
The Cardinality Matrix Constraint ?

Jean-Charles Régin1 and Carla Gomes2

regin@ilog.fr, gomes@cs.cornell.edu

1ILOG, 1681, route des Dolines, 06560 Valbonne, FRANCE
2Computing and Information Science, Cornell University, Ithaca NY 14850 USA

Abstract. Cardinality matrix problems are the underlying structure
of several real world problems such as rostering, sports scheduling , and
timetabling. These are hard computational problems given their inherent
combinatorial structure. Constraint based approaches have been shown
to outperform other approaches for solving these problems. In this pa-
per we propose the cardinality matrix constraint, a specialized global
constraint for cardinality matrix problems. The cardinality matrix con-
straint takes advantage of the intrinsic structure of the cardinality matrix
problems. It uses a global cardinality constraint per row and per column
and one cardinality (0,1)-matrix constraint per symbol. This latter con-
straint corresponds to solving a special case of a network flow problem,
the transportation problem, which effectively captures the interactions
between rows, columns, and symbols of cardinality matrix problems. Our
results show that the cardinality matrix constraint outperforms standard
constraint based formulations of cardinality matrix problems.

1 Introduction

In recent years Constraint Programming (CP) techniques have been shown to
effectively solve hard combinatorial problems. In fact, constraint based methods
excel at solving problems that are inherently combinatorial, clearly outperform-
ing traditional Operations Research (OR) techniques. Sports scheduling and ros-
tering problems are good examples of highly combinatorial problems, for which
CP based techniques have been shown to be very successful (see e.g., [11, 5]).

In a rostering problem, given a set of workers, a set of tasks, and a set
of days (typically a week), the goal is to assign the tasks per person and per
day satisfying various constraints. Among them, typical constraints require the
workload per day to be constrained by the number of times each task has to be
performed, and the schedule of each person to be constrained by the number of
times each task has to be performed.

Sports scheduling problems and rostering problems are particular cases of
what we refer to as cardinality matrix problems. Cardinality matrix problems
are expressed by a matrix of variables where each row and each column are
constrained by cardinality constraints, that is by constraints that define the
? Supported by the Intelligent Information Systems Institute, Cornell University

(AFOSR grant F49620-01-1-0076) and EOARD grant FA8655-03-1-3022.

number of times each value in a row or in a column has to be assigned to
variables. We can model the rostering problem as a cardinality matrix problem
in which each row of the matrix corresponds to a worker and each column of the
matrix corresponds to a day of the week. The values in the matrix correspond to
tasks. The cardinality constraints on the rows constrain the number of tasks to
be assigned per worker and the cardinality constraints on the columns constrain
the number of task to be assigned daily.

A straightforward model for representing cardinality matrix problems, e.g.,
rostering problems, consists of:

• a matrix of variables, in which each variable corresponds to a cell that
takes as value the task to be performed on a given day by a given person. The
variable domains are the set of tasks that can be performed by a given person
for a given day.

• a global cardinality constraint (GCC) for every row, which constrains the
number of times each task has to be performed by the person corresponding to
the row.

• a global cardinality constraint for every column, which constrains the num-
ber of times each task has to be performed for the day corresponding to the
column.

This formulation uses several global constraints and can give good results in
practice. However, it suffers from some major drawbacks, namely:

1. There is poor communication between the variables constraining the number
of times a value has to be taken, called cardinality variables.

2. The communication between the rows and the columns is poor. In fact, any
GCC defined on a row and any GCC defined on a column have only one
variable in common. This means that we have an efficient way to deal with
all the variables of a row (or a column) as a whole, but we are not able to
really deal with the notion of a matrix.

3. The GCCs deal with a set of predefined intervals constraining for each value
the number of times the value has to be assigned. In real-life problems, vari-
ables defining these intervals are more often used. Even if it is easy to deduce
intervals from these variables, because it corresponds to the boundaries of
these variables, we do not have filtering algorithms to reduce their ranges
in the general case (such a filtering algorithm has been proposed when the
domains of the variables on which the GCCs are defined are ranges [9]).

The communication between constraints mentioned in (1) and (2) can be
improved by adding implied constraints. An implied constraint for a given CSP
is a constraint that can be deduced from the other constraints of the CSP,
but which introduces a filtering algorithm that can reveal inconsistencies which
are not discovered by the combination of the filtering algorithms of the other
constraints. So the introduction of implied constraints can lead to a reduction
of the number of backtracks needed to find one solution or to prove that there
is none. The introduction of implied constraints can improve dramatically the

efficiency of search since it allows for the detection of inconsistencies earlier than
it would be possible if such constraints were not stated explicitly (see e.g., [3]).

The limitation stated in point (2) deserves a more careful study. Consider a
restricted form of the cardinality matrix problems: the alldiff matrix problem[8].
In this case, each value has to be assigned at most once in each row and each
column. The alldiff matrix characterizes the structure of several real world prob-
lems, such as design of scientific experiments or fiber optics routing. Consider
the following example: a 6x6 matrix has to be filled with numbers ranging from
1 to 6 (this is a latin square problem). A classical model in CP consists of defin-
ing one variable per cell, each variable can take a value from 1 to 6, and one
alldiff constraint per row and one alldiff constraint per column. Now, consider
the following situation:

1 2
2 1
3 4
4 5

• • • •
• • • •

In this case, the alldiff constraints are only able to deduce that:
• only the values 5 and 6 can be assigned to the cells (5, 3) and (6, 3)
• only the values 3 and 6 can be assigned to the cells (5, 4) and (6, 4).

