
Combination of Among and Cardinality
Constraints

Jean-Charles Régin

Computing and Information Science, Cornell University, Ithaca NY 14850 USA.
jcregin@cs.cornell.edu

Abstract. A cardinality constraint imposes that each value of a set V
must be taken a certain number of times by a set of variables X, whereas
an among constraint imposes that a certain number of variables of a set
X must take a value in the set V.

This paper studies several combinations of among constraints and sev-
eral conjunctions of among constraints and cardinality constraints. Some
filtering algorithms are proposed and they are characterized when it is
possible. Moreover, a weak form of Singleton arc consistency is consid-
ered. At last, it is shown how the global sequencing constraint and the
global minimum distance constraint can be easily modeled by some con-
junctions of cardinality and among constraints. Some results are also
given for the global minimum distance constraint. They show that our
study outperforms the existing constraints in ILOG Solver.

1 Introduction

Cardinality and among constraints are common to almost real-life prob-
lems. For instance, they are present in car sequencing (only some cars
of a sequence can take a given option), radio frequency allocation prob-
lems (only of node of a pair of adjacent nodes can take a frequency in
a set), rostering problems... The resolution of these applications can be
improved if we are able to better combine these constraints.

This paper proposes to study in detail the among constraint and the
combination of among constraints. We prove that the general problem of
the combination of among constraints is NP-Complete. Thus, we propose
to study some specific combinations which are tractable and for which
we give a filtering algorithm establishing arc consistency.

Then, we consider the conjunction of cardinality constraints and among
constraints and give arc consistency algorithms for two types of conjunc-
tion that are useful in practice. We also propose an original algorithm
which can be viewed as a weak form of Singleton arc consistency.

At last, we will show how to model the global sequencing constraint and
the global minimum distance constraint by some conjunctions of cardi-
nality and among constraints. We also give some results for the global
minimum distance constraint that outperform the existing constraint in
ILOG Solver.

2 Preliminaries

2.1 Graph Theory

These definitions are based on books of [1], [2], and [3].
A directed graph or digraph G = (X, U) consists of a node set X
and an arc set U , where every arc (u, v) is an ordered pair of distinct
nodes. We will denote by X(G) the node set of G and by U(G) the arc
set of G. A path from node v1 to node vk in G is a list of nodes [v1, ..., vk]
such that (vi, vi+1) is an arc for i ∈ [1..k − 1]. An undirected graph is
connected if there is a path between every pair of nodes. The maximal
connected subgraphs of G are its connected components. A directed
graph is strongly connected if there is a path between every pair of
nodes. The maximal strongly connected subgraphs of G are its strongly
connected components.
Let G be a graph for which each arc (i, j) is associated with two integers
lij and uij , respectively called the lower bound capacity and the up-
per bound capacity of the arc. A flow in G is a function f satisfying
the following two conditions1 :
• For any arc (i, j), fij represents the amount of some commodity that
can “flow” through the arc. Such a flow is permitted only in the indicated
direction of the arc, i.e., from i to j. For convenience, we assume fij = 0
if (i, j) 6∈ U(G).
• A conservation law is observed at each node: ∀j ∈ X(G) :

∑
i
fij =∑

k
fjk.

A feasible flow is a flow in G that satisfies the capacity constraint,
that is, such that ∀(i, j) ∈ U(G) lij ≤ fij ≤ uij .

Definition 1. The residual graph for a given flow f , denoted by R(f),
is the digraph with the same node set as in G. The arc set of R(f) is
defined as follows: ∀(i, j) ∈ U(G):
• fij < uij ⇔ (i, j) ∈ U(R(f)) and upper bound capacity rij = uij−fij.
• fij > lij ⇔ (j, i) ∈ U(R(f)) and upper bound capacity rji = fij − lij.

All the lower bound capacities are equal to 0.

2.2 Constraint Programming

A finite constraint network N is defined as a set of n variables X =
{x1, . . . , xn}, a set of current domains D = {D(x1), . . . , D(xn)} where
D(xi) is the finite set of possible values for variable xi, and a set C of
constraints between variables. D0 = {D0(x1), . . . , D0(xn)} to represent
the set of initial domains of N . Indeed, we consider that any constraint
network N can be associated with an initial domain D0 (containing D),
on which constraint definitions were stated.
A constraint C on the ordered set of variables X(C) = (xi1 , . . . , xir)

1 Without loss of generality (see p.45 and p.297 in [3]), and to overcome notation
difficulties, we will consider that if (i, j) is an arc of G then (j, i) is not an arc of G,
and that all boundaries of capacities are nonnegative integers.

is a subset T (C) of the Cartesian product D0(xi1)× · · · ×D0(xir) that
specifies the allowed combinations of values for the variables x1, . . . , xr.
An element of D0(x1) × · · · × D0(xr) is called a tuple on X(C). τ [x]
denotes the value of x in the tuple τ .
Let C be a constraint. A tuple τ on X(C) is valid if ∀x ∈ X(C), τ [x] ∈
D(x). C is consistent iff there exists a tuple τ of T (C) which is valid.
A value a ∈ D(x) is consistent with C iff x 6∈ X(C) or there exists a
valid tuple τ of T (C) with a = τ [x]. A constraint is arc consistent iff
∀xi ∈ X(C), D(xi) 6= ∅ and ∀a ∈ D(xi), a is consistent with C.

