid. This algorithm inherits of the space complexity of AC-6, without using
the S-lists. Note also that this presentation of AC-2001 is original and simpler
than the one given in [3].
AC-3.3: AC-3.3 is an improvement of AC-2001 which associates with every
value (x, a) a counter corresponding to a lower bound of the size of S-list[(x, a)].
The algorithm does not use any S-list, but counters instead. When a support
is sought for, the counter of (x, a) is first tested, if it is strictly greater than 0
then we know that a valid support exists. This support cannot be identified but
we know that there is one. If (y, b) is deleted then the counters of all the values
supported by (y, b) are decremented.

We will not consider AC-8 [4], AC-3d [8], and AC-3.2 [5], because they mainly
improve AC-3 by proposing to propagate the constraint in regards to specific
orderings, and this is not our purpose.

The AC algorithms may use the following data structures:
Support: the current support of (x, a) is denoted by support[(x, a)].
Last: the last value of (x, a) for a constraint C is represented by last[(x, a)]
which is equals to a value of y or nil.
S-List, P-List, U-list: these are classical list data structures. For any list L we
will consider that functions add(L, (x, a)) and remove(L, (x, a)) are available.
These functions respectively add (x, a) to L, and remove (x, a) from L. We will
also assume that these function and the size of a list can be computed in O(1).
Tuple counters: there are represented by counter[(x, a)] which counts the num-
ber of tuples in T (C) containing (x, a) that are valid.
Table: A table is the set of tuples T (C) associated with two functions:
firstTuple(C, y, b) which returns the first tuple of T (C) containing (y, b)
nextTuple(C, x, y, b, a)) which returns the first tuple of T (C) containing (y, b)
and following the tuple ((x, a), (y, b). These functions return nil when no such
specified tuple exists.

Now, we propose to identify the different concepts used by the existing algo-
rithms instead of having one function per algorithm and one parameter corre-
sponding to each specific algorithm.



Algorithm 3: Pending values selection depending on pvMode (b is a local
data.)

pvMode =pvD

firstPendingValue(C, x, y, ∆(y)): return first(D(x))
nextPendingValue(C, x, y, ∆(y), a): return next(D(x), a)

pvMode =pv∆s

firstPendingValue(C, x, y, ∆(y)): value
b ←first(∆(y))
return traverseS-list(C, x, y, ∆(y))

nextPendingValue(C, x, y, ∆(y), a): value
return traverseS-list(C, x, y, ∆(y))

traverseS-list(C, x, y, ∆(y)): value
while (y, b) 6= nil do

(x, a) ←seekValidSupportedValue(C, y, b)
if (x, a) 6= nil then return (x, a)
b ←next(∆(y), b)

return nil

pvMode =pv∆t

firstPendingValue(C, x, y, ∆(y)): value
b ←first(∆(y))
(x, a) ←firstTuple(C, y, b)
return traverseTuple(C, x, y, ∆(y), a)

nextPendingValue(C, x, y, ∆(y), a): value
a ←nextTuple(C, y, b, a)
return traverseTuple(C, x, y, ∆(y), a)

traverseTuple(C, x, y, ∆(y), a): C-value
while (y, b) 6= nil do

while (x, a) 6= nil do
if a ∈ D(x) then return (x, a)
(x, a) ←nextTuple(C, x, y, b, a)

b ←next(∆(y), δa)
(x, a) ←firstTuple(C, x, y, δa)

return nil

pvMode =pv∆c

firstPendingValue(C, y, ∆(y)): value
a ←first(D(x))
return seekCompatible(C, x, y, ∆(y), a)

nextPendingValue(C, y, ∆(y), a): value
a ←next(D(x), a)
return seekCompatible(C, x, y, ∆(y), a)

seekCompatible(C, x, y, ∆(y), a): value
while (x, a) 6= nil do

for each b ∈ ∆(y) do
if ((x, a), (y, b)) ∈ T (C) then return (x, a)

(x, a) ←next(D(x), a)

return nil

pvMode =pvG: example of generic function: < constraint
firstPendingValue(C, y, ∆(y)): value

return next(D(x), max(D(y))− 1)

nextPendingValue(C, y, ∆(y), a): return next(D(x), a)



Thus, we will have a configurable algorithm from which every AC algorithm
could be obtain by combining some parameters, each of them corresponding to
a concept.

