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Abstract� In recent years� many works have been carried out to solve
over�constrained problems� and more speci�cally the Maximal Constraint
Satisfaction Problem 	Max�CSP
� where the goal is to minimize the num�
ber of constraint violations� Some lower bounds on this number of vio�
lations have been proposed in the literature�
In this paper� we characterize the constraints that are ignored by the
existing results� we propose new lower bounds which takes into account
some of these ignored constraints and we show how these new bounds
can be integrated into existing ones in order to improve the previous
results�
Our work also generalize the previous studies by dealing with any kind
of constraints� as non binary constraints� or constraints with speci�c
�ltering algorithms� Furthermore� in order to integrate these algorithms
into any constraint solver� we suggest to represent a Max�CSP as a single
global constraint� This constraint can be itself included into any set of
constraint� In this way� an over�constrained part of a problem can be
isolated from constraints that must be necessarily satis�ed�

� Introduction

A constraint network �CN� consists of a set of variables� each of them associated
with a domain of possible values� and a set of constraints linking the variables and
de�ning the set of allowed combinations of values	 The search for an assignment
of values to all variables that satis�es all the constraints is called the Constraint
Satisfaction Problem �CSP�	 Such an assignment is a solution of the CSP	

Unfortunately� the CSP is an NP�Hard problem	 Thus� many works have been
carried out in order to try to reduce the time needed to solve a CSP	 Some of the
suggested methods turn the original CSP into a new one� which has the same
set of solutions� but which is easier to solve	 The modi�cations are done through
�ltering algorithms� that remove from domains values which cannot belong to
any solution of the current CSP	 If the cost of such an algorithm is less than
the time required by the backtrack algorithm to discover many times the same
inconsistency� then the solving will be accelerated	



It often happens that a CSP has no solution	 In this case we say that the prob�
lem is over�constrained� and often the goal is then to �nd a good compromise	
One of the most usual theoretical frameworks is called the Maximal Constraint
Satisfaction Problem �Max�CSP�	 A solution of a Max�CSP is a total assignment
that minimizes the number of constraint violations	

Most of existing algorithms for solving Max�CSPs are related to binary
constraints and based on a branch and bound schema 
�� �� 
�	 They perform
successive assignments of values to variables through a depth��rst traversal of
the search tree� where internal nodes represent incomplete assignments and leaf
nodes stand for complete ones	 For any given node� the variables which have been
instantiated are called past variables� whereas the other variables are called fu�
ture variables �F �	 The distance of a node is the number of constraints violated
by its assignment� UB is the distance of the best solution found so far� and LB

is an underestimation of any leaf node descendant from the current one	 When
LB � UB� the current best solution cannot be improved below the current node	
Thus it is not necessary to traverse the subtree rooted by the current node	

When �ltering� the existing approaches combine generally LB with lower
bounds local to each value� in order to remove values that cannot belong to
a solution	 These lower bounds are based on direct violations of constraints by

values	 A value a of a variable x directly violates a constraint C if C has no
solution when x � a	 In other words� �x� a� directly violates C if �x� a� is not
consistent with C	

In the PFC�MRDAC algorithm 

�� which can be considered as the best
reference in the literature�� two local lower bounds of violations are de�ned for
every a in D�x�� ic�x� a� which is related to constraints such that the other
involved variable is a past variable� and dac�x� a� which is related to constraints
involving only future variables	

More precisely� ic�x� a� is simply de�ned as the number of constraints involv�
ing x and a past variable that are directly violated if x � a	 The de�nition of
dac�x� a� assumes that the constraint graph� is oriented	 dac�x� a� is equal to the
number of constraints out�going x and involving only future variables that are
violated if x � a	 With these de�nitions LB is de�ned by�

��� LB � distance �
P

x�F inc�x��
where inc�x� � mina�D�x��ic�x� a� � dac�x� a��	

When �ltering future domains� PFC�MRDAC selects for each value the sum
ic�x� a��dac�x� a�	 This sum is associated with LB� by removing inc�x� from LB

in order to guarantee that no violation of any constraint involving x is counted
twice	 Thus� a value a can be removed from D�x� if�

��� ic�x� a� � dac�x� a� � LB � inc�x� � UB	

� A variation of this algorithm has been suggested ���� based on a partitioning of the
variable set�

� The vertex set of the constraint graph is the variable set and there is an edge between
two vertices when there is a constraint involving these two variables�



Hence� the quality of the �ltering algorithms depends on the value of inc
counters� which depends on the value of dac counters	

However� some constraints which lead to inconsistencies are not taken into
account in PFC�MRDAC	 In particular� Equations ��� and ��� do not take into
account inconsistencies involving constraints de�ned on variables such that the
inc counter of each of them is equal to �	

This drawback is quite important because the probability for having such
constraints is huge in real�world applications especially when only few variables
have been instantiated	 It can be emphasized by the following example �Figure
���
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Figure �

The problem involves three variables x� y� z with domains equal to f�� �� �g and
three constraints� x � y� y � z� and z � x	 Value � of each variable does not
directly violate any constraint	 Thus� inc�x� � inc�y� � inc�z� � � whereas it is
clear that any assignment of x� y� and z will lead to the violation of at least one
constraint	

In this paper� we propose an original method for identifying constraints that
are implicitly ignored by Equations ��� and ���	 Then� we present a new way for
computing a lower bound of the number of violations related to some of these
constraints	

This lower bound can be computed by searching for disjoint con�icting sets
of constraints	 A con�ict set is a set of constraints that cannot be simultaneously
all satis�ed	 For instance� fx � y� y � z� z � xg is a con�ict set	

When a con�ict set has been identi�ed then in any solution at least one
constraint of this con�ict set will be violated	 Thus� by �nding disjoint con�ict
sets a non trivial lower bound of the number of violations holds	 And this bound
can be integrated to Equations ��� and ���	

The paper is organized as follows� �rst� we recall some notions about CNs	
Then� we propose a new framework based on the representation of a Max�CSP
as only one constraint called the Satis�ability Sum Constraint �ssc�	 Section 

presents a generalization of the results proposed for binary Max�CSPs to the
non binary case	 Section � presents an original approach for computing a lower
bound of the number of violations	 This result is exploited in section � and
leads to properties that improve the results of the previous studies	 At last we
recapitulate our results and conclude	



� Background

A constraint network N is de�ned as a set of n variables X � fx�� � � � � xng� a
set of domains D � fD�x��� � � � � D�xn�g where D�xi� is the �nite set of possible
values for variable xi� and a set C of constraints between variables	 A constraint

C on the ordered set of variables X�C� � �xi� � � � � � xir� is a subset T �C� of the
Cartesian product D�xi� �� � � ��D�xir � that speci�es the allowed combinations
of values for the variables xi�� � � � � xir 	 An element of D�xi�� � � � � � D�xir � is
called a tuple on X�C�	 jX�C�j is the arity of C	 A value a for a variable x is
often denoted by �x� a�	 A tuple � on X�C� is valid if ��x� a� � �� a � D�x�	 C is
consistent i� there exists a tuple � of T �C� which is valid	 A value a � D�x� is
consistent with C i� x �� X�C� or there exists a valid tuple � of T �C� in which a

is the value assigned to x	 An Arc Consistency algorithm is an algorithm which
guarantees that �x � X� �a � D�x�� �C � C� a is consistent with C	 Given
K � C� the subset of variables involved in constraints K is denoted by X�K�	

Some important results presented in the paper are based on the following
de�nition�

De�nition � Let x be a variable� a be a value of D	x
� C be a set of constraints�

�inc		x�a
�C
 � jfC � C s�t� 	x�a
 is not consistent with Cgj�

� Satis�ability Sum Constraint

Let N � �X�D� C� be a constraint network	 We suggest to integrate C into a
single constraint� called the Satis�ability Sum Constraint �ssc��

De�nition � Let C � fCi� i � f�� � � � �mgg be a set of constraints� and S�C� � fsi� i �
f�� � � � �mgg be a set of variables and unsat be a variable� such that a one�to�one map�
ping is de�ned between C and S�C�� A Satis�ability SumConstraint is the constraint
ssc	C�S�C�� unsat
 de�ned by�

�unsat �

mX

si��

si� �

m�

i��

�	Ci � 	si � �

 � 	�Ci � 	si � �

�

Notation � Given a ssc	C�S�C�� unsat
� a variable x� a value a � D	x
 and K � C�

� max	D	unsat

 is the highest value of current domain of unsat�

� min	D	unsat

 is the lowest value of current domain of unsat�

�minUnsat	C� S�C�
 is the minimum value of unsat consistent with ssc	C� S�C�� unsat
�

� minUnsat		x� a
�C� S�C�
 is equal to minUnsat	C� S�C�
 when x � a�

� S�K� is the subset of S�C� equals to the projection of variables S�C� on K�

� X	C
 is the union of X	Ci
� Ci � C�

The variables S
C� are used in order to express which constraints of C must be
violated or satis�ed� value � assigned to s � S
C� expresses that its corresponding
constraint C is satis�ed� whereas � expresses that C is violated�	 Variable unsat

� An extension of the model can be performed ���� in order to deal with Valued CSPs
���� Basically it consists of de�ning larger domains for variables in S�C��



represents the objective� that is� the number of violations in C� equal to the
number of variables of S
C� whose value is �	

Throughout this formulation� a solution of a Max�CSP is an assignment that
satis�es the ssc with the minimal possible value of unsat	 A lower bound of
the objective of a Max�CSP corresponds to a necessary consistency condition
of the ssc	 The di�erent domain reduction algorithms established for Max�CSP
correspond to speci�c �ltering algorithms associated with the ssc	

This point of view has some advantages in regards to the previous studies�
�	 Any search algorithm can be used	 Since we propose to de�ne a constraint we
can easily integrate our framework into existing solvers	 This constraint can be
associated with other ones� in order to separate soft constraints from hard ones	
�	 No hypothesis is made on the arity of constraints C	
�	 If a value is assigned to si � S
C�� then a �ltering algorithm associated with
Ci � C �resp	 	Ci� can be used in a way similar to classical CSPs	

Moreover� properties are simpli�ed� there is no longer references about past
or future variables�min�D�unsat�� and max�D�unsat�� respectively correspond
to the parameters distance and UB � � of PFC�MRDAC	

� Related Work

The results presented in this section are a generalization to non binary con�
straints of the previous works for Max�CSP 
�� �� 
�	

��� Simple Filtering Algorithm

Domains of variables of S
C� initially contain two values	 Removing one of them
amounts to saying that the other one is assigned to the variable	 Let s � S
C�
and C � C� such that s is linked to C in a ssc�

Property � If the value � �resp� �� is assigned to s then values from domains of

variables X	C
 which are not consistent with C �resp� �C� can be removed�

Property � Let xi � X	C
� If all values of D	xi
 are not consistent with C �resp�

�C� then s � � �resp� ���

��� Necessary Condition of Consistency

From the de�nition of minUnsat�C� S
C�� we have�

Property � If minUnsat�C� S
C�� � max�D�unsat�� then ssc�C� S
C�� unsat�
is not consistent�

A lower bound of minUnsat�C� S
C�� provides a necessary condition of consis�
tency of a ssc	 A possible way for computing it is to perform a sum of independent
lower bounds of violations� one per variable	 For each variable a lower bound can
be de�ned by�



De�nition � Given a variable x and a constraint set K�

�inc	x�K
 � mina�D�x�	�inc		x�a
�K

�

The sum of these minima with K � C cannot lead to a lower bound of the
total number of violations� because some constraints can be taken into account
more than once	 For instance� given a constraint C and two variables x and y

involved inC�C can be counted in �inc�x� C� and also in �inc�y� C�	 In this case�
the lower bound can be overestimated� and an inconsistency could be detected
while the ssc is consistent	 Consequently� for each variable� an independent set
of constraints must be considered	

In the binary case� the constraint graph has been used in order to guarantee
this independence 

�	 Each edge is oriented and for each variable x only the
constraints out�going x are taken into account	