However, with a careful study we can see that the value 6 will be assigned
either to (5, 3) and (6, 4) or to (5, 4) and (6, 3) this means that the other columns
of rows 5 and 6 cannot take these values and therefore we can remove the value 6
from the domains of the corresponding variables (the ones with a • in the figure).
We will show how our approach, using what we refer to as the cardinality (0,1)-
matrix, automatically performs these inferences.

One of the key successful approaches in CP has been the identification of typ-
ical constraints that arise in several real-world problems and associate with them
very specialized and efficient filtering algorithms, so-called global constraints. In
recent years several global constraints have been proposed and shown to boost
dramatically the performance of CP based techniques.

We propose the cardinality matrix constraint to capture the structure of
cardinality matrix problems such as the rostering problem. A cardinality matrix
constraint (cardMatrix) C is specified in terms of an n×m matrix M of variables
which take their values from a set of s symbols, and two sets (rowCard and
colCard) of cardinality variables that specify the number of times each symbol
has to appear in a row (rowCard) and the number of times each symbol has to
appear in a column (colCard). More specifically, the set of cardinality variables
rowCard constrains the number of variables of a row i of M instantiated to
a symbol p to be equal to rowCard[i, p] and the set of cardinality variables
colCard constrains the number of variables of a column j of M instantiated to a
symbol q to be equal to colCard[j, q]. In order to take advantage of the structure

underlying the cardinality matrix constraint we introduce a constraint named
cardinality (0,1)-matrix. The cardinality (0,1)-matrix is a particular case of a
network flow problem, the transportation problem. This constraint effectively
captures the interactions between rows, columns, and symbols in a cardinality
matrix problem. We also develop a simple filtering algorithm for the cardinality
matrix constraint with a low complexity that enables us to reduce the ranges of
the cardinality variables. As we show in our experimental section, we obtain very
promising results which allow us to solve problems that could not be solved before
with constraint programming techniques. We also compare the performance of
our approach against standard formulations of a cardinality matrix problems.
We obtain dramatic speed ups with our approach.

The rest of the paper is organized as follows: In the next section we define our
notation and present definitions concerning constraint programming and graph
theory. We then roughly present the cardinality matrix constraint and propose
a simple filtering algorithm for reducing the ranges of cardinality variables of a
GCC. Next, we introduce the Cardinality (0,1)-Matrix Constraint followed by
the description of a filtering algorithm for the Cardinality Matrix Constraint.
We present experimental results in section 7, followed by conclusions.

2 Preliminaries

D0 = {D0(x1), . . . , D0(xn)} to represent the set of initial domains of N . Indeed,
we consider that any constraint network N can be associated with an initial
domain D0 (containing D), on which constraint definitions were stated.
A constraint C on the ordered set of variables X(C) = (xi1 , . . . , xir) is a
subset T (C) of the Cartesian product D0(xi1) × · · · × D0(xir) that specifies
the allowed combinations of values for the variables x1, . . . , xr. An element of
D0(x1)× · · · ×D0(xr) is called a tuple on X(C). τ [x] denotes the value of x in
the tuple τ .
Let C be a constraint. A tuple τ on X(C) is valid if ∀x ∈ X(C), τ [x] ∈ D(x). C
is consistent iff there exists a tuple τ of T (C) which is valid. A value a ∈ D(x)
is consistent with C iff x 6∈ X(C) or there exists a valid tuple τ of T (C)
with a = τ [x]. A constraint is arc consistent iff ∀xi ∈ X(C), D(xi) 6= ∅ and
∀a ∈ D(xi), a is consistent with C.

The value graph of a set of variables X is the bipartite graph GV (X) =
(X,∪xi∈XD(xi), E) where (x, a) ∈ E iff a ∈ D(x).

We recall the formal definition of a global cardinality constraint:

Definition 1 A global cardinality constraint C defined on X and associated
with a set of values V with D(X) ⊆ V is a constraint in which each value ai ∈ V
is associated with two positive integers li and ui with li ≤ ui and
T (C) = { τ s.t. τ is a tuple on X(C)

and ∀ai ∈ V : li ≤ #(ai, τ) ≤ ui}
It is denoted by gcc(X, V, l, u).

Note that an alldiff constraint can be defined by a GCC in which all lower bound
are equals to 0 and all upper bounds are equal to 1.

An instantiation of all variables that satisfies all the constraints is called a
solution of a CN. Constraint Programming (CP) proposes to search for a solu-
tion by associating with each constraint a filtering algorithm that removes some
values of variables that cannot belong to any solution. These filtering algorithms
are repeatedly called until no new deduction can be made. Then, CP uses a
search procedure (like a backtracking algorithm) where filtering algorithms are
systematically applied when the domain of a variable is modified.

2.1 Graph Theory

These definitions are based on books of [2, 16, 1].
A directed graph or digraph G = (X, U) consists of a node set X and

an arc set U , where every arc (u, v) is an ordered pair of distinct nodes. We
will denote by X(G) the node set of G and by U(G) the arc set of G.