4 Pending values

Finding efficiently a small set of pending values is difficult because pending values
sets deal with two different notions at the same time: validity and support. Thus,
several set of pending values have been considered. We identify four sets:

1. The values of D(x) (like in AC-3, AC-2001, AC-3.3). This set is denoted by
pvD.

2. The valid values currently supported by the values of ∆(y), that is the valid
values in the S-lists of ∆(y). This set is used by AC-6, AC-7, AC-Inference,
AC-Identical. It is denoted by pv∆s.

3. The values that belong to a tuple containing a value of ∆(y). A value is
pending as many times as it is contained in such a tuple. AC-4 uses this set,
and it is denoted by pv∆t.

4. The values of D(x) compatible with at least one value of ∆(y), as in AC-2000.
This set is denoted by pv∆c.

Since we aim to have a generic algorithm, we propose to define a fifth type: pvG

which represents any function given by the user. For instance, for x < y only the
modifications of the maximum value of D(y) can lead to new deletions. Thus,
the pending values are the values of D(x) that are greater than the maximum
value of D(y).

Algorithm 3 is a possible implementation of the computation of pending
values. Depending on the set of pending values, the algorithm traverses a par-
ticular set. Note that some functions require ”internal data” (a data whose
value is stored). We assume thatfirst(D(x)) returns the first value of D(x) and
next(D(x), a) returns the first value of D(x) strictly greater than a. Function
seekValidSupportedValue(C, x, a) returns a valid supported value belonging
to the S-list[(y, b)].

Algorithm 4: Function seekValidSupportedValue

seekValidSupportedValue(C, x, a) : value
for each value (y, b) ∈ S-list[(x, a)] do

if b ∈ D(y) then return (y, b)
remove(S-list[(x, a)], y, b)

return nil



Algorithm 5: Function existValidSupport

existValidSupport(C, x, a, y, sMode): boolean
if slist then remove(S-list[support[(x, a)]], (x, a))
(y, b) ← nil
if last then if last[(x, a)] ∈ D(y) then (y, b) ← last[(x, a)])
if inf and (y, b) = nil then

(y, b) ← seekValidSupportedValue(C, x, a)

if (y, b) = nil then (y, b) ← sMode.seekSupport(C, x, a, y)
if slist then if (y, b) 6= nil then add(S-list[(y, b)], (x, a))
if (y, b) 6= nil then support[(x, a)] ← (y, b)
return ((y, b) 6= nil)

5 Existence of a valid support

This function also differentiates the existing algorithms. Almost each algorithm
uses a different method. We can identify eight ways to determine whether a
support exists for (x, a):

1. Check in the domain from scratch (AC-3, AC-2000.)
2. Check if the last value is still valid and if not check in the domain from

the last value (AC-2001.)
3. Check in the domain from the last value (AC-6.)
4. Test if a support can be found in S-list[(x, a)], then check in the domain

from the last value. Wen searching in the domain uses the fact that last values
are available to avoid explicit compatibility checks (AC-7.)

5. Check if there is a valid support in P-list[(x, a)], if there is none check
the compatibility with the valid values of U-list[(x, a)]. When some compatibility
checks are made, then deduce the results of some other compatibility checks and
update accordingly some U-lists and P-lists (AC-Inference, AC-identical.)

6. Decrement the counter storing the number of valid supports and test if
is strictly greater than 0 (AC-4.)

7. A specific function dedicated to the constraint is used.
8. Use of counters storing a lower bound of the size of the S-list of (x, a),

and check in the domain from the last value (AC-3.3.)
The last point deserves a particular attention. The time complexity of using

a counter of the number of elements in a list is the same as the management of
the list. Moreover, AC-3.3 implies that the counters are immediately updated
when a value is removed, which is not the case with AC-7, and the lazy approach
used by AC-7 to maintain the consistency of the S-list has been proved more
efficient. Therefore, we will prefer the explicit use of S-lists to the use of a lower
bound of the size of the S-lists of AC-3.3.

We propose to consider the following parameters:
• last: the search for a valid support is restarting from the last value. The

last value is also used to avoid some negative checks (AC-6, AC-7, AC-Inference,
AC-Identical, AC-2001, AC-3.3.)