This idea can be generalized to the non binary case� by associating with each
constraint C one and only one variable x involved in the constraint� C is then
taken into account only for computing the �inc counter of x	 Therefore� the
constraints are partionned w	r	t the variables that are associated with�

De�nition � Given a set of constraints C� a var�partition of C is a partitionP	C
 �

fP 	x�
� ����P 	xk
g of C in jX	C
j sets such that �P 	xi
 � P	C
 � �C � P 	xi
� xi �

X	C
�

Given a var partition P�C�� the sum of all �inc�xi� P �xi�� is a lower bound
of the total number of violations� because all sets belonging to P�C� are disjoint�
thus we have�

De�nition � �P	C
 � fP 	x�
� ����P 	xk
g�

LB	P	C

 �
P

xi�X�C��inc	xi� P 	xi

�

Property � �P	C
 � fP 	x�
� ����P 	xk
g�

LB	P	C

 � minUnsat	C� S�C�
�

The necessary condition of consistency of a ssc is deduced from this property�

Corollary � �P	C
 � fP 	x�
� ����P 	xk
g� If LB	P	C

 � max	D	unsat



then ssc	C� S�C�� unsat
 is not consistent�

The quality of such a lower bound depends on the var�partition that is
choosen	 This property corresponds to Equation ��� given in Introduction	

��� Filtering Algorithm

From de�nition of minUnsat��x� a�� C� S
C�� we have the following theorem�

Theorem � �x � X	C
��a � D	x
�

if minUnsat		x� a
�C� S�C�
 � max	D	unsat

 then 	x� a
 is not consistent with

ssc	C�S�C�� unsat
�

Therefore� any lower bound of minUnsat��x� a�� C� S
C�� can be used to check
the consistency of �x� a�	 An obvious lower bound is �inc��x� a�� C��



Property � �inc		x� a
�C
 �minUnsat		x� a
�C� S�C�


From this property and theorem �� we obtain a �rst �ltering algorithm	 This
�ltering algorithm can be achieved as a generalization of the constructive dis�
junction 
��� given C� 
C����
Cn� the constructive disjunction removes a value
from a domain when this value is not consistent with each constraint taken sep�
arately	 The constructive disjunction corresponds to the particular case where
max�D�unsat�� � �	

This �ltering algorithm can be improved� by including the lower bound of
Property 
	 In order to do so� we suggest to split C into two disjoint sets P �x�
and C � P �x�� where P �x� is the subset of constraints associated with x in a
var�partition P �C� of C	 Consider the following corollary of Theorem ��

Corollary � Let P 	C
 be a var�partition of C� x a variable and a � D	x
�

if minUnsat		x� a
� P 	x
� S�P 	x
�


�minUnsat		x� a
�C 	 P 	x
� S�C 	 P 	x
�
 � max	D	unsat



then 	x� a
 is not consistent with ssc	C� S�C�� unsat
�

Proof� C 	 P 	x
 and P 	x
 are disjoint and included in C� Therefore�

minUnsat		x� a
� P 	x
� S�P 	x
�
 �minUnsat		x� a
�C 	 P 	x
�S�C 	 P 	x
�


�minUnsat		x� a
� C� S�C�
� From theorem � the corollary holds�

Note thatminUnsat�C�P �x�� S
P �x��� � minUnsat��x� a�� C�P �x�� S
P �x���	
From this remark and Properties 
 and � we deduce the following theorem� which
corresponds to Equation ��� given in Introduction�

Theorem � �P	C
 a var�partition of C� �x � X	C
��a � D	x
� if�inc		x� a
� P 	x

�

LB	P	C 	 P 	x


 � max	D	unsat

 then a can be removed from its domain�

� Con�ict Set Based Lower Bound

��� Intuitive Idea

Some inconsistencies are not taken into account by the previous lower bound�
because it is based on counters of direct violations of constraints by values	 This
drawback is pointed out in the example of introduction	

In order to take more inconsistencies into account� we propose a new lower
bound based on successive computations of disjoint con�ict sets	