An instantiation of all variables that satisfies all the constraints is called
a solution of a CN. Constraint Programming (CP) proposes to search
for a solution by associating with each constraint a filtering algorithm
that removes some values of variables that cannot belong to any solution.
These filtering algorithms are repeatedly called until no new deduction
can be made. Then, CP uses a search procedure (like a backtracking
algorithm) where filtering algorithms are systematically applied when
the domain of a variable is modified.

We will use the following notations:

• x (resp. x) denotes the maximum (resp. minimum) value of D(x).

• D(X) denotes the union of domains of variables of X (i.e. D(X) =
∪xi∈XD(xi)).

• #(a, τ) is the number of occurrences of the value a in the tuple τ .

• #(a, X) is the number of variables of X such that a ∈ D(x).

2.3 Element Constraint

The element constraint has been introduced in [4]. It defines a functional
link between two variables. We propose a definition which is convenient
for our purpose.

Definition 2. Let f be a function2 from a set S1 to a set S2. An el-
ement constraint C is a binary constraint defined on two variables x
and y and associated with f and such that
T (C) = {τ s.t. τ is a tuple on {x, y} and τ [y] = f(τ [x])}
It is denoted by element(y, f, x).
We will say that a variable y is created by an element constraint
element(y, f, x) if y is defined with a domain equal to ∪a∈D(x)f(a)3 and
if the element constraint is added to the problem.

Note that it is easy to maintain arc consistency for an element constraint
because it is a functional constraint. This operation can be done in O(d),
where d is the size of the largest domain of x and y [5].

2 In mathematics, a function is a relation, such that each element of a set is associated
with a unique element of another set (possibly the same).

3 This means that the domain of x is not altered by the propagation after the definition
of y and the addition of the element constraint.

2.4 Cardinality Constraints

The Global Cardinality Constraints (GCC) has been proposed by
[6]. It constraints the number of times every value is taken to be in
an interval. In this initial definition, the intervals are statically given by
their lower and upper bounds. Then, it has been proposed by [7] and [8]
to deal with variables instead of interval. This version is more convenient
for our purpose:

Definition 3. A global cardinality constraint involving cardinal-
ity variables defined on a set of variables X and a set of variables K
and associated with a set of values V is a constraint C in which each
value a ∈ V is associated with a cardinality variable K[a] and
T (C) = {τ s.t. τ is a tuple on X(C) and ∀a ∈ V : K[a] = #(a, τ)}
It is denoted by gcc(X, V, K).

This constraint has been called cardVar-GCC, but we think that there is
no reason to differentiate it from a GCC because there is no ambiguity
to differentiate the parameters, this is why we will use the same name.
A GCC C is consistent iff there is a flow in an directed graph N(C)
called the value network of C [6]:

Definition 4. Given C = gcc(X, V, K) a GCC; the value network of
C is the directed bipartite graph N(C) in which each arc is associated
with a lower and an upper bound. The node set of N(C) is defined by:
• the set of variables X called the variable set of N(C);
• the set D(X) ∪ V called the value set of N(C);
• a node s called the source and a node t called the sink.

The arc set of N(C) is defined as follows:
• there is an arc from a variable x to a value a of (D(X) ∪ V) if and

only if a ∈ D(x). For every arc (x, a) we have lxa = 0 and uxa = 1;
• there is an arc from s to every variable x ∈ X. For every arc (s, x)

we have lsx = usx = 1.
• there is an arc from each value a ∈ D(X) ∪ V to the sink t. If a ∈ V

then lat = K[a] and uat = K[a] else lat = 0 and uat = |X|.
• there is an arc from t to s with lts = uts = |X|.

Proposition 1. [6] Let C be a GCC. Then,
• C is consistent if and only if there is a feasible flow in N(C).
• Let f be a feasible flow in N(C). A value a of a variable x ∈ X is not

consistent with C if and only if fxa = 0 and a and x do not belong to the
same strongly connected component in R(f).

The strongly connected component can be identified in O(n + m) for a
graph having n nodes and m arcs [9], thus arc consistency for the vari-
ables of X and for a GCC can be established with the same complexity.
With the previous definition of N(C) we have n = |X| + |D(X) ∪ V |
and m = (

∑
x∈X

|D(x)|) + n + 1. Note that we can merge all val-
ues of D(X) that does not belong to V into a single value represent-
ing the fact that a variable can be assigned to a value which is not in
V . This information can be easily maintained and in this case we have
m = (

∑
x∈X

|D(x) ∩ V |+ 1) + n + 1 which less than the previous value.
Arc consistency for the variables of K can be much more difficult to
compute as shown by [8]:

Proposition 2. [8] If the domain of each variable of K is a range of
integers then arc consistency for the variables of K can be established in
O(nm + n2.66), else the problem is NP-Complete.