Algorithm 6: Functions seeking for a valid support
sMode =sD

seekSupport(C, x, a, y) : value
b ← first(D(y))
if last then

b ←next(D(y),last[(x, a)])
while b 6= nil do

if last[(y, b)] ≤ (x, a) and ((x, a), (y, b)) ∈ T (C) then
last[(x, a)] ← (y, b)
return (y, b)

b ←next(D(y), b)

else
while b 6= nil do

if ((x, a), (y, b)) ∈ T (C) then return (y, b)
b ←next(D(y), b)

return nil

sMode =sC

seekSupport(C, x, a, y) : value
counter[(x, a)] ← counter[(x, a)]− 1
if counter[(x, a)] = 0 then return nil
else return (y,first(D(y)))

sMode =sT

seekSupport(C, x, a, y) : value
for each (y, b) ∈ P-list[(x, a)] do

remove(P-list[(x, a)], (y, b))
if b ∈ D(y) then return (y, b)

for each (y, b) ∈ U-list[(x, a)] do
remove(U-list[(x, a)], (y, b))
remove(U-list[(y, b)], (x, a))
if ((x, a), (y, b)) ∈ T (C) then

add(P-list[(y, b)], (x, a))
if b ∈ D(y) then return (y, b)

return nil

sMode =sGen example of generic function: < constraint
seekSupport(C, x, a, y) : return false



• inf: the search for a valid support is first done by searching for a valid
supported value in the S-list (AC-7, AC-3.3.)

• slist: this parameter means that the S-lists are used. It is implies by inf and
pv∆s (AC-6, AC-7, AC-Inference, AC-Identical, AC-3.3.)

• sD: the search for a support is made by testing the compatibility between
(x, a) and the values in D(y) (AC-3, AC-6, AC-7, AC-2000, AC-2001, AC-3.3.)

• sC: the search for a valid support consists of decrementing the counter of
valid tuples and checking if it is > 0 (AC-4.)

• sT: the search for a valid support is made by testing the validity of the
values of P-list[(x, a)] and by checking if there is a value in U-list[(x, a)] which
is valid and compatible with (x, a) (AC-Inference, AC-Identical.)

• sGen: the search for a valid support is defined by a function provided by
the user and dedicated to the constraint. We present an example for the < con-
straint.
From these parameters we can now propose a possible code for Function exist-
ValidSupport of CAC algorithm (see Algorithm 5.) Possible instantiations of
Function seekSupport are given by Algorithm 6. An example is also given for
constraint <.

6 Analysis of different methods

The main issue of AC algorithms is to deal with two different notions: support
and validity. It is difficult to handle these two notions at the same time. Thus,
the algorithms usually privilegiate one notion:

• When constructing the pending values set, pvD algorithms totally ignores
the notion of support. The other algorithms try to combine the two notions: pvDc

algorithms consider first the validity, whereas pv∆t algorithms deal first with all
supports. And, pv∆s algorithms traverse the current supported values and check
the validity.

• When searching for a new support, sD algorithms consider the valid values,
and the check if there are support, whereas sT algorithms traverse the supports
and check for their validity.

7 Nomenclature

From the different concepts we have identified we can propose a new nomencla-
ture for the AC algorithms. Until now, the naming used the prefix ”AC-” followed
by a number or date. Excepted AC-Inference or AC-Identical which have tried
to express a little bit some ideas of the algorithms, it is clearly impossible to
understand the specificity of each algorithm from their name.

The nomenclature we propose uses CAC as prefix which stands for Config-
urable Arc Consistency algorithm. Then the combinations of parameters cor-
responding to the AC algorithm are added to the CAC prefix. For instance,
CAC-pvD-sD means that the pending values are the values of D(x) and that a



new support is sought in the domain by checking the compatibilities between
values. This is exactly the description of AC-3. For adaptive algorithm a ”/” is
used to differentiate the possibilities: AC-2000 is renamed CAC-pv∆c/pvD-sD.
We can describe all the existing algorithms:

name new name
AC-3 CAC-pvD-sD
AC-4 CAC-pv∆t-sC
AC-6 CAC-pv∆s-last-sD
AC-7 CAC-pv∆s-last-inf-sD
AC-Inference or AC-Identical CAC-pv∆s-sT
AC-2000 CAC-pv∆c/pvD-sD
AC-2001 CAC-pvD-last-sD
AC-3.3 CAC-pvD-last-inf-sD

Note that CAC-pv∆s-last-sD is a slight improvement of AC-6, because some neg-

ative checks are avoided.