A path from node v1 to node vk in G is a list of nodes [v1, ..., vk] such that
(vi, vi+1) is an arc for i ∈ [1..k−1]. The path contains node vi for i ∈ [1..k] and
arc (vi, vi+1) for i ∈ [1..k − 1]. The path is simple if all its nodes are distinct.
The path is a cycle if k > 1 and v1 = vk. An undirected graph is connected if
there is a path between every pair of nodes. The maximal connected subgraphs
of G are its connected components. A directed graph is strongly connected
if there is a path between every pair of nodes. The maximal strongly connected
subgraphs of G are its strongly connected components. A bridge is an edge
whose removal increases the number of connected components.

Let G be a graph for which each arc (i, j) is associated with two integers lij
and uij , respectively called the lower bound capacity and the upper bound
capacity of the arc. A flow in G is a function f satisfying the following two
conditions1 :
• For any arc (i, j), fij represents the amount of some commodity that can
“flow” through the arc. Such a flow is permitted only in the indicated direction
of the arc, i.e., from i to j. For convenience, we assume fij = 0 if (i, j) 6∈ U(G).
• A conservation law is observed at each node: ∀j ∈ X(G) :

∑
i fij =

∑
k fjk.

A feasible flow is a flow in G that satisfies the capacity constraint, that
is, such that ∀(i, j) ∈ U(G) lij ≤ fij ≤ uij .

Definition 2 The residual graph for a given flow f , denoted by R(f), is the
digraph with the same node set as in G. The arc set of R(f) is defined as follows:
∀(i, j) ∈ U(G):

• fij < uij ⇔ (i, j) ∈ U(R(f)) and upper bound capacity rij = uij − fij.
• fij > lij ⇔ (j, i) ∈ U(R(f)) and upper bound capacity rji = fij − lij.

All the lower bound capacities are equal to 0.

1 Without loss of generality (see p.45 and p.297 in [1]), and to overcome notation
difficulties, we will consider that if (i, j) is an arc of G then (j, i) is not an arc of G,
and that all boundaries of capacities are nonnegative integers.

2.2 Notation

• max(x) (resp. min(x)) denotes the maximum (resp. minimum) value of D(x).
•D(X) denotes the union of domains of variables of X (i.e. D(X) = ∪xi∈XD(xi)).
• #(a, τ) is the number of occurrences of the value a in the tuple τ .
• #(a,X) is the number of variables of X such that a ∈ D(x).
• Row(M) (resp. Col(M)) is the set of indices of the rows (resp. columns) of
the matrix M .
• If X is a n×m array, that is X=x[i,j]), then vars(i, ∗, X) = {x[i, j], j = 1..m}
and vars(∗, j, X) = {x[i, j], i = 1..n}.

3 Cardinality Matrix Constraint: Presentation

Definition 3 A cardinality matrix constraint is a constraint C defined on a
Matrix M = x[i, j] of variable s taking their values in a set V , and on two sets
of cardinality variables rowCard[i, j] and colCard[i, j] and
T (C) = { τ s.t. τ is a tuple on X(C)

and ∀ak ∈ V, ∀i ∈ Row(M) : #(ak, vars(i, ∗, M)) = rowCard[i, k]
and ∀ak ∈ V, ∀j ∈ Col(M) : #(ak, vars(i, ∗,M)) = colCard[j, k]

It is denoted by card-Matrix(M,V, rowCard, colCard).

In order to show how a cardinality matrix constraint is represented we need
first to introduce cardinality variables. The GCCs consider that the lower and
the upper bounds are integer. There is no problem to use variables instead of
integers. In this case, the lower bound is the minimal value of the domain of the
variable and the upper bound is the maximal value of the domain. We will call
such variables cardinality variables. Thus, we can define a global cardinality
constraint involving cardinality variables (abbreviated cardVar-GCC):

Definition 4 A global cardinality constraint involving cardinality vari-
ables defined on X and card and associated with a set of values V with D(X) ⊆
V is a constraint C in which each value ai ∈ V is associated with a cardinality
variable card[i] and
T (C) = { τ s.t. τ is a tuple on X(C)

and ∀ai ∈ V : card[i] = #(ai, τ)}
It is denoted by gcc(X, V, card).

We propose to represent a cardinality matrix constraint by:
• one cardVar-GCC per row and one cardVar-GCC per column;
• a sum constraint involving the previous cardinality variables stating that

the number of symbols taken by all the rows (resp. all the columns) is the size
of the matrix;

• one cardinality (0,1)-matrix constraint involving cardinality variables per
symbol. Such a constraint involves boolean variables corresponding to the pres-
ence or the absence of the symbol for a cell of the matrix, and combines the rows
and the columns for the symbol.

Thus, with such a representation the communication is improved in two ways:
• by the presence of cardinality variables
• by the introduction of a new constraint combining the rows and the

columns for each symbol.

This communication will be efficent if some powerful filtering algorithms are
available to reduce the domains of the cardinality variables and the domains of
the boolean variables on which cardinality (0,1)-matrix constraints are defined.
This is what we study in the next sections.