However, a simple filtering algorithm based on constraints addition can
be associated with the variables of K [7]:

Proposition 3. Let C = gcc(X, V, K) be a GCC, and f be any feasible
flow in N(C). Then, we have:
• ∀ai ∈ V K[i] ≤ #(ai, X)
•
∑

ai∈V
K[i] ≤ |X| and if D(X) ⊆ V then

∑
ai∈V

K[i] = |X|
• for every connected component CC of GV (X) we have:

if vals(CC) ⊆ V then
∑

ai∈vals(CC))
K[i] = |vars(CC)|,

else
∑

ai∈vals(CC))
K[i] ≤ |vars(CC)|,

where vals(CC) denotes the values of V belonging to CC and vars de-
notes the variables of X belonging to CC and GV (X) is the value graph
of X that is GV (X) = (X,∪xi∈XD(xi), E) where (x, a) ∈ E iff a ∈ D(x).

Bound consistency of a sum constraint involving p variables can be es-
tablished in O(p). The strongly connected components of the residual
graph are computed to establish arc consistency of the variables of X,
thus bound consistency of the constraints of Proposition 3 can be imple-
mented in O(|K|).

3 The Among Constraint

Definition 5. An among constraint defined on a set of variables X
and a cardinality variable k and associated with a set of value V is a
constraint C such that
T (C) = {τ s.t. τ is a tuple on X(C) and k =

∑
a∈V

#(a, τ)}
It is denoted by among(X, V, k).

It is straightforward to design a filtering algorithm establishing arc con-
sistency for this constraint. For instance, we can associate with each
variable x of X a (0,1) variable xV defined as follows: xV = 1 if and only
if x = a with a ∈ V . Then the constraint can be rewritten

∑
xV = k.

Definition 6. Let C1 = among(X1, V1, k1) and C2 = among(X2, V2, k2)
be two among constraints. If X1 ∩ X2 = ∅ we will say that C1 and C2

are variable disjoint. If V1 ∩ V2 = ∅ we will say that C1 and C2 are
value disjoint.

We propose to study whether it is possible to design some efficient fil-
tering algorithms associated with a conjunction of among constraints.
Three possible relations between among constraints:
1. the among constraints are variable disjoint.
2. the among constraints are value disjoint.
3. none of the previous property is satisfied.

Variable disjoint among constraints are totally independent and therefore
it is trivial to study their conjunction.

3.1 Value disjoint among constraints

Consider A = {A1, A2, ..., An} a set of n among constraints that are pair-
wise value disjoint where every Ai is equal to among(Xi, Vi, ki). This set
of constraints can be efficiently combined by transforming the conjunc-
tion into another conjunction for which arc consistency can be efficiently
established. This transformation requires to define new variables from
the initial variables involved in the among constraints.
First, since all the Vi sets are disjoint, we can define the following function
ndx:

Definition 7. For any value a if there exists vi such that a ∈ Vi, then
ndx(a) = i, else ndx(a) = −1.

Then, we associate every variable xi involved in an among constraint
with a more complex function denoted by fInd

i :

Definition 8. Let Ind be the triplet (A, U, α) where A is a set of value
disjoint among constraints, each of them defined on a subset of X and
associated with a subset of V ; U = {u1, u2, ..., un} is a set of pairwise
distinct values with U ∩ (V ∪ D(X)) = ∅, and α is a value s.t. α 6∈
(U ∪ V ∪ D(X)). For each variable xi ∈ X we define function fInd

i

as follows: ∀a ∈ D(x) with k = ndx(a) if k 6= −1 and x ∈ Xk then
fInd

i (a) = uk else fInd
i (a) = α.

Now, for each variable xi ∈ X a variable yi is created by the element
constraint element(yi, f

Ind
i , xi). Let Y be the set of these newly created

variables.

Example Consider seven variables x1, x2, ..., x7, each having a domain
equal to [0..7] and 3 among constraints A1=among({x1, x2, x3, x4},{0,1},k1),
A2 =among({x2, x4, x5, x6},{2,3},k2), A3 =among({x3, x4, x6, x7},{4,5},k3).
We have A = {A1, A2, A3) and we define Ind = (A, {u1, u2, u3}, α).
Then, we obtain D(y1)={u1, α}, D(y2)={u1, u2, α}, D(y3)={u1, u3, α},
D(y4) = {u1, u2, u3, α}, D(y5) = {u2, α}, D(y6) = {u2, u3, α}, D(y7) =
{u3, α}. For instance, we have D(y2) = {u1, u2, α} because x2 belongs
to X(A1) and X(A2) and so the values of {0, 1} of x2 correspond to the
value u1 of y2 and the values of {2, 3} of x2 correspond to the value u2

of y2 and the other values of x2 are associated with the value α of y2.
All the variables created by element constraints take their values from
the set {u1, u2, ..., un} ∪ {α}, then by constraining the number of times
these values are taken, we constrain at the same time the number of
times any value of a set Vi is taken, and due to the definition of the
variables created by element constraints we count only the variables of
Xi that take a value in Vi.
The following proposition formally shows the link between a conjunction
of among constraints and only one GCC:

Proposition 4. The establishment of the arc consistency for the con-
junction of value disjoints among constraints constraints {A1, A2, ..., An}
is equivalent to establishing arc consistency for the constraint network
containing the element constraints {element(yi, f

Ind
i , xi), xi ∈ X} and

the GCC: gcc(Y, U, {k1, k2, ..., kn}).

Proof. We can establish arc consistency for the conjunction of the con-
straints {element(yi, f

Ind
i , xi), xi ∈ X} and gcc(Y, U, {k1, k2, ..., kn}) by

establishing arc consistency of the constraint network (CN) consisting
of these constraints, because the constraint graph associated with this
constraint network is an hyper-graph without any cycle and whose every
pair of edges have at most one node (i.e. variable) in common. Thus, arc
consistency for this CN is equivalent to arc consistency for the constraint
equals to the conjunction of all the constraints in the network. Moreover,
from any solution of the CN defined by {A1, A2, ..., An} we can build a
solution of the CN define by the element constraints and the GCC, and
conversely. Therefore the proposition holds. ut

3.2 General conjunction

Proposition 5. Finding a tuple on the variables of X involved in among
constraints is an NP-Complete problem in general.

Proof. This problem is obviously in NP (easy polynomial certificate). We
transform the NP-Complete problem Tripartite Matching (see [10])
to this problem. Tripartite Matching is:
Instance: Three sets B, G and H each containing n elements and a
ternary relation T ⊆ B × G ×H. Question: find a set of n triples in T ,
no two of which have a component in common.
We define a set X of n variables, each having a domain equal to [1..|T |].
For every pair {ti, tj} of elements of T having a component in common
we define the among constraint: among(X, {i, j}, {0, 1}). This constraint
ensures that at most one of the element of {ti, tj} can be assigned to a
variable of X. This model exactly solves Tripartite Matching. ut
However, it is possible to define some links between the cardinality vari-
ables of two among constraints.

Proposition 6. Let A1 =among(X1, V1, k1) and A2 =among(X2, V2, k2)
be two among constraints such that X1∩X2 6= ∅ and V1∩V2 6= ∅. Then,
we have:
k1 = k(X1∩X2)→(V1∩V2) + k(X1∩X2)→(V1−V2) + k(X1−X2)→V1

k2 = k(X1∩X2)→(V1∩V2) + k(X1∩X2)→(V2−V1) + k(X2−X1)→V2

where: kY→W is the number of times the values of W are taken by the
variables of Y .

The proof of this proposition is straightforward. The sum constraints
introduced by this proposition can be easily added to the constraint
network and then the filtering algorithms associated them reduce the
domain of the cardinality variables. This idea is more general and easier
to understand than the algorithm proposed by [11] to combine sequences.

4 Integration of some Among Constraints into
Cardinality Constraints

We have seen that under some conditions it is possible to establish arc
consistency for some conjunctions of among constraints. In this section

we show that the same kind of result can be obtained by adding a GCC
to some conjunctions of among constraints.

Definition 9. Let X be a set of variables and V be a set of values.
• an X-among constraint is an among constraint defined on the set X of

variables and on another variable q, that is of the form among(X, W, q).
• a V-among constraint is an among constraint associated with the set

of value V .

4.1 Cardinality Constraint and value disjoint X-among
constraints
We propose a filtering algorithm establishing arc consistency for the vari-
ables of X for a conjunction of a GCC and a set of value disjoint among
constraints defined on the same set of variables X.
The efficient algorithm of the GCC is based on the flow theory and
uses a specific network. The X-among constraints only introduce new
constraints on the cardinality variables of the GCC. Since the among
constraints are pairwise value disjoint there is no problem to take into
account these new constraints: a slight modification of the value network
is sufficient.

Definition 10. Given G = gcc(X, V, K) and A = {A1, A2, ..., An} a
set of value disjoint among constraint such that Ai = among(X, Vi, ki);
the value network of C = (G∪A) is the directed bipartite graph N(C)
obtained from N(G) (the bipartite network associated with G), as follows:
For each set of values Vi of an among constraint:
• a new node wi is defined
• for each value a in Vi, the arc (a, t) is replaced by the arc (a, wi) which

has the same lower and upper bounds as (a, t)
• an arc (wi, t) with lwit = ki and uwit = ki is added.