8 Adaptive algorithm

The advantage of adaptive algorithm is to avoid some pathological cases of each
algorithm. A property which exactly differentiates AC-2001 and AC-6 in regards
to the number of operations they need to establish arc consistency has been given
in [3]:

Property 1 The number of values that are considered to find the pending values
in:

• a pvD oriented algorithm is #(pvD) = |D(x)|.
• a pv∆s oriented algorithm is

#(pv∆s) = |∆(y)|+ ∑
b∈∆(y) |S-list[(y, b)]|

These two numbers are sufficient to differentiate AC-2001 and AC-6 because
they use both the same algorithm to find a support for a value. This is clearly
shown by their new names that are respectively CAC-pvD-last-sD and CAC-
pv∆s-last-sD. So, by considering the method to find the pending values that
studies the smallest number of values we can define an algorithm which is better
than any of two previous ones. We can use first a pv∆s oriented algorithm and
then switch to a pvD one and conversely.

Unfortunately, it is difficult to quickly compute #(pv∆s). The sum, indeed,
needs to consider every value of the delta domain independently. However, we
immediately have: #(pv∆s) ≥ 2|∆(y)|, and |∆(y)| can be incrementally main-
tained, thus we can consider that we know its value in O(1). Algorithm 7 is a
possible implementation of the functions selecting sMode and pvMode that is
used by Algorithm 2 (AC-2000 is taken into account in this function.) Switch-
ing from a type of algorithm to another one can also cause some other problems,
because the different types of algorithms do not use the same data structures.
When switching from an algorithm using a data structure to an algorithm that



Algorithm 7: Selection of pvMode and sMode
selectPendingValueMode(C,x,y,∆(y),pvMode):pvMode

if pvMode=pv∆c/pvD then
if |∆(y)| < 0.2|D(x)| then return pv∆c

return pvD

if pvMode=pvD/pv∆s then
if |D(x)| < 2.|∆(y)| then return pvD

if |D(x)|<|∆(y)|+∑
b∈∆(y)

|S-list[(y, b)]| then return pvD

return pv∆s

return pvMode

selectExistSupportMode(C, x, a, sMode) : sMode
if sMode=sD/sT then

if |D(x)| < |P-list[(x, a)]| then return sD

return sT

return sMode

does not use that data structure we have two possibilities: either the data struc-
ture is updated after switching, or it is systematically updated even if it is not
used. For the S-lists, the cost to maintain them is O(1) per deletion or addition
therefore the second solution is simpler. For the U-lists and the P-lists there is
no problem because they do not need to be updated.

We have seen that it is possible to change the way the pending values are
computed. Two other possibilities are: use ot not the inf parameter, and switch
from sD and sT and conversely. However, it is much more complicated to find
a good criteria of selection, because the lists are modified when using inf or sT.
Thus, at a given moment the size of the list can be not in favor of one method
but becomes strongly in favor of this method after its application. After some
experiments it appears that the switch from inf to no inf does not change anything,
and it appears that it is interesting to switch from sD to sT and conversely. If the
size of the domain is smaller than the size of the P-list then sD is selected, else
sT is selected. (see Algorithm 7.)

9 Experiments

We propose a comparisons of the MAC version of the algorithms on the well-
known RLFAPs benchmarks. We give the results only for instances SCEN#1,
SCEN#11, SCEN#8 because the results are quite representative (and also due
to the lack of space). No specific ordering are consider for the constraints (all
the algorithms consider the same ordering). For each algorithm we give the ratio
between the time needed by the algorithm to solve the problem over the time
needed by the best algorithm:



pv∆t •
pv∆c •
pv∆s • • • • • • •
pvD • • • • • • • •
last • • • • • • • •
inf • • •
sD • • • • • • • • •
sC •
sT • • •

#1 19.4 4.2 3.7 2.8 2.4 3.7 3.7 3.2 3.2 1.5 1.1 1
#11 15 7 6.8 4 3.3 2.6 2.5 1.8 1.8 1.7 1.1 1
#8 59.3 68.2 67.3 50 48 21 19 4 3 4 1.1 1

This results show clearly that the adaptive algorithm performs better than
non adaptive and that the sT algorithms are better than the others.

10 Conclusion

We have presented CAC a new configurable, generic and adaptive algorithm,
which is able to represent all existing algorithms. We have clearly differentiate
all the existing algorithms thanks to the identification a the most important
concepts. We have proposed new combination of concepts that perform well in
practice as shown by the experimental results we gave.
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