De�nition 	 A con	ict set is a subset K of C which satis�es�

minUnsat	K� S�K�
 � ��

We know that a con�ict set leads to at least one violation in C	 Consequently�
if we are able to compute q disjoint con�ict sets of C then q is a lower bound of
minUnsat�C� S
C��	 They must be disjoint to guarantee that all violations are
independent	

For each Ci � C such that D�si� � �� the set fCig is a con�ict set	 Moreover�
constraints Ci of C with D�si� � � are not interesting in the determination of
con�ict sets	 Hence we will focus on the set of constraints Ci of C with D�si� �
f�� �g	



��� Computation of Disjoint Con
ict Sets

We will denote by isAConflictSet�K� the function which returns true if K is
a con�ict set and false otherwise	

Determining if a set of constraints K satis�es the condition of de�nition � is
a NP�complete problem	 Indeed� it consists of checking the global consistency of
the constraint network N 
K� de�ned by K and by the set of variables involved in
the constraints of K	 However� for our purpose� the identi�cation of some con�ict
sets is su�cient	

In lack of other algorithms isAConflictSet�K� can be de�ned as follows� it
returns true if the achievement of arc consistency on the constraint networkN 
K�
leads to a failure �i	e	 the domain of one variable has been emptied�� and false
otherwise	 Thus we can consider that we are provided with isAConflictSet�K�
function	

Let C be an identi�ed con�ict set� we are interested in �nding subsets of C
which are themselves con�ict sets	 Such a con�ict set K � C can be easily iden�
ti�ed by de�ning an ordering on C� the principle is to start with an empty set
K and then successively add constraints of C to K until isAConflictSet�K�
returns true	 This algorithm can be implemented thanks to OL� a data structure
implementing a list of constraints ordered from � to size	 The following basic
functions are available�

� OL�ct�i� returns the ith constraint of OL�

� OL�size returns the number of constraints of OL�

� addFirst	C�OL
 adds C to OL at �rst position and shift all the other elements to

the right�

� addLast	C�OL
 adds C to OL at last position�

� getLast	OL
 returns the last constraint in OL�

� removeLast	OL
 removes from OL the last constraint in OL and returns it�

� remove	OL� C
 removes the constraint C from the OL�

For convenience� given a constraint set C stored in an OL ol� and K � C� ol	K denotes

the OL obtained after calls of function remove	ol�C
 for all the constraints C of K�

Given a con�ict set C stored in an OL ol� a subset of C which is also a con�
�ict set can be computed by calling the function computeConflictSet�ol�
which is de�ned by�

computeConflictSet�OL ol� returns OL
�� S 
 emptyOL

�� for i � � to ol�size

addLast�ol�ct�i��S	


if isAConflictSet�S� then return S


�� return emptyOL




A set of disjoint con�ict sets can be easily computed by calling function
computeConflictSet�ol� with ol containing all constraint of C and by iter�
atively calling it with ol � ol � K each time a con�ict set K is detected in
ol	

The lower bound we search for depends on the number of con�ict sets� and�
since they are disjoint� on the size of the con�ict sets	

De�nition � Let C be a set of constraint� A minimal con	ict set w�r�t� compute�

ConflictSet is a subset K of C such that �C � K� computeConflictSet	K	fCg


detects no con	ict set�

A simple algorithm for �nding a minimal con�ict set from a con�ict set was
suggested by De Siqueira and Puget 
��	 It requires only a monotonic propagation
of constraints� that is� not dependent on the order in which constraints are added	

Is is implemented by the function computeMinConflictSet�ol�	 The �rst
step consists of computing an initial OL firstOL	 This OL contains a subset
of the constraint set given as parameter which forms a con�ict set� if such a
con�ict set can be identi�ed	 Then� the algorithm repeatedly calls compute�
ConflictSet with an OL which is the same OL than the previous one� except
that the last constraint became the �rst one	 This repetition is done until the
last constraint of a new computed OL is the last constraint of firstOL	 The
latest computed OL contains the constraints of a minimal con�ict set	

computeMinConflictSet�OL ol� returns OL
�� M 
 computeConflictSet�OL	


�� if M �� emptyOL then

firstLast
 getLast�ol	


do

C 
 removeLast�M	


addFirst�C�M	


M 
 computeConflictSet�M	


while getLast�M	 �� firstLast

�� return M 


��� Con
ict Set Based Lower Bound

We can now propose an original algorithm for computing a lower bound of
minUnsat�C� S
C��	