Then we immediately have a proposition similar to Prop.1:

Proposition 7. Given G = gcc(X, V, K), A = {A1, A2, ..., An} a set
of value disjoint X-among constraints, C = G ∪ A the conjunction of
G and A, and N(C) be the bipartite value network associated with this
conjunction. Then,
• C is consistent if and only if there is a feasible flow in N(C).
• let f be a feasible flow in N(C). A value a of a variable x ∈ X is not

consistent with C if and only if fxa = 0 and a and x do not belong to the
same strongly connected component in R(f).

The previous proposition is dedicated to the variables of X. We can ob-
tain a filtering algorithm for the cardinality variables by adding for each
among constraint Ai =among(X, Vi, ki) the constraint

∑
a∈Vi

K[a]= ki.
Note that it is possible to take into account some among constraints
defined on a superset Y of X. In this case, we can transform the problem
into an equivalent one for which all constraints are defined on the very
same set. This transformation uses function fInd

i (See Def.8.) For every
variable yi of Y −X, a variable zi is created by the element constraint
element(zi, f

Ind
i , yi). Let Z be the set of newly created variables. Then,

the initial GCC is replaced by the gcc(X ∪ Z, V, K) and each among
constraint Ai is replaced by the constraint among(X ∪ Z, (Vi ∩ V) ∪
{ui}, ki).

4.2 Cardinality Constraint and variable disjoint
V-among constraints

We propose a filtering algorithm establishing arc consistency for the vari-
ables of X for a conjunction of a GCC and a set of variable disjoint among
constraints associated with the same set of values V . We will assume that
the GCC is also associated with V and that the V-among constraints are
defined on subset of variables of X.
This conjunction of constraints can be efficiently taken into account by
transforming it into another conjunction for which arc consistency can
be efficiently established. This transformation has been proposed by [11]
and requires the definition of new variables called abstract variables. In
this section, we give a more more simple version of this transformation.

Definition 11. Let Red be the pair (A, U) where A is a set of n variable
disjoint among constraints, each of them defined on a subset of X and
associated with V ; U = {u1, u2, ..., un} is a set of pairwise distinct values
with U ∩ (V ∪D(X)) = ∅. For each variable xi ∈ X we define function
fRed

i as follows: ∀a ∈ D(xi) if a ∈ V then fRed
i (a) = a else fRed

i (a) = uk,
where k is the index of the among constraint involving xi.

Now, for each variable xi ∈ X a variable yi is created by the element
constraint element(yi, f

Red
i , xi). Let Y be the set of these newly created

variables. The following proposition is a reformulation of the proposition
given in [11]:

Proposition 8. Given G = gcc(X, V, K) and A = {A1, A2, ..., An} a
set of n V-among constraints that are pairwise variable disjoint. We de-
note by X the set of variables of X that do not belong to any Xi. For
each among constraint Ai = among(Xi, V, ki), we define the variable
KA[ui] = |Xi| − ki. Then, we have:
The establishment of the arc consistency for the conjunction of vari-
able disjoint V-among constraints {A1, A2, ..., An} and a gcc(X, V, K) is
equivalent to establishing arc consistency for the constraint network con-
taining the element constraints {element(yi, f

Red
i , xi), xi ∈ X} and the

GCC: gcc(X ∪ Y, V ∪ U, K ∪KA).

It is possible to take into account some among constraints defined on a
superset Y of X by applying the transformation proposed in the previous
section.

5 Stronger Filtering Algorithm

In this section we propose an efficient algorithm to study some of the
consequences of the instantiation of a variable for a GCC combined with
some among constraints. In general, the conjunction of some among con-
straint can be an NP-Complete problem. However, we have shown in
the previous sections that under some conditions, we can efficiently es-
tablish arc consistency for the conjunction of a GCC and some among
constraints.

Therefore, in practice, a set of GCCs and a set of among constraints
will be modeled by a set of such conjunctions of constraints in addi-
tion to some among constraints and some GCCs. The conjunction of all
constraints is managed by the propagation mechanism. It is sometimes
worthwhile to try to deduce more information by using techniques like
Singleton Arc Consistency, shaving or probing. The common idea of these
methods is to instantiate some variables and to trigger the propagation
mechanism after such an instantiation while expecting that a failure will
occur. In this case, indeed, we know that the instantiation does not lead
to any solution and so we can remove the value that was assigned from
the domain of the selected variable. Unfortunately, these methods have
a cost which is often too high in practice and prevent us from using
them, at least if we consider all the possible instantiations. In fact, if
we have n variables and d values in the domains of the variables, then
nd instantiations will have to be considered and possibly several times
because after a modification the constraint network has changed. Thus,
some methods propose to consider only a subset of the variables and/or
a subset of values and/or a subset of constraints.
In this section we will consider a problem containing C = gcc(X, V, K)
a GCC and some other constraints mainly dealing with the cardinality
variables of the GCC. Our goal is to perform a stronger level of con-
sistency, that is to prune more the domains of the variables of X, but
we would like to avoid to be too much systematic. We aim to study the
consequences for the cardinality variables of all possible instantiations of
the variables of X. We focus our attention on the cardinality variables
because these are these variables that can modify the most the problem.
A possible algorithm consists of successively trying all the possible in-
stantiations of the variables of X and then to use the most powerful
filtering algorithm associated with a GCC involving cardinality vari-
ables. However, this method requires to call nd times an algorithm in
O(nm + n2.66) (see Prop. 2) which certainly prevent us from using it.
Another possibility is to use a weaker filtering algorithm for the cardi-
nality variables. For instance, the algorithm based on Proposition 3. The
advantage of this algorithm is that it has the same complexity as the es-
tablishment of the arc consistency for the GCC (i.e. O(m)). Thus we will
have an new algorithm in O(ndm) if we try each possible instantiation
once.
In this section we present another algorithm with an O(dm) time com-
plexity, which is much more acceptable in practice.
The filtering algorithm of a GCC is based on the concepts of Hall variable
set and Hall value set:

Definition 12. Let gcc(X, V, K) be a GCC.
• An Hall variable set is a set of variables A ⊆ X such that

|A| =
∑

a∈D(A)

K[a]

• An Hall value set is a set of values V ⊆ D(X) such that∑
v∈V

K[v] = |vars(V)|, where vars(V) is the set of variables having a

value of V in their domain.

Proposition 9. Let C = gcc(X, V, K) be a GCC.
• if A is an Hall variable set then every value (x, a) with x ∈ (X − A)

and a ∈ D(A) is not consistent with C.
• if V is an Hall value set then every value (x, a) with x ∈ vars(V) and

a 6∈ V is not consistent with C.
• if a value (x, a) is not consistent with C then one of the previous

property can prove that (x, a) is not consistent with C.

The last property of the previous proposition proved that the application
of the two first properties is sufficient to remove all the values that are
not consistent with C. We have the straightforward proposition:

Proposition 10. Let C = gcc(X, V, K) be a GCC, f be a feasible flow
in N(C), A be an Hall variable set and V be an Hall value set.
(1.a) ∀a ∈ D(A) K[a] = K[a].
(1.b) the variables of A belong to strongly connected components of R(f)

that do not contain t.
(2.a) ∀v ∈ V K[v] = K[v].
(2.b) the variables of vars(V) belong to strongly connected components

of R(f) that do not contain t.

We propose to add to the problem some new among constraints, which
in some cases lead to direct filtering algorithm. For this purpose we
introduce the concept of pseudo Hall set:

Definition 13. • A pseudo Hall variable set is a set of variables

A ⊆ X such that |A| = (
∑

a∈D(A)

K[a])− 1

• A pseudo Hall value set is a set of values V ⊆ D(X) such that∑
v∈V

K[v] = |vars(V)| − 1

Then, suppose that A is a pseudo Hall variable set. If a variable of X−A
is instantiated with a value of D(A) then the set A will become an Hall
variable set and by Prop.10 the cardinality variables associated with the
values of D(A) can be set to their maximum value. So, the instantiation
of one variable may imply the instantiation of some other variables that
can have a huge impact on the problem. Similarly, suppose that V is a
pseudo Hall value set. If a variable of vars(V) is instantiated to a value
which is not in V then V will become an Hall value set and by Prop.10
the cardinality variables associated with the values of V can be set to
their minimum value. Once again, the instantiation of one variable may
imply the instantiation of some other variables.
Pseudo Hall sets can be identified by removing values from the domains
of some variables. Once a pseudo Hall set is identified we know that
by instantiating some variables we can also instantiated some cardinal-
ity variables. Then, we propose to instantiate these cardinality variables
and to trigger the propagation. If a failure occurs then we know that the
creation of this Hall set is not possible and we introduce a constraint pre-
venting its creation. More precisely, if we identify a pseudo Hall variable
set A whose a variable contains a value b in its domain and if the prob-
lem has no solution when b is taken by y 6∈ A then we can introduce the

constraint ensuring that at least one variable of A will take the value b.
Similarly, if we identify V a pseudo Hall value set with a set of variables
Y ∈ vars(V) and if the problem has no solution when the variables of Y
are instantiated to a value b 6∈ V then we can introduce the constraint
ensuring that at least one variable of Y must take a value of V .

In order to identify some pseudo Hall sets we propose to remove in turn
each value. When a value is removed the variables instantiated to it are
also removed. Therefore the current flow of the GCC is still a feasible
flow in the new residual graph and we can establish arc consistency for
the GCC in O(m). This procedure will compute new strongly connected
component in R(f) and from Prop.10 we can identify some Hall sets from
them. Then, we need to identify among these Hall sets which ones are
pseudo Hall sets in the original GCC. This step is necessary because a
newly created Hall sets can be independent of any pseudo Hall set. Note
that it is useless to consider values belonging to the domain of variables
of an Hall set.

