
Submission to CONSTRAINTS, , 1–18 ()
c© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Cost based Arc Consistency for Global Cardinality
Constraints

JEAN-CHARLES RÉGIN regin@ilog.fr

ILOG, Les Taissounières HB2, 1661, route des Dolines, Sophia Antipolis, 06560 Valbonne,
FRANCE

Editor:

Abstract. A global cardinality constraint (gcc) is specified in terms of a set of variables
X = {x1, ..., xp} which take their values in a subset of V = {v1, ..., vd}. It constrains the number
of times each value vi ∈ V is assigned to a variable in X to be in an interval [li, ui]. A gcc
with costs (costgcc) is a generalization of a gcc in which a cost is associated with each value of
each variable. Then, each solution of the underlying gcc is associated with a global cost equal to
the sum of the costs associated with the assigned values of the solution. A costgcc constrains the
global cost to be less than a given value. Cardinality constraints with costs have proved very useful
in many real-life problems, such as traveling salesman problems, scheduling, rostering, or resource
allocation. For instance, they are useful for expressing preferences or for defining constraints such
as a constraint on the sum of all different variables. In this paper, we present an efficient way
of implementing arc consistency for a costgcc. We also study the incremental behavior of the
proposed algorithm.

Keywords: Constraint satisfaction problem, global constraint, filtering algorithm, cardinality
constraints, cardinality constraints with costs, arc consistency

1. Introduction

Constraint satisfaction problems (CSPs) form a simple formal frame to represent
and solve certain problems in artificial intelligence. They involve finding values
for problem variables subject to constraints on which combinations are acceptable.
The problem of the existence of solutions to the CSP is NP-complete. Therefore,
methods have been developed to simplify the CSP before or during the search for
solutions. The use of filtering algorithms associated with constraints is one of the
most promising methods. A filtering algorithm associated with one constraint aims
at removing values that are not consistent with the constraint. When all the values
that are inconsistent with the constraint are deleted by the filtering algorithm we
say that it achieves the arc consistency.

The design of specific filtering algorithms for some constraints is necessary to solve
some CSPs. Furthermore, it is also necessary to deal with global constraints. This
has been clearly shown by the great interest in solving some real-world problems
using the constraints: diff-n, alldiff [10], cumulative [2], global cardinality constraint
[11].

A global constraint can be seen as the conjunction of a set of constraints. For
instance an alldiff constraint involving the variables x, y and z, gathers together all
the binary 6= constraints between variables x, y and z. The advantage of dealing

2 J-C. RÉGIN

peter

paul

mary

john

bob

mike

julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

peter

paul

mary

john

bob

mike

julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

Figure 1. An example of global constraint of cardinality.

with global constraints is that the globality of the constraint can be taken into ac-
count. This means that, generally, the filtering algorithm associated with a global
constraint is more powerful than the conjunction of the filtering algorithms associ-
ated with each underlying constraint if we take them separately. A gcc is specified
in terms of a set of variables X = {x1, ..., xp} which take their values in a subset
of V = {v1, ..., vd}. It constrains the number of times a value vi ∈ V is assigned
variables in X to be in an interval [li, ui]. Gccs arise in many real-life problems.
For instance, consider the example derived from a real problem and given in [4].
The task is to schedule managers for a directory-assistance center, with 5 activi-
ties, 7 persons over 7 days. Let us study only one part of this problem: Each day,
a person has to perform an activity and we may have a minimum and maximum
number of times that this activity can be performed. This constraint can be exactly
formulated as gcc. It can be represented by a bipartite graph called a value graph
(left graph in Figure 1). The left set corresponds to the person set, the right set
to the activity set. There exists an edge between a person and an activity when
the person can perform the activity. For each activity, the numbers in parenthesis
express the minimum and the maximum number of times the activity has to be
assigned. A gcc can be efficiently handled by designing specific algorithms for this
constraint [11]. For the example we consider, the achievement of arc consistency
for the gcc leads to the right graph in Figure 1. Such a result can be obtained only
by taking into account the globality of the constraint. In this paper we propose to
add costs to a gcc.

The addition of costs to an alldiff constraint, which is a particular case of gcc,
has been studied by Caseau and Laburthe [5]. However, they do not propose any
filtering algorithm. They only show the interest of computing the consistency of
such a constraint.