This algorithm is based on computation of disjoint con�ict sets	 Therefore� it
performs successive calls of computeMinConflictSet	 This lower bound will
be denoted by LBDCS �C��



computeConflictBasedLB�C�
�� LBDCS	C

 min	D	unsat




create an OL ol and add all the constraints of C to it


�� cs
computeMinConflictSet	ol



While cs �� emptyOL do

LBDCS	C

 LBDCS	C
 � �


ol
 ol 	 cs

cs
 computeMinConflictSet	ol



�� return LBDCS	C



LBDCS�C� can be used to check the consistency of a ssc� as the variable�based
lower bound LB�P�C�� described in section 
�

Corollary � If LBDCS	C
 � max	D	unsat

 then ssc	C�S�C�� unsat
 is not consis�

tent�

� Identi�cation of Independent Set of Ignored
Constraints w	r	t	 a Var
Partition

In this section we show how to improve results presented in section 
� by in�
tegrating such a con�ict set based lower bound of violations into Property 

and Theorem �	 The idea is to identify ignored constraints� that is� constraints
which are not taken into account in LB�P�C��	 Then� it is possible to compute a
con�ict set based lower bound on a particular subset of these constraints� which
can be added to LB�P�C��	

De�nition � Let P	C
 be a var�partition� An ignored constraint w�r�t� P	C
 is a

constraint C such that �x � X	C
 � �inc	x�P 	x
	 fCg
 � �inc	x�P 	x

�

Thus� one ignored constraint can be removed from C without changing the
value of LB�P�C��	

De�nition 
 Let P	C
 be a var�partition� A set of constraints S satisfying �x �

X	C
 � �inc	x�P 	x
 	 S
 � �inc	x�P 	x

 is called an independent set of ignored

constraints w�r�t� the var�partition�

If an independent set S is found then it is possible to improve Property 

and Theorem �� by adding LBDCS �S� to them	 The identi�cation of ignored
constraints w	r	t var�partition is given by the following property�

De�nition �� Let x be a variable� the set of ignored constraints w�r�t� P 	x
 is the set

ignored	P 	x

 � P 	x
	fC � P 	x
� C is violated by a � D	x
 with�inc		x� a
� P 	x

 �

�inc	x�P 	x

g

Unfortunately� the whole set K of ignored constraints w	r	t	 P �x� is not neces�
sarily independent	 Each constraintC � K taken separately satis�es �inc�x� P �x��
fCg� � �inc�x� P �x��� but this fact does not guarantee that �inc�x� P �x��K� �
�inc�x� P �x��	



For instance� consider a variable x with � values a� b and c and suppose that
a is not consistent with C�� b is not consistent with C� and c is not consistent
with C� and C�� Assume P �x� � fC�� C�� C�� C�g	

a

b

c

C1

C3

x

C2

C4

v Ci means v is not consistent with Ci

Figure �

Then� �inc�x� P �x�� � � � �inc��x� a�� P �x�� � �inc��x� b�� P �x�� and
ignored�P �x�� � fC�� C�g	 Unfortunately� ignored�P �x�� does not form an in�
dependent set of ignored constraints	 That is� constraints C� and C� cannot
be simultaneously removed from P �x�� because in this case� �inc�x� P �x� �
fC�� C�g� � �inc��x� c�� P �x��fC�� C�g� � �� which is less than �inc�x� P �x��	

Nevertheless� a simple example of an independent set of ignored constraints is
the set containing constraints involving only variables with �inc counters equal
to �	 Now� we propose general method to identify such a set	 Since P�C� is a
partition� it is su�cient to identify for each variable x an independent subset of
ignored constraints of P �x�	 The union of these subsets will form an independent
set	

Property 	 Let P	C
 be a var�partition� x be a variable of X	C
 and S be an inde�

pendent set of ignored constraints included in P 	x
� Then� �x�X�C�S is an independent

set of ignored constraints w�r�t� P	C
�

Thus� we can focus our attention to the determination of an independent set
of ignored constraints included in a P �x��

Property � Let T be any subset of P 	x
� If each value of D	x
 violate at least

�inc	x�P 	x

 constraints of T � then S � P 	x
 	 T is an independent set of ignored

constraints�

Proof� �a � D	x
 �inc		x� a
� P 	x
	 S
 � �inc		x� a
� T 
 which is greater than or

equal to �inc	x�P 	x

� Therefore� by de�nition 
� S is an independent set of ignored

constraints�

Such a set T can be found by solving a covering problem�

Proposition � Let x be a variable� G	x�P 	x

 � 	D	x
�P 	x
� E
 be the bipartite

graph such that 	a�C
 � E i
 a � D	x
� C � P 	x
 and 	x� a
 violates C� Let T be



a subset of P 	x
 such that �a � D	x
 there are at least �inc	x�P 	x

 edges with an

endpoint in T � Then� S � P 	x
	 T is an independent set of ignored constraints w�r�t�

P 	x
�

The proof of this proposition is straightforward	 Finding a minimal set T is
an NP�Complete problem� but it is not mandatory to search for a minimal set	
From Property �� we propose a greedy algorithm which returns an independent
set of constraints from a set P �x� of a var partition P�C� ��inc�x�K�fCg� can
be easily updated at each step��

computeIndependentSet�x� P �x��
�� K 
 P 	x



�� S 
 



�� While �C � K� �inc	x�K 	 fCg
 � �inc	x�P 	x

 do

S 
 S � fCg


K 
 K 	 fCg


�� return S


ISNC�P�C�� � 
x�X�C�computeIndependentSet�x� P �x�� is an independent
set of ignored constraints w	r	t	 P�C�	 We can propose a new property which im�
prove Property 
� and the corresponding necessary condition of consistency of a
ssc�

Property � �P	C
 a var�partition of C�

LB	P	C

 � LBDCS	ISNC	P	C


 �minUnsat	C� S�C�


Corollary � If LB	P	C

 � LBDCS	ISNC	P	C




� max	D	unsat

 then ssc	C� S�C�� unsat
 is not consistent�

Note that if we compute these bounds in the example given in Introduction�
we obtain the following result� at least one constraint among x � y� y � z and
z � x is violated for any var�partition� since in all cases the independent set of
ignored constraints contains the three constraints	

Moreover� Property � can be used in order to improve the �ltering Theorem
��

Theorem � �P	C
 a var�partition of C��x � X	C��a � D	x
�

if �inc		x�a
� P 	x

 � LB	P	C 	 P 	x




� LBDCS	ISNC	P	C 	 P 	x





� max	D	unsat

 then a can be removed from its domain�

� Summary

The two following tables recapitulate the results of this paper and compare them
to the previous studies	 Let P �C� be a var�partition of C�



�	 Consistency�

Previous studies �binary constraints�
LB�P�C��
� max�D�unsat��
New Condition �any arity�
LBDCS �C�
� max�D�unsat��
Improved Condition �any arity�
LB�P�C��
�LBDCS �ISNC�P�C���
� max�D�unsat��

�	 Filtering algorithm�

Previous studies �binary constraints�
�inc��x� a�� P �x��
�LB�P�C � P �x���
� max�D�unsat��
New results �any arity�
�inc��x� a�� P �x��
�LB�P�C � P �x���
�LBDCS �ISNC�P�C � P �x����
� max�D�unsat��

� Conclusion

Some new properties improving existing results have been proposed	 The lower
bounds presented in this paper take into account some inconsistencies between
constraints that are ignored by the previous studies	 The constraints ignored
by the existing algorithms for Max�CSP have been identi�ed and an algorithm
for computing a lower bound of the number of inconsistencies implied by these
constraints have been proposed	 One additional advantage of the framework we
suggest is that the �ltering algorithm associated with the constraints are used
in a way similar to classical CSPs	 Moreover� all the results make no assumption
on the arity of constraints and generalize the previous studies which consider
only binary Max�CSP	
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