Algorithm 1:
StrongerFilteringAlgorithm(C, f)

Let Scc(t) be the strongly connected component containing t in R(f)
for each value a ∈ Scc(t) do

Q(f) ← R(f)
remove from Q(f) the value a and the set of variables Y = {y s.t. fya = 1}
compute the strongly connected components of Q(f)
for each strongly connected component S with t 6∈ S do

if vars(S) is a pseudo Hall variable set of C then
instantiate the cardinality variable of S to their maximal value
trigger the propagation
if a failure occurs then

add the constraint among(vars(S), {a}, [1..|vars(S)|])

if vals(S) is a pseudo Hall value set of C then
instantiate the cardinality variable of S to their minimal value
trigger the propagation
if a failure occurs then

add the constraint among(Y, vals(S), [1..|Y |])

StrongerConsistencyWithAlldiff(C, f)
Let Scc(t) be the strongly connected component containing t in R(f)
for each value a ∈ Scc(t) do

Q(f) ← R(f)
remove from Q(f) the value a and the variable y with fya = 1
compute the strongly connected components of Q(f)
for each strongly connected component S with t 6∈ S do

if vars(S) is a pseudo Hall variable set of C then
instantiate the cardinality variable of S to 1
trigger the propagation
if a failure occurs then

remove b from the domain of the variables of X − vars(S)

Algorithm 1 contains an implementation of the procedure we have de-
scribed and a specific procedure when the GCC is an alldiff constraint. In
fact, this algorithm is complex in general, but it can be simplified when
the GCC is an alldiff constraint (like for the allMinDistance constraint),
because there is no Hall value set when all the lower bound capacities
are equal to 0. In addition, instead of adding an among constraint we
can directly remove the value a from the domain of the variables that
are not in the pseudo Hall variable set.

An example of this algorithm is presented in next section.

6 Application to the Global Minimum Distance
Constraint

This constraint has been proposed by [12] and is mentioned in [13–15].
A global minimum distance constraint defined on X, a set of variables,
states that for any pair of variable x and y of X the constraint |x−y| ≥ k
must be satisfied.

Definition 14. A global minimum distance constraint is a con-
straint C associated with an integer k such that
T (C) = {τ s.t. τ is a tuple of X(C) and ∀ai, aj ∈ τ : |ai − aj | ≥ k}

This constraint is present in frequency allocation problems.
A filtering algorithm has been proposed for this constraint [12]. Note
that there is a strong relation between this constraint and the sequence
constraint. A 1/q sequence constraint constrained two variables assigned
to the same value to be separated by at least q − 1 variables, in regard
to the variable ordering. Here we want to select the values taken by a set
of variables such that are all pairs of values are at least k units apart.

This constraint is simply a conjunction of X-among constraints. For
each value a ∈ D(X) we define the among constraint among(X, [a..a +
k], [0, 1]). Then the global minimum distance constraint is equivalent to
the conjunction of these X-among constraints. If we define a GCC C stat-
ing that each value of D(X) has to be taken at most once by a variable of
X (in other words an alldiff constraint) then we can model the global min-
imum constraint by using any several conjunctions of C and a set of value
disjoint X-among constraints. Of course the model also uses the general
conjunction of among constraints that we have proposed. The model will
be equivalent to the global minimum distance constraint provided that
each X-among constraint belongs to at least one conjunction. Note that
it is possible to use in the conjunction less constrained among constraints
for instance the constraint among(X, [a..a+k], [0, 1]) can be replaced by
any among constraint among(X, V, [0, 1]) where V ⊆ [a..a + k]. This can
be useful to ensure that every value of D(X) is covered by an among
constraint in the conjunction with C.

This model is powerful. For instance consider the following problem in-
volving 3 variables x, y and z with D(x) = D(y) = {1, 2, 3}, D(z) =
{0, 1, 2, 3, 4, 5} and a minimal distance equals to 2. The constructive dis-
junction will obtain the new domains: D(x) = D(y) = {1, 3} and D(z) =
{0, 1, 3, 4, 5} whereas the conjunction we propose of an alldiff constraint
and the among constraints: among(X, [0, 1], [0, 1]), among(X, [2, 3], [0, 1]),
and among(X, [4, 5], [0, 1]) will deduce that z cannot be assigned neither
to [0, 1] nor to [2, 3]. In addition, the propagation between the among
constraints leads to D(x) = D(y) = {1, 3}, and D(y) = {5}.
Moreover, consider now that the initial domains are D(x) = {0, 4},
D(y) = {1, 3} and D(z) = {2, 3, 4, 5}. For this problem only the stronger
filtering algorithm that we have presented is able to deduce that the only
one solution is x = 0, y = 3 and z = 5. This algorithm outperforms the
allMinDistance constraint of ILOG Solver.

We have also tested our algorithm on some problems for instance the
Radio Link Frequency Allocation Problem. In order to build some global
minimum distance constraints some cliques with a good distance value
have been identified. Then, with the filtering algorithm that we have
proposed we have seen dramatic improvement for some instances and
mainly without specific strategies for selecting the next variable and the
next value. For instance, Problem 11 is solved with the new constraint
in 1s instead of 150s without it.