Consider again the previous example and suppose that each person expresses
some preferences on the activities that they can perform. These preferences can be
represented by an integer. A small number indicates that the activity is prefered,
while a large number corresponds to a penalty. Suppose also that there is for
each day a constraint stating that the sum of the preferences must be less than a

COST BASED ARC CONSISTENCY FOR GLOBAL CARDINALITY CONSTRAINTS 3

peter

paul

mary

john

bob

D(1,2)

N (1,1)

B(0,2)

O(0,2) julia

1

1

1

1

1
1

1

mike

D(1,2)

M (1,2)

N (1,1)

B(0,2)

O(0,2)

1

M (1,2)peter

paul

mary

john

bob

1

1

1

1

1
1

1

julia

mike

4

4

1

3

3

Figure 2. An example of global cardinality with costs. The sum of the assignments must
be strictly less than 12.

given number. For instance, consider Peter, Paul, Mary, and John. Peter has a
preference 1 for the activity M and 4 for the activity D; Paul has a preference 1 for
the activity M and 4 for the activity D; Mary and John a preference of 1 for the
activity D and 3 for the activity M . For all the other persons preferences are 1 for
all the activities. Preferences can be represented by costs in the value graph. (See
Figure 2.) A preference p between a person and an activity corresponds to the cost
p on the edge between the person and the activity. Thus, we can associate with
each person a variable whose domain is defined by the preferences of the person.
When an activity is assigned to a person, the variable associated with this person
is instantiated to the preference of the person for this activity. We will denote
by CPeter, CPaul, CMary, CJohn, CBob, CMike, CJulia these variables. CPeter
can take the values 1 or 4; CPaul 1 or 4; CMary 1 or 3; CJohn 1 or 3; CBob,
CMike, CJulia are instantiated to 1. The minimal solution has a cost 7 (each
person is assigned to his preferred activity). Suppose that a solution with a global
cost greater than 11 is not acceptable. This constraint on preferences corresponds
to a sum constraint involving the variables associated with every person. More
precisely, it is defined by CPeter + CPaul + CMary + CJohn + CBob + CMike
+ CJulia <= 11. If we consider this sum constraint independently from the gcc,
nothing will be deduced because the greatest value of cost variables is consistent
with the sum constraint: 4+1+1+1+1+1+1 = 10 <= 11, so no value is removed.
However, we can prove, for instance, that it is impossible to have the value 4 for
CPeter. This means that the assignment (Peter,D) is incompatible w.r.t. the gcc
in conjunction with the sum constraint. Suppose that Peter is assigned to D, then
D can also be assigned to Mary or John for a cost 1, but together they cannot be
assigned to D, because D can be assigned at the most twice. Thus Mary or John
must be assigned to M for a cost 3. The minimum cost if Peter is assigned to D

4 J-C. RÉGIN

is: 4 + 1 + 1 + 3 = 9. For the other persons their contribution is 3. The minimum
global cost is 12 and so violates the acceptability constraint. The right graph of
Figure 2 shows the result of the achievement of arc consistency for the costgcc.

In this paper we present an efficient way of implementing generalized arc consis-
tency for the costgcc. The filtering algorithm is based on the minimum cost flow
algorithm.

First, we give some preliminaries on constraint satisfaction problems. And, we
present the flow theory because our results are based on it. Then, we present
an algorithm checking the consistency of a costgcc. Afterwards, we propose a
simple algorithm for achieving generalized arc consistency, which is based on a new
proposition in the flow theory. Finally, we conclude.

2. CSP

A finite constraint networkN is defined as a set of n variables X = {x1, . . . , xn},
a set of current domains D = {D(x1), . . . , D(xn)} where D(xi) is the finite set
of possible values for variable xi, and a set C of constraints between variables.
We introduce the particular notation D0 = {D0(x1), . . . , D0(xn)} to represent the
set of initial domains of N . Indeed, we consider that any constraint network N
can be associated with an initial domain D0 (containing D), on which constraint
definitions were stated.

A constraint C on the ordered set of variables X(C) = (xi1 , . . . , xir) is a subset
T (C) of the Cartesian product D0(xi1)× · · · ×D0(xir) that specifies the allowed
combinations of values for the variables xi1 , . . . , xir . An element of D0(xi1)× · · · ×
D0(xir) is called a tuple on X(C). |X(C)| is the arity of C.

A value a for a variable x is often denoted by (x, a). var(C, i) represents the
ith variable of X(C), while index(C, x) is the position of variable x in X(C). τ [k]
denotes the kth value of the tuple τ . D(X) denotes the union of domains of variables
of X (i.e. D(X) = ∪xi∈XD(xi)). #(a, τ) is the number of occurrences of the value
a in the tuple τ .