4 Filtering Algorithm for costVar-GCC

A GCC C is consistent iff there is a flow in the the value network of C [12]. The
consistency of gcc(X,V, card) is equivalent to the consistency of the constraint
gcc(X, V, l, u) where for every ai ∈ V l[i] = min(card[i]) and u[i] = max(card[i]).
When the minimum or the maximum value of the domain of a cardinality variable
is modified then C is modified and so the consistency of the constraint must be
established again. Since the flow algorithms are incremental, a new feasible flow
can be computed in O(m), where m is the number of arcs of the network.

Arc consistency for cardVar-GCC can be established for the variables of X
by using the method of GCCs, because the problem remains the same for these
variables. For the cardinality variables we are more interested in the validity
of the minimum and the maximum value of the domains. Bound consistency
can be established by searching for the minimum and the maximum value such
that a feasible flow exists. However, the cost of this method is high and its
practical advantage has not been proved in general. Therefore, we propose a
simple filtering algorithm whose cost is low and which is worthwhile in practice:

Property 1 Let C = gcc(X, V, card) be a cardVar-GCC. Then, we have:
• ∀ai ∈ V card[i] ≤ #(ai, X)
•

∑
ai∈V card[i] = |X|

The second point is a classical sum constraint and bound consistency can be
established in O(|V |). Then, we immediately have the property:

Property 2 Let C = gcc(X, V, card) be a cardVar-GCC, GV (X) be the value
graph of X. Then for every connected component CC of GV (X) we have:∑

ai∈vals(CC)) card[i] = |vars(CC)|,
where vals(CC) denotes the values of V belonging to CC and vars denotes the
variables of X belonging to CC.

proof: All the connected components are disjoint by definition, thus the problem is

equivalent to a disjunction of GCCs, each of them corresponding to a connected com-

ponent. Then, Property 1 can be independently applied on each GCC. ¯

The filtering algorithm associated with cardinality variables is defined by
Property 1 and by Property 2. Its complexity is in O(|V |) for all the sum con-
straints that can be defined and O(m) for the search for connected components,
where m is the number of edges of the value graph of X [15].

At first glance, Property 2 seems weak, but in fact this is not true, as shown
by the following property:

Property 3 Let C = gcc(X,V, card) be a cardVar-GCC, cy be a cardinality
variable, and k be an integer. If cy = k in every solution of C then the domain
of cy is set to k after establishing arc consistency of the X variables and after
establishing bound consistency of sum constraints defined by Property 2

In order to prove this property we need first to introduce a theorem which is a
generalization of a property used to establish arc consistency for a GCC, because
it deals with any kind of lower and upper bound capacities, and not only (0,1).

Theorem 1 Let f be a feasible flow in N , and (x, a) be an arc of N . Then,
for every feasible flow f ′ in N : fxa = f ′xa if and only if one of the following
property is satisfied:

(i) (x, a) 6∈ R(f) and (a, x) 6∈ R(f)
(ii) R(f) contains (x, a) or (a, x) but not both and x and a belong to two

different strongly connected components of R(f)
(iii) (x, a) ∈ R(f) and (a, x) ∈ R(f) and (x, a) is a bridge of ud(scc(R(f), x)),

where ud(scc(R(f), x)) is the undirected version of the strongly connected com-
ponent of R(f) containing x.

proof: (i) From definition of R(f), this means that l(x, a) = u(a, x), so the flow value
cannot be changed in any feasible flow.
(ii) The flow theory claims that:

• the flow value of (x, a) can be increased if and only if (x, a) ∈ R(f) and there
is path from a to x in R(f) − {(a, x)}, that is in R(f) in this case because we have
(x, a) ∈ R(f) ⇒ (a, x) 6∈ R(f).

• the flow value of (x, a) can be decreased if and only if (a, x) ∈ R(f) and there
is path from x to a in R(f) − {(x, a)}, that is in R(f) in this case because we have
(a, x) ∈ R(f) ⇒ (x, a) 6∈ R(f).
So in this case, a flow value is constant if and only if a and x belong to two different
strongly connected components.
(iii) We will call non trivial (u, v) cycle, a directed cycle which contains (u, v) but not
(v, u). There are two possibilities:

1) there is a non trivial (x, a) cycle or a non trivial (a, x) cycle. This means that
the flow can be increased or decreased, therefore it has not the same value for every
feasible flow. Moreover, there exists a directed cycle which is non trivial, so this cycle is
also a cycle in the undirected version and the arc (x, a) is not a bridge and conversely.

2) there does not exist a non trivial (x, a) cycle and there does not exist a non

trivial (a, x) cycle. Let X(x) be the set of nodes of scc(R(f)−{a}, x), and X(a) be the

set of nodes of scc(R(f) − {x}, a). Then ∀p ∈ X(x), p 6= x and ∀q ∈ X(a), q 6= a, we

can prove that the arcs (p, q), (q, p), (x, q), (q, x), (a, p), (p, a) do not exist. Suppose

that (p, q) exists. Then, there is a path from x to p which does not contain a and an arc

(p, q) and a path from q to a which does not contain x, therefore this means that we

identify a non trivial (a, x) cycle, which contradicts the hypothesis. A similar reasoning

is valid for all the arcs. Hence, if (x, a) and (a, x) are removed from R(f) then x and

a will belong to two different connected component of the undirected version of R(f).