7 Application to the Global Sequencing
Constraint

These constraints arise in many real-life problems such as car sequenc-
ing and rostering problems where a lot of min/max constraints have to
be verified for each period of q consecutive time units. In a rostering
problem, one has to chose a type of work for each day, satisfying various
constraints. Sequencing constraints are useful for expressing regulations
such as:

– each sequence of 7 days must contain at least 2 days off.
– A worker cannot work more than 3 night shifts every 8 days.

A global sequencing constraint is a gcc for which for each sequence Si of
q consecutive variables of X, the number of variables of Si instantiated
to any value vi ∈ V ⊆ D(C) must be in an interval [min, max].

Definition 15. [11] A global sequencing constraint is a constraint
C associated with three positive integers min, max, q and a subset of
values V ⊆ D(C) in which each value ai ∈ D(C) is associated with two
positive integers li and ui and
T (C) = { t such that t is a tuple of X(C)

and ∀ai ∈ D(C) : li ≤ #(ai, t) ≤ ui

and for each sequence S of q consecutive
variables: min ≤ ∑

vi∈V
#(vi, t, S) ≤ max}

It is noted gsc(X(C), V, min, max, q, l, u), where l = {li} and u = {ui}.
This constraint is simply a conjunction of V-among constraints.
For each variable xi ∈ X we define the among constraint
among({xi, ..., xi+q}, V, [min, max]). Then the global sequencing con-
straint is equivalent to the conjunction of these X-among constraints
and the GCC C = gcc(X, V, K), where K[i] = [li, ui]. We can model the
global sequencing constraint by using several conjunctions of C with a
set of variable disjoint V-among constraints. Of course the model also
uses the general conjunction of among constraints that we have proposed.
The model will be equivalent to the global sequencing constraint provided
that each V-among constraint belongs to at least one conjunction. Note
that it is possible to use in the conjunction less constrained among con-
straints for instance the constraint among({xi, ..., xi+q}, V, [min, max])
can be replaced by any among constraint among(Y, V, [min, max]) where
Y ⊆ {xi, ..., xi+q}. This can be useful to ensure that every variable of X
is covered by an among constraint in the conjunction with C.

8 Conclusion

In this paper we have studied several combinations of among constraints
and several conjunctions of among constraints and cardinality constraints.
For each considered combination we have proposed an efficient filtering
algorithm establishing arc consistency when it was possible. We have
also shown that in general the combination of among constraints is an
NP-Complete problem. In addition, we have proposed an original algo-
rithm which can be viewed as a weak form of Singleton arc consistency.
At last, we have proposed to model the global sequencing constraint and
the global minimum distance constraint by conjunctions of cardinality
and among constraints. We have also given some results for the global
minimum distance constraint that outperform the existing constraint in
ILOG Solver.

References

1. Berge, C.: Graphe et Hypergraphes. Dunod, Paris (1970)
2. Tarjan, R.: Data Structures and Network Algorithms. CBMS-NSF

Regional Conference Series in Applied Mathematics (1983)
3. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice Hall

(1993)
4. Van Hentenryck, P., Carillon, J.P.: Generality Versus Specificity: An

Experience with AI and OR Techniques. In: Proceedings of AAAI-
88. (1988)

5. Van Hentenryck, P., Deville, Y., Teng, C.: A generic arc-consistency
algorithm and its specializations. Artificial Intelligence 57 (1992)
291–321

6. Régin, J.C.: Generalized arc consistency for global cardinality con-
straint. In: Proceedings AAAI-96, Portland, Oregon (1996) 209–215

7. Régin, J.C., Gomes, C.: The cardinality matrix constraint. In:
CP’04, Toronto , Canada (2004) 572–587

8. Quimper, C.G., López-Ortiz, A., van Beek, P., Golynski, A.: Im-
proved algorithms for the global cardinality constraint. In: Proceed-
ings CP’04, Toronto, Canada (2004) 542–556

9. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM
Journal of Computing 1 (1972) 146–160

10. Papadimitriou, C.H.: Computational complexity. Addison Wesley
(1994)

11. Régin, J.C., Puget, J.F.: A filtering algorithm for global sequencing
constraints. In: CP97, proceedings Third International Conference
on Principles and Practice of Constraint Programming. (1997) 32–46

12. Régin, J.C.: The global minimum distance constraint. Technical
report, ILOG (1997)

13. ILOG: ILOG Solver 4.4 User’s manual. ILOG S.A. (1999)
14. Régin, J.C.: Global Constraints and Filtering Algorithms. In: Con-

straints and Integer Programming combined. M. Milano ed, Kluwer
(2003)

15. Régin, J.C.: Modélisation et Contraintes globales en programmation
par contraintes. Habilitation à diriger des Recherches, Université de
Nice-Sophia Antipolis (2004)