Let C be a constraint. A tuple τ on X(C) is valid if ∀(x, a) ∈ τ, a ∈ D(x). C
is consistent iff there exists a tuple τ of T (C) which is valid. A value a ∈ D(x)
is consistent with C iff x 6∈ X(C) or there exists a valid tuple τ of T (C) with
a = τ [index(C, x)]. A constraint is arc consistent iff ∀xi ∈ X(C), D(xi) 6= ∅ and
∀a ∈ D(xi), a is consistent with C.

The value graph [7] of an non-binary constraint C is the bipartite graph GV (C) =
(X(C), D(X(C)), E) where (x, a) ∈ E iff a ∈ Dx.

2.1. Global Cardinality Constraints with costs

Throughout this paper, we are interested in global cardinality constraints with costs
(costgcc). They introduce cost in global cardinality constraints that are defined
by the minimal and the maximal number of times each value of D(X(C)) must
appear in each tuple of the constraints. The minimal and the maximal number of
occurrences of each value can be different from the others. More formally we have:

COST BASED ARC CONSISTENCY FOR GLOBAL CARDINALITY CONSTRAINTS 5

Definition 1 A global cardinality constraint is a constraint C in which each
value ai ∈ D(X(C)) is associated with two positive integers li and ui and
T (C) = { τ such that τ is a tuple on X(C)

and ∀ai ∈ D(X(C)) : li ≤ #(ai, τ) ≤ ui}
It is denoted by gcc(X, l, u).

Definition 2 A cost function on a variable set X is a function which asso-
ciates with each value (x, a), x ∈ X and a ∈ D(x) an integer denoted by cost(x, a).

A costgcc is the conjunction of a gcc constraint and a sum constraint:

Definition 3 A global cardinality constraint with costs is a constraint C
associated with cost a cost function on X(C), an integer H and in which each
value ai ∈ D(X(C)) is associated with two positive integers li and ui

T (C) = { τ such that τ is a tuple on X(C)
and ∀ai ∈ D(X(C)) : li ≤ #(ai, τ) ≤ ui

and Σ|X(C)|
i=1 cost(var(C, i), τ [i]) ≤ H }

It is denoted by costgcc(X, l, u, cost,H).

There is no assumption made on the sign of costs.

3. Flows

3.1. Preliminaries

The definitions about graph theory are due to [12]. The definitions, theorems and
algorithms about flow are based on books of [3, 8, 12, 1].

A directed graph or digraph G = (X, U) consists of a vertex set X and an
arc set U , where every arc (u, v) is an ordered pair of distinct vertices. We will
denote by X(G) the vertex set of G and by U(G) the arc set of G. The cost of an
arc is a value associated with the arc.

A path from node v1 to node vk in G is a list of nodes [v1, ..., vk] such that
(vi, vi+1) is an arc for i ∈ [1..k − 1]. The path contains node vi for i ∈ [1..k] and
arc (vi, vi+1) for i ∈ [1..k− 1]. The path is simple if all its nodes are distinct. The
path is a cycle if k > 1 and v1 = vk. The length of a path p, denoted by length(p),
is the sum of the costs of the arcs contained in p. A shortest path from a node
s to a node t is a path from s to t whose length is minimum. A cycle of negative
length is called a negative cycle. Let s and t be nodes, there is a shortest path
from s to t if and only if there exists a path from s to t and no path from s to t
contains a negative cycle. If there is a shortest path from s to t, there is one that
is simple.

The complexity of the search for shortest paths from a node to every node in a
graph with m arcs and n nodes depends on the maximal cost γ and on the sign of
the costs. Therefore, we will denoted this complexity by S(m,n, γ) if all the costs
are nonnegative; and Sneg(m,n, γ) otherwise.

Let G be a graph for which each arc (i, j) is associated with three integers lij ,
uij , and cij , respectively called the lower bound capacity, the upper bound

6 J-C. RÉGIN

capacity and the cost of the arc.

A flow in G is a function f satisfying the following two conditions:
• For any arc (i, j), fij represents the amount of some commodity that can “flow”

through the arc. Such a flow is permitted only in the indicated direction of the arc,
i.e., from i to j. For convenience, we assume fij = 0 if (i, j) 6∈ U(G).

• A conservation law is observed at each node: ∀j ∈ X(G) :
∑

i fij =
∑

k fjk.
The cost of a flow f is cost(f) =

∑
(i,j)∈U(G) fijcij .

We will consider three problems of flow theory:
• the feasible flow problem: Does there exist a flow in G that satisfies the

capacity constraint? That is find f such that ∀(i, j) ∈ U(G) lij ≤ fij ≤ uij .
• the problem of the maximum flow for an arc (i, j): Find a feasible flow

in G for which the value of fij is maximum.
• the minimum cost flow problem: If there exists a feasible flow, find a fea-

sible flow f such that cost(f) is minimum.