This is equivalent to saying, that (x, a) is a bridge.¯

Now, we can give a proof of Property 3: Let a be the value whose cardinality

is cy, and f be a feasible flow of N(C), the value network of C. For convenience

we will use USCC = ud(scc(R(f), a)), SCC = scc(R(f), a), CC = cc(GV (X), a),

XS = vars(SCC), and VS = vals(SCC). If the flow value of (a, t) is the same for

every feasible flow, then from Theorem 1 either a and t belong to different connected

components or (a, t) is a bridge of USCC.

In the first case, this means that all the arcs between a value of SCC and t have

the same direction. In other words, the flow value of these arcs is either equal to

the lower bound capacity or is equal to the upper bound capacity. So we have either

|XS | =
∑

ai∈VS
min(card[i]) or |XS | =

∑
ai∈VS

max(card[i]). In both cases the bound

consistency of the constraint |XS | =
∑

ai∈VS
card[i] will instantiate all these cardinality

variables to the current flow value of their corresponding arc.

In the second case, (a, t) is a bridge of USCC and the value graph does not contain t,

so CC is a subgraph of USCC. If SCC contains t and if (a, t) is a bridge of USCC then

(a, t) and (t, a) exist in R(f) and there is no other arc between vals(CC) and t. Thus,

the lower and the upper bound capacities are equal for every value of vals(CC) which

is not equal to a. In this case, the bound consistency of the sum constraint involving

cy will instantiate cy to the current flow value of its corresponding arc. ¯

5 Cardinality (0,1)-Matrix Constraint

5.1 Absence of Cardinality Variables

Definition 5 Let M = x[i, j] be a matrix of (0,1)-variables. A Cardinality
(0,1)-Matrix constraint is a constraint C defined on M in which

• every row i is associated with two positive integers lr[i] and ur[i] with
lr[i] ≤ ur[i]

• every column j is associated with two positive integers lc[i] and uc[i] with
lc[i] ≤ uc[i],and
T (C) = { τ s.t. τ is a tuple on X(C)

and ∀i ∈ Row(M) : lr[i] ≤ ∑
j∈Col(M) x[i, j] ≤ ur[i]

and ∀j ∈ Col(M) : lc[j] ≤ ∑
i∈Row(M) x[i, j] ≤ uc[j]}

It is denoted by card-(0,1)-Matrix(M, lr, ur, lc, uc).

This constraint corresponds to a generalization of a well known problem named
”Matrices composed of 0’s and 1’s” by Ford and Fulkerson [6]. In this latter
problem, there is no lower bound for the rows and no upper bound for the
columns. Both Ryser [14] and Gale [7] independently showed that this problem
can be solved by using a flow. The introduction of lower bounds on rows and
upper bounds on columns only slightly modified the flow:

Definition 6 Given M = x[i, j] a matrix of (0,1)-variables and C = card-
(0,1)-Matrix(M, lr, ur, lc, uc) a cardinality (0,1)-matrix constraint; the bipartite
network of C, denoted by N(C), consists of a node set defined by:

• a set of nodes SR = {r1, ..., rn} corresponding to the rows of M .
• a set of nodes SC = {c1, ..., cm} corresponding to the columns of M .
• a source node s and a sink t

and an arc set A defined by:
• ∀ri ∈ SR (s, ri) ∈ A with a lower bound capacity equal to lr[i] and an

upper bound capacity equal to ur[i].
• ∀cj ∈ SC (cj , t) ∈ A with a lower bound capacity equal to lc[j] and an

upper bound capacity equal to uc[j].
• ∀ri ∈ SR, ∀cj ∈ SC (ri, cj) ∈ A with a capacity equal to x[i, j], that is

the lower bound capacity is equal to min(x[i, j]) and the upper bound capacity is
equal to max(x[i, j]).

• an arc (t, s) without capacity constraint.

Note that the (0,1)-variables define the capacity constraints of the arcs between
nodes corresponding to rows and nodes corresponding to columns.

Proposition 1 C is consistent if and only if there is a feasible flow in the
bipartite network of C.

We can establish arc consistency of the card-(0,1)-Matrix constraint by a
similar method to the one used for GCCs2:

Proposition 2 Let C be a consistent cardinality (0,1)-Matrix constraint and f
be a feasible flow in the bipartite network of C. Then we have:
∀ri ∈ SR, ∀cj ∈ SC: ri and cj do not belong to the same strongly connected
component in R(f) if and only if x[i, j] = fricj .

proof: Immediate from Properties (i) and (ii) of Theorem 1 (Property (iii) cannot be

applied because the capacity of the arcs between rows and columns are 0 or 1). ¯

Thus, arc consistency can be established by only one identification of the
strongly connected components in R(f), that is in O(|M |).