Without loss of generality (see p.45 and p.297 in [1]) , and to overcome notational
difficulties, we will consider that:

• if (i, j) is an arc of G then (j, i) is not an arc of G.
• all boundaries of capacities are nonnegative integers.

In fact, if all the upper bounds and all the lower bounds are integers and if there
exists a feasible flow, then for any arc (i, j) there exists a maximum flow from j to
i which is integral on every arc in G (See [8] p113.)

Definition 4 Let f be a flow in G. For each arc (i, j) of G, the infeasibility
number kij w.r.t. f is defined by:

• kij = 0 if lij ≤ fij ≤ uij;
• kij = lij − fij if fij < lij; ((i, j) is lower-infeasible)
• kij = fij − uij if fij > uij. ((i, j) is upper-infeasible)

3.2. Flow algorithms

Consider, for instance, that all the lower bounds are equal to zero and suppose
that you want to increase the flow value for an arc (i, j). In this case, the flow of
zero on all arcs, called the zero flow, is a feasible flow. Let P be a path from
j to i different from [j, i], and val = min({uij} ∪ {upq s.t. (p, q) ∈ P}). Then
we can define the function f on the arcs of G such that fpq = val if P contains
(p, q) or (p, q) = (i, j) and fpq = 0 otherwise. This function is a flow in G. (The
conservation law is obviously satisfied because (i, j) and P form a cycle.) We have
fij > 0, hence it is easy to improve the flow of an arc when all the lower bounds are
zero and when we start from the zero flow. It is, indeed, sufficient to find a path
satisfying the capacity constraint.

The main idea of the basic algorithms of flow theory, is to proceed by successive
modifications of flows, that are computed in a graph in which all the lower bounds

COST BASED ARC CONSISTENCY FOR GLOBAL CARDINALITY CONSTRAINTS 7

are zero and the current flow is the zero flow. This particular graph can be obtained
from any flow and is called the residual graph:

Definition 5 The residual graph for a given flow f , denoted by R(f), is the
digraph with the same node set as in G. The arc set of R(f) is defined as follows:
∀(i, j) ∈ U(G):

• fij < uij ⇔ (i, j) ∈ U(R(f)) and has cost rcij = cij and upper bound capacity
rij = uij − fij.

• fij > lij ⇔ (j, i) ∈ U(R(f)) and has cost rcji = −cij and upper bound capacity
rji = fij − lij.
All the lower bound capacities are equal to 0.

Instead of working with the original graph G, we can work with the residual graph
R(fo) for some fo. From f ′ a flow in R(fo), we can obtain f another flow in G
defined by: ∀(i, j) ∈ U(G) : fij = fo

ij + f ′ij − f ′ji. And from a path in R(fo) we can
define a flow f ′ in R(fo) and so a flow in G:

Definition 6 We will say that f is obtained from fo by sending k units of
flow along a path P from j to i if:

• P is a path in R(fo)− {(j, i)}
• k ≤ min({rij} ∪ {ruvs.t.(u, v) ∈ P})
• f corresponds in R(fo) to the flow f ′ defined by:

• f ′pq = k for each arc (p, q) ∈ P ∪ {(i, j)}
• f ′pq = 0 for all other arcs.

If k is not mentioned it will be assumed that k = min({rij} ∪ {ruvs.t.(u, v) ∈ P})
In the previous definition the path must be different from [j, i], otherwise f ′ will

be the zero flow.
The following proposition shows that the existence of a path in the residual graph

is a necessary and sufficient condition:

Theorem 1 Let fo be any feasible flow in G, and (i, j) be an arc of G.
• There is a feasible flow f in G with fij > fo

ij if and only if there exists a path
from j to i in R(fo)− {(j, i)}.

• There is a feasible flow f in G with fij < fo
ij if and only if there exists a path

from i to j in R(fo)− {(i, j)}.
proof: see [8] p112. ¯

3.2.1. Maximum flow algorithm Theorem 1 gives a way to construct a maximum
flow in an arc (i, j) by iterative improvement, due to Ford and Fulkerson:
Begin with any feasible flow f0 and look for a path from j to i in R(f0)− {(j, i)}.
If there is none, f0 is maximum. If, on the other hand, we find such a path P , then
define f1 obtained from f0 by sending flow along P . Now look for a path from j
to i in R(f1)−{(j, i)} and repeat this process. When there is no such path for fk,
then fk is a maximum flow.

A path can be found in O(m), thus we have:

8 J-C. RÉGIN

Property 1 A maximum flow of value v in an arc (i, j) can be found from a
feasible flow in O(mv).

3.2.2. Feasible flow algorithm For establishing a feasible flow, several methods
exist. For instance, it is possible to transform this problem into one in which all the
lower bounds capacities are equal to zero and searching for a particular maximum
flow value for one arc. (See [1] p 169.) However, there is a simple method which
repeatedly searchs for maximum flows in some arcs:
Start with the zero flow fo. This flow satisfies the upper bounds. Set f = fo, and
apply the following process while the flow is not feasible:
1) pick an arc (i, j) such that fij violates the lower bound capacity in G (i.e.
fij < lij).
2) Find P a path from j to i in R(f)− {(j, i)}.
3) Obtain f ′ from f by sending flow along P ; set f = f ′ and goto 1)
If, at some point, there is no path for the current flow, then a feasible flow does not
exist. Otherwise, the obtained flow is feasible.

Property 2 Let kij be the infeasibility number w.r.t. the zero flow of each arc (i, j)
in G. We can find a feasible flow in G or prove there is none in O(m

∑
(i,j)∈U(G) kij).

3.2.3. Minimum cost flow problem The search for a feasible flow with a mini-
mum cost implies only few modifications in the previous algorithm to ensure that
the cost of the feasible flow will be minimum. In fact, only one aspect of the
method is modified, the flow will be obtained by sending flow along special paths:
the shortest ones. That is, the shortest paths are computed in the residual network
by using the residual cost as cost. This algorithm is called the successive shortest
path algorithm:
Start with the zero flow fo. This flow satisfies the upper bounds. Set f = fo, and
apply the following process while the flow is not feasible:
1) pick an arc (i, j) such that fij violates the lower bound capacity in G (i.e.
fij < lij).
2) Find P a shortest path from j to i in R(f)− {(j, i)}.
3) Obtain f ′ from f by sending flow along P ; set f = f ′ and goto 1)
If, at some point, there is no path for the current flow, then a feasible flow does not
exist. Otherwise, the obtained flow is feasible and is a minimum cost flow.

The correctness of this algorithm is based on the following proposition:

Notation 1 We will denote by:
• Glij←a the graph G in which lij has been replaced by a.
• dR(f)−{(j,i)}(j, i) the length of a shortest path from j to i is R(f)− {(j, i)}

Lemma 1 Let f be a minimum cost flow in G and (i, j) be an arc of G. If there is
a shortest path P from node j to node i in R(f)−{(j, i)}, then the flow f ′ obtained
from f by sending k units of flow along P is a minimum cost flow in Glij←fij+k

COST BASED ARC CONSISTENCY FOR GLOBAL CARDINALITY CONSTRAINTS 9

and cost(f ′) = cost(f)+k(rcij +dR(f)−{(j,i)}(j, i)). If such a path P does not exist
then there is no feasible flow in Glij←fij+1.

proof: see in [8] p130. ¯

The residual graph contains some negative costs, thus we have:

Property 3 Let kij be the infeasibility number w.r.t. the zero flow of each arc
(i, j) in G. We can find a minimum cost flow flow in G or prove there is none in
O(Sneg(n, m, γ)

∑
(i,j)∈U(G) kij).

3.3. Incrementality

Suppose fo is a minimum cost flow in Go, and G is the same graph as Go except
that some capacity boundaries have been tighten (i.e. some lowers bounds have
been increased and some upper bounds have been decreased). fo is not necessarily
feasible in G.

By lemma 1, we know how to augment flow for an arc. The reduction of the flow
value for an arc is based on a similar lemma:

Lemma 2 Let f be a minimum cost flow in G and (i, j) be an arc of G. If there is
a shortest path P from node i to node j in R(f)−{(i, j)}, then the flow f ′ obtained
from f by sending k units of flow along P is a minimum cost flow in Guij←fij−k

and cost(f ′) = cost(f)+k(rcji +dR(f)−{(i,j)}(i, j)). If such a path P does not exist
then there is no feasible flow in Guij←fij−1.

Therefore, we can obtain a feasible flow in G which is also a minimum cost flow
or prove there is none by applying the following algorithm:
Start with f = fo and apply the following process while f is infeasible in G:
Pick an arc (i, j) such that fij violates a bound capacity in G. If fij < lij , then
find P a shortest path from j to i in R(f) − {(j, i)}. If fij > uij , then find P a
shortest path from i to j in R(f)−{(i, j)}. Obtain f ′ from f by sending flow along
P ; set f = f ′

If, at some point, there is no path for the current flow, then a feasible flow does not
exist. Otherwise, the obtained flow is minimum cost flow.