The advantage of the cardinality (0,1)-matrix constraint is emphasized by
the following theorem:

Theorem 2 Consider C = card-(0,1)-matrix(M, lr, ur, lc, uc) a cardinality (0,1)-
matrix constraint. Establishing arc consistency for C ensures that for every p×q
rectangle, denoted by T we simultaneously have:

∑

(i,j)∈T

x[i, j] ≥
∑

i∈Row(T)

lr[i] −
∑

j∈(Col(M)−Col(T))

uc[j] (1)

∑

(i,j)∈T

x[i, j] ≥
∑

i∈Col(T)

lc[i] −
∑

j∈(Row(M)−Row(T))

ur[j] (2)

2 A similar constraint, althrough expressed in a quite different way, with the same
kind of algorithm to establish arc consistency, is given in [10].

proof: C is consistent. Consider Q the rectangle containing the same rows as T and
the columns that are not contained in T . Every feasible flow of N(C) satisfied the con-
straints on the rows:

∑
(i,j)∈(T∪Q)

x[i, j] ≥ ∑
i∈Row(T)

lr[i]. We have
∑

(i,j)∈(T∪Q)
x[i, j] =∑

(i,j)∈T
x[i, j]+

∑
(i,j)∈Q

x[i, j], so
∑

(i,j)∈T
x[i, j]+

∑
(i,j)∈Q

x[i, j] ≥ ∑
i∈Row(T)

lr[i].

Moreover
∑

(i,j)∈Q
x[i, j] ≤ ∑

j∈(Col(M)−Col(T))
uc[j], because the constraints on the

columns of Q are satisfied. So, Equation 1 is satisfied.

Similarly, consider Q the rectangle containing the same columns as T and the

rows that are not contained in T . Every feasible flow of N(C) satisfies the constraints

on the columns:
∑

(i,j)∈(T∪Q)
x[i, j] ≥ ∑

i∈Col(T)
lc[i]. We have

∑
(i,j)∈(T∪Q)

x[i, j] =∑
(i,j)∈T

x[i, j]+
∑

(i,j)∈Q
x[i, j], so

∑
(i,j)∈T

x[i, j]+
∑

(i,j)∈Q
x[i, j] ≥ ∑

i∈Col(T)
lc[i, k].

Moreover
∑

(i,j)∈Q
x[i, j] ≤ ∑

j∈(Row(M)−Row(T))
ur[j], because the constraints on the

rows of Q are satisfied. So, Equation 2 is satisfied. ¯

A corollary of this theorem is close to a necessary condition of a theorem
proposed for latin square by Ryser [13]:

Corollary 1 If ∀i ∈ Row(M) lr[i] = ur[i] = 1, and ∀j ∈ Col(M) lc[j] =
uc[j] = 1, then

∑
(i,j)∈T x[i, j] ≥ p− (n− q)

Thus, with only one cardinality (0,1)-matrix constraint we are able to take
into account a property which is available for all p× q rectangles involved in the
constraint. Instead of having an exponential number of cardinality constraints
(because every row and column can be permuted) we have only one cardinality
(0,1)-matrix constraint.

5.2 Introduction of cardinality variables

In a way similar as the one used for GCCs we propose to introduce cardinality
variables in Cardinality (0,1)-Matrix constraint.

Definition 7 Let M = x[i, j] be a matrix of (0,1)-variables. A Cardinality
(0,1)-Matrix constraint involving cardinality variables is a constraint C
defined on M and rowCard and colCard in which

• every row i is associated with a cardinality variable rowCard[i]
• every column j is associated with a cardinality variable colCard[j],and

T (C) = { τ s.t. τ is a tuple on X(C)
and ∀i ∈ Row(M) :

∑
j∈Col(M) x[i, j] = rowCard[i]

and ∀j ∈ Col(M) :
∑

i∈Row(M) x[i, j] = colCard[j]}
It is denoted by card-(0,1)-Matrix(M, rowCard, colCard).

The consistency of C = card-(0,1)-matrix(M, lr, ur, lc, uc) is equivalent to the
consistency of the constraint card-(0,1)-matrix(M, rowCard, colCard) where
∀i ∈ Row(M) lr[i] = min(rowCard[i]) and ur[i] = max(rowCard[i]) and
∀j ∈ Col(M) lc[i] = min(colCard[i]) and uc[i] = max(colCard[i]). When the
minimum or the maximum value of the domain of a cardinality variable is mod-
ified then C is modified and so the consistency of the constraint must be estab-
lished again. Since the flow algorithms are incremental, a new feasible flow can
be computed in O(m).

Arc consistency can be established for the variables of M , because the prob-
lem remains the same for these variables. For the cardinality variables we have
similar properties as for cardVar-GCCs:

Property 4 Let C = gcc(X, V, card) be a cardinality (0,1)-Matrix constraint
involving cardinality variables. Then, we have:∑

i∈Row(M) rowCard[i] =
∑

j∈Col(M) colCard[j]

Bound consistency of a sum constraint involving n variables can be established
in O(n). As for cardVar-GCCs, we have the property:

Property 5 Let C be a cardinality (0,1)-matrix constraint involving cardinality
variables, ud(N(C) − {s, t}) be the undirected version of the network of C in
which the node s and t have been removed. Then for every connected component
CC of ud(N(C)− {s, t}) we have:∑

i∈Row(CC)) rowCard[i] =
∑

j∈Col(CC) colCard[j],
where Row(CC) denotes the rows of M belonging to CC and Col(CC) denotes
the columns of M belonging to CC.

proof: All the connected components are disjoint by definition, thus the problem is

equivalent to a disjunction of cardinality (0,1)-matrix constraint, each of them corre-

sponding to a connected component. Then, Property 1 can be independently applied

on each constraint. ¯

The filtering algorithm associated with cardinality variables is defined by
Property 4 and by Property 5. Its complexity is O(|Row(M)|+ |Col(M)|) for all
the sum constraints that can be defined and O(m) for the search for connected
components, where m is the number of edges of ud(N(C)− {s, t}).