3.4. Working with nonnegative costs

The complexity of the previous algorithms depends on the sign of the costs, be-
cause the most powerful algorithms for searching for shortest paths deals only with
nonnegative costs. However, the residual graph contains some negative costs. In
this section, we present a well known method for modifying the residual graph in a
way such that all the costs are nonnegative.

Let f be a current flow, and assume that the shortest path distances from a node
s to every node in the residual graph have been computed. In this case, we have:

∀i, j ∈ X(R(f)) : dR(f)(s, j) ≤ dR(f)(s, i) + rcij .

10 J-C. RÉGIN

This property holds because it means that either there is a shortest path from s to
j which contains the arc (i, j) and the equality is reached, or there is no shortest
path from s to j which contains the arc (i, j) and the inequality is strict.

Therefore, ∀i, j ∈ X(R(f)) : dR(f)(s, i) + rcij − dR(f)(s, j) ≥ 0. We can replace
each cost of the residual graph by cs

ij = dR(f)(s, i) + rcij − dR(f)(s, j). These costs
are often called reduced costs. We will denote by R

s
(f) this new graph. All

the costs of R
s
(f) are nonnegative and the best algorithms for computing shortest

paths can be used.
The link between the shortest paths in R(f) and R

s
(f) is given by the following

property:

Property 4 Let f be a flow, and R
s
(f) be the residual graph of f in which costs

are defined by cs
ij = dR(f)(s, i) + rcij − dR(f)(s, j).

Then, ∀(i, j) ∈ U(R
s
(f)) cs

ij ≥ 0,
and dR(f)(u, v) = dR

s
(f)(u, v)− dR(f)(s, u) + dR(f)(s, v).

proof: Let P = [ua1, a1a2, ..., apv] be a shortest path from u to v. The length of P is

equal to cs
ua1 + cs

a1a2 + ... + cs
apv, that is dR(f)(s, u) + rcua1 − dR(f)(s, a1) + dR(f)(s, a1) +

rca1a2−dR(f)(s, a2)+ ...+dR(f)(s, ap)+rcapv−dR(f)(s, v) = dR(f)(s, u)+rcua1 +rca1a2 +

...rcapv − dR(f)(s, v) = dR(f)(s, u) + dR(f)(u, v)− dR(f)(s, v). ¯

When establishing a feasible flow from f , the zero flow or a flow which is no longer
feasible because some lower bounds have been increased or some upper bounds have
been decreased, the search for a shortest path from i to j is made in R(f)−{(i, j)}.
In this case, the arc (i, j) does not belong to the residual graph. Thus, in the
context that we consider, the search for a path is made in the residual graph.
Hence, the previous transformation can be applied during each computation (i.e.
each augmentation or reduction) and it is possible to deal only with nonnegative
costs.

4. Consistency for a costgcc

A gcc C is consistent iff there is a special flow in an directed graph N(C) called
the value network of C [11]:

Definition 7 Given C = gcc(X, l, u) be a gcc; the value network of C is the
directed graph N(C) with lower bound capacity and upper bound capacity on each
arc. N(C) is obtained from the value graph GV (C), by:

• orienting each edge of GV (C) from values to variables. For such an arc (u, v):
luv = 0 and uuv = 1.

• adding a vertex s and an arc from s to each value. For such an arc (s, ai):
lsai = li, usai = ui.

• adding a vertex t and an arc from each variable to t. For such an arc (x, t):
lxt = 1, uxt = 1.

• adding an arc (t, s) with lts = uts = |X(C)|.

COST BASED ARC CONSISTENCY FOR GLOBAL CARDINALITY CONSTRAINTS 11

paul

peter

st

mary

4

mike

julia

bob

john

4

(0,2)

(0,2)

(1,1)

(1,2)

O

3

(7,7)

2 is the cost of an arc; (1,2) are the lower bound and the upper bound
means that 0 unit of flow traverse the arc
means that 3 units of flow traverse the arc

1

B

1

1

1

3

1

1

N

D

M (1,2)

1
1

Figure 3. An example of the value network associated with a costgcc. An optimal solution
is indicated by the bold edges.

Proposition 1 Let C be a gcc and N(C) be the value network of C; the following
two properties are equivalent:

• C is consistent;
• there is a feasible flow in N(C).

sketch of proof: We can easily check that each tuple of T (C) corresponds to a flow in

N(C) and conversely. ¯

Similarly, we can define the value network associated with a costgcc. (See Fig-
ure 3.)

Definition 8 Given C = costgcc(X, l, u, cost, H); the value network of C is the
value network N(C ′) of the underlying gcc C ′ = gcc(X, l, u) of C, in which each
arc has a cost defined as follows:

• ∀a ∈ D(X(C)) : csa = 0
• ∀x ∈ X(C) : cxt = 0
• cts = 0
• ∀x ∈ X(C) : ∀a ∈ D(x) : cax = cost(x, a).

Note that this network is independent of H.
For convenience, let m = |U(N(C))| (i.e. the number of arcs in N(C)), n =

|X(C)| (i.e. the number of variables involved in N(C)) and d = |D(X(C))| (i.e.
the number of values involved in N(C)) and γ be the greatest cost involved in
N(C).

12 J-C. RÉGIN

john

mary

paul

peter

bob

4

4

mike

julia

st

3

-1

-1

-1

-1

(0,1)

2 is the residual cost of an arc; (1,2) are the lower bound and the upper bound

-1

-1

-1

M (0,2)

B

N

D

1 O

(0,2)3

(0,2)

(0,2)

Figure 4. The residual graph of the optimal solution given in Figure 3.

We can present the original proposition:

Proposition 2 Given C = costgcc(X, l, u, cost, H) and N(C) the value network
of C; the following two properties are equivalent:

• C is consistent;
• there is a minimum cost flow in N(C) with a cost less than or equal to H.

proof: Let C′ be the gcc invoked in C. By proposition 1, C′ is consistent if and only if

there is a feasible flow in N(C). Thus, from each feasible flow in N(C) a tuple of T (C′)
can be built and from each element of T (C′) a feasible flow in N(C) can be defined. Every

feasible flow has a cost. If this cost is less than or equal to H then a tuple of T (C′) is

a tuple of T (C). Moreover, a tuple of T (C) is a tuple of T (C′) which corresponds to a

feasible flow of cost less than H. ¯

The successive shortest path algorithm achieves the consistency of a costgcc in
O(nS(m,n + d, γ)) (See properties 3 and 4.) Moreover, often in constraint pro-
gramming, the consistency of the constraints is systematically checked during the
search for solutions. In this case, we can use the incremental minimum cost flow
algorithm presented in Section 3. This means that if k values are deleted from the
previous call of the consistency algorithm, then the consistency can be computed
in O(kS(m,n + d, γ)).

5. Arc consistency for a costgcc

We have proved the following proposition [11].

Proposition 3 Let C be a consistent gcc and f be a feasible flow in N(C). A
value a of a variable x is not consistent with C if and only if fax = 0 and a and x
do not belong to the same strongly connected component in R(f).

COST BASED ARC CONSISTENCY FOR GLOBAL CARDINALITY CONSTRAINTS 13

john

mary

paul

peter

bob

4

4

mike

julia

st

3

-1

-1

-1

-1

(0,1)

2 is the residual cost of an arc; (1,2) are the lower bound and the upper bound

-1

-1

-1

M (0,2)

B

N

D

1 O

(0,2)3

(0,2)

(0,2)

Figure 5. The path [julia,B,s,O] has a cost −1 and rcOjulia = 1, thus (julia, O) is
consistent with the constraint. The shortest path from john to M has a cost 2 and
rcMjohn = 3, thus 7 + 3 + 2 > 11 and (john, M) is not consistent with the constraint.

proof: By theorem 1 the flow value for an arc (a, x) is constant if there is no path from a

to x in R(f)−{(a, x)} and no path from x to a in R(f)−{(x, a)}. Moreover, uax = 1 thus

(a, x) and (x, a) cannot belong simultaneously to R(f), hence fax is constant iff there is

no cycle containing (x, a) or (a, x) in R(f). That is, if x and a belong to different strongly

connected components. ¯

The advantage of this proposition is that all the values not consistent with the gcc
can be determined by only one identification of the strongly connected components
in R(f). The search for strongly connected components can be done in O(m + n +
d) [12], thus a remarkable complexity for computing arc consistency for a gcc is
obtained.

Corollary 1 Let C be a consistent gcc and f be a feasible flow in N(C). Arc
consistency for C can be achieved in O(m + n + d).

In order to avoid any problem of the existence of a path from a node to another
node, we will consider that the arc consistency algorithm of the underlying gcc has
been applied, and that we consider successively each strongly connected component.

Nevertheless, with a costgcc the problem is more complex than with a gcc, because
with a gcc we need only to know whether there is a cycle containing a given arc
or not. With a costgcc we need to identify whether there is a particular cycle
containing a given arc, that is, a cycle with a length greater than a given value,
because there are costs on arcs and the global bound must be satisfied.

For convenience we will consider that:
• C = costgcc(X, l, u, cost,H) is a consistent costgcc;
• fo is a minimum cost flow problem in N(C);

14 J-C. RÉGIN

We can define an original correspondence between the consistency of a value with
a costgcc and a particular path in the value network. (See figure 5.)

Proposition 4 A value a of a variable y is not consistent with C if and only if
the two following properties hold:

(i) fo
ay = 0

(ii) dR(fo)−{(y,a)}(y, a) > H − cost(fo)− rcay

proof: (i) is obvious. Assume that fo
ay = 0. From lemma 1, the cost of any flow f ′ with

f ′ay = 1 is cost(f ′) = cost(fo) + rcay + dR(f)−{(y,a)}(y, a). Thus, cost(f ′) > H if and only

if cost(fo) + rcay + dR(f)−{(y,a)}(y, a) > H and we have the proposition. ¯

From this proposition we can define a simple algorithm for computing the arc
consistency of a consistent costgcc:

for every arc {a, y}: if the proposition does not hold then remove the arc
from N(C) and a from D(y).

From property 4 we can work only with nonnegative costs. Thus, the complexity
of this algorithm is O(mS(m,n + d, γ)).

At first glance, it does not seem easy to improve this algorithm because for each
value a of y the distance are computed in R(fo) − {(y, a)}. However, in our case,
when we search for a path from y to a, the arc (y, a) does not belong to R(f0) since
fo

ay = 0 = lay. Thus R(fo)− {(y, a)} = R(fo).

Corollary 2 The value a of y is not consistent with C if and only if
fo

ay = 0 and dR(fo)(y, a) > H − cost(fo)− rcay.

Thus, if for each variable y we compute the shortest path distance from y to every
node in R(fo), we will be able to know which values of y are not consistent with the
constraint. Therefore, since there are n variables, we can achieve arc consistency
for a costgcc in O(nS(m,n + d, γ)) which improves the previous complexity.

We can further use the particular structure of R(f0). In a solution each variable
is assigned to one value. This means that for each variable there is only one arc out-
going to this variable in R(fo). Thus, all the shortest paths traversing a variable
will use this arc. In other words if a variable y is assigned to a value b then
all the shortest paths in R(fo) from y to a value a will use the arc (y, b), and
dR(fo)(y, a) = rcyb + dR(fo)(b, a). Hence, we can determine the values of y that are
not consistent with C by searching for shortest paths in R(fo) from the value b,
that is the value assigned to y:

Corollary 3 Let y be any variable such that fo
by = 1. Then, the value a of y is

not consistent with C if and only if
fo

ay = 0 and dR(fo)(b, a) > H − cost(fo)− rcay − rcyb.

proof: By definition of the value network and since C is consistent, (y, b) is the only

one arc outgoing y in R(fo). Thus, dR(fo)(y, b) = rcyb and dR(fo)(y, a) = dR(fo)(y, b) +

dR(fo)(b, a) = rcyb + dR(fo)(y, b), Hence by corollary 2 we have the corollary. ¯

COST BASED ARC CONSISTENCY FOR GLOBAL CARDINALITY CONSTRAINTS 15

The advantage of this method (i.e. computing shortest paths from values instead
of variables) is that we can gather some computations, because several variables
can be assigned to the very same value.

Let ∆ be the set of values b such that fo
sb > 0. Consider such a value b, we will

denote by δ(b) be the set of values defined by δ(b) = {a ∈ D(X(C)) s.t. a 6= b and
a ∈ D(y) and fo

by = 1}. Thus, arc consistency can be achieved by searching for
each value b of ∆ the shortest path distance from b to every node in δ(b).

arcConsistency(C, N(C), fo)
// fo is a minimum cost flow in N(C)
∆ ← ?
Compute dR(fo)(t, i) for every node i in R(fo)
for each value a do if fo

sa > 0 then ∆ ← ∆ ∪ {a}
for each value b ∈ ∆ do

δ(b) ← ?
for each arc (b, y) ∈ N(C) do

if fo
by = 1 then
for each a ∈ D(y) do δ(b) ← δ(b) ∪ {a}

remove b from δ(b)

computeShortestPaths(b, δ(b), R
t
(fo))

for each arc (b, y) ∈ N(C) do
if fo

by = 1 then
for each a ∈ D(y) do

if d
R

t
(fo)

(b, a) > H − cost(fo)− ct
ay − ct

yb then remove a from D(y)

Algorithm 1. Arc consistency algorithm for a costgcc.

We can deal only with nonnegative costs by using Property 4. Then, we have:

Corollary 4 Let y be any variable such that fo
by = 1. Then, the value a of y is

not consistent with C if and only if
fo

ay = 0 and d
R

t
(fo)

(b, a) > H − cost(fo)− ct
ay − ct

yb.

proof: By Corollary 3: a value a of y is not consistent with C iff fo
ay = 0 and dR(fo)