6 Filtering Algorithm for the Cardinality Matrix
Constraint

A cardinality matrix constraint is modeled by a cardVar-GCC on every row,
a cardVar-GCC on every column, a constraint between the sum of cardinality
variables, and a cardinality (0,1)-matrix constraint per symbol:

Definition 8 Let C = card-Matrix(M,V, rowCard, colCard) be a cardinality
matrix constraint involving n rows, m columns and s symbols. Then,

• for every row i we define Cri = gcc(vars(i, ∗,M), V, vars(i, ∗, rowCard))
• for every column j we define Ccj = gcc(vars(∗, j,M), V, vars(j, ∗, colCard)
• for every value ak ∈ V we define the cardinality (0,1)-matrix

Cmk = card-(0,1)-matrix(Bk, vars(∗, k, rowCard), vars(∗, k, colCard))
• for every value ak ∈ V and for every variables x[i, j], i = 1..n, j = 1..m

we define the (0,1)-variable b[i, j, k] and the constraint b[i, j, k] = 1 ⇔ ak ∈
D(x[i, j]). We will denote by Bk all the (0,1)-variables defined from ak,and by
Cbk the set of constraints defined from ak.

• we define the constraints: Cgr :
∑

i=1..n

∑
k=1..s rowCard[i, k] = nm and

Cgc :
∑

j=1..m

∑
k=1..s colCard[j, k] = nm

Given
XQ = M ∪ rowCard ∪ colCard ∪ (

⋃
k=1..s Bk)

D(XQ) the set of domains of the variables XQ

CQ =
⋃

i=1..n

Cri ∪
⋃

j=1..m

Cci ∪
⋃

k=1..s

Cbk ∪
⋃

k=1..s

Cmk ∪ Cgr ∪ Cgc

The constraint network Q = (XQ,D(XQ), CQ) is called the constraint net-
work associated with a card-matrix constraint.

Proposition 3 Given C = card-matrix(M, V, rowCard, colCard), and
Π = (M,D(M), {C}) be a constraint network and Q the constraint network
associated with C then, Π is satisfiable iff Q is satisfiable.

proof: When the M variables of Π are instantiated, the Cb constraint s of Q instan-

tiated the (0,1)-variables of Q and since a solution satisfied the cardinality constraint

for all the symbols then a solution of Π is a solution of Q. Conversely, a solution of Q
is obviously a solution of Π because the M and the cardinality variables of Q are the

variables of Π, and the constraints of Π are satisfied by any solution of Q.¯

So, a card-matrix constraint can be filtered by applying arc consistency to
the constraint network associated with it.

7 Experiments

In order to perform comparisons with other approaches for which there are
results reported in the literature we performed our empirical analysis for the
particular case of the cardinality matrix constraint in which each value has to
be assigned at most once in each row and column (alldiff matrix constraint). We
used hard Latin square instances. (The benchmark instances are available from:
http://mat.gsia.cmu.edu/COLOR02 or from gomes@cs.cornell.edu.)

A new strategy to select the next variable and the value to branch on for
Latin square problems was proposed in [4]. This strategy clearly outperforms
all the previous ones that have been tested. It consists of selecting the variable
with the minimum domain size and then select the value which occurs the fewest
times in the domains of the variables of the rows and the columns of the selected
variable. We will denote it by dom-lessO. This strategy is a kind of minimum
conflict strategy. We have improved this strategy by breaking the tie of variables.
When two variables have the same size of domain we select the one for which the
number of instantiated variables of the row and of the column is maximum. We
tested several combinations (like the minimum number of already instantiated
variables), and it appears that our variant is the most robust one. Breaking ties
is interesting, but the ways we break the ties seem almost equivalent. We will
denote our new strategy by dom-maxB-lessO.

2alldiff-AC 3alldiff-AC 2alldiff-GAC alldiff-matrix
dom-lessO dom-lessO dom-lessO dom-lessO

time #fails time #fails time #fails time #fails

qwh.order30.holes316 > 50,000 > 50,000 0.33 10 0.33 3
qwh.order30.holes320 > 50,000 > 50,000 1.16 1334 0.34 22
qwh.order50.holes2000 > 50,000 1.45 230 4.6 0 5.8 0
qwh.order60.holes1440 > 50,000 > 50,000 > 50,000 > 50,000
qwh.order60.holes1620 > 50,000 > 50,000 > 50,000 66.9 24,604
qwh.order60.holes1692 > 50,000 > 50,000 15.96 7,084 7.57 7,917
qwh.order60.holes1728 > 50,000 > 50,000 > 50,000 3.16 14
qwh.order60.holes1764 > 50,000 > 50,000 3.4 277 3.68 150
qwh.order60.holes1800 > 50,000 > 50,000 3.9 554 3.4 3
qwh.order70.holes2450 > 50,000 > 50,000 5.77 24 6.5 1
qwh.order70.holes2940 > 50,000 > 50,000 9.7 398 10.8 74
qwh.order70.holes3430 > 50,000 > 50,000 14.4 0 17 0

2alldiff-GAC 2alldiff-GAC alldiff-matrix alldiff-matrix
dom-lessO dom-maxB-lessO dom-lessO dom-maxB-lessO

time #fails time #fails time #fails time #fails

qwh.order30.holes316 0.33 10 0.62 476 0.33 3 0.37 44
qwh.order30.holes320 1.16 1334 0.33 21 0.34 22 0.35 32
qwh.order50.holes2000 4.6 0 4.57 1 5.8 0 5.7 1
qwh.order60.holes1440 > 50,000 > 50,000 > 50,000 2.32 18
qwh.order60.holes1620 > 50,000 > 50,000 66.9 24,604 6.54 1,439
qwh.order60.holes1692 15.96 7,084 2.75 54 7.57 7,917 3.15 47
qwh.order60.holes1728 > 50,000 2.7 4 3.16 14 3.16 9
qwh.order60.holes1764 3.4 277 2.82 1 3.68 150 3.28 12
qwh.order60.holes1800 3.9 554 15.28 1,369 3.4 3 4.0 261
qwh.order70.holes2450 5.77 24 5.7 1 6.5 1 6.6 35
qwh.order70.holes2940 9.7 398 9.5 145 10.8 74 11.1 130
qwh.order70.holes3430 14.4 0 14.2 0 17 0 17.2 2

We present two sets of results. The first one is a comparison of our method
with the approach of [4], the most competitive CP based strategy. We will see
that our approach, using the alldiff matrix constraint, outperforms the approach
reported in [4]. The second one is a comparison of the branching strategies when
the alldiff matrix constraint is used.

The ”2alldiff-GAC” method is the classical model using 2 alldiff constraints
associated with the filtering algorithm establishing arc consistency. The ”3alldiff-
AC” method is the model in which 3 alldiff constraints have been used but the
global constraints are not used, and ”2alldiff-AC” method uses only 2 alldiff con-
straints. This latter method has been used by [4]. All the experiments have been
performed on a Pentium IV M, 2Mhz running under Windows XP Professional,
and ILOG Solver 6.0. The code is available upon request from the authors. Thus,
these experiments are reproducible.

These results clearly show that:
• difficult instances cannot be solved without efficient filtering algorithms
• the alldiff-matrix clearly outperforms 2alldiff models
• the branching strategy we propose is better than the previous ones.

Several instances remain open for a CP approach: qwh.order40.holes528,
qwh.order40.holes544,qwh.order40.holes560, qwh.order33.holes.381.bal,
qwh.order50.holrd825.bal. The instance qwh.order35.holes405 is solved with our
approach in 9,900 s and 6,322,742 backtracks.

8 Conclusion

We present the Cardinality Matrix Constraint to efficiently model cardinality
matrix problems. We also propose a simple filtering algorithm of low cost to
reduce the ranges of the cardinality variables. The cardinality (0,1)-matrix con-
straint is a particular case of the transportation problem, a well-studied network
flow problem, and it provides a good representation to capture the interactions
between rows, columns, and symbols. We report results for the Alldiff Matrix
constraint, a particular case of the Cardinality Matrix Constraint. Our results
show that the Alldiff Matrix constraint clearly outperforms standard formula-
tions of Alldiff Matrix problems.

References

1. R. Ahuja, T. Magnanti, and J. Orlin. Network Flows. Prentice Hall, 1993.
2. C. Berge. Graphe et Hypergraphes. Dunod, Paris, 1970.
3. M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving the car-sequencing prob-

lem in constraint logic programming. In ECAI’88, proceedings of the European
Conference on Artificial Intelligence, pages 290–295, 1988.

4. I. Dotu, A. del Val, and M. Cebrian. Redundant modeling for the quasigroup
completion problem. In Proceedings of CP’03, pages 288–302, 2003.

5. K. Easton, G. Nemhauser, and M. Trick. Sports scheduling. In J. Leung, edi-
tor, Handbook of Scheduling: Models, Algorithms and Performance Analysis. CRC
Press, 2004.

6. L. Ford and D. Fulkerson. Flows in Networks. Princeton University Press, 1962.
7. D. Gale. A theorem on flows in networks. Pacific J. Math, 7:1073–1082, 1957.
8. C. Gomes and J.-C. Regin. The alldiff matrix. Technical report, Intelligent Infor-

mation Institute - Cornell University, 2003.
9. I. Katriel and S. Thiel. Fast bound consistency for the global cardinality constraint.

In Proceedings CP’03, pages 437–451, Kinsale, Ireland, 2003.
10. W. Kocjan and P. Kreuger. Filtering methods for symmetric cardinality con-

straints˙ In First International Conference, CPAIOR 2004, pages 200–208, Nice,
France, 2004.

11. M. Milano (ed.). Constraint and Integer Programming: Toward a Unified Method-
ology. Kluwer, 2003.

12. J.-C. Régin. Generalized arc consistency for global cardinality constraint. In
Proceedings AAAI-96, pages 209–215, Portland, Oregon, 1996.

13. H. Ryser. A combinatorial theorem with application to latin rectangles. Proc.
Amec. Math. Soc., 2:550–552, 1951.

14. H. Ryser. Combinatorial properties of matrices of zeros and ones. Canad. J. Math,
9:371–377, 1957.

15. R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal of
Computing, 1:146–160, 1972.

16. R. Tarjan. Data Structures and Network Algorithms. CBMS-NSF Regional Con-
ference Series in Applied Mathematics, 1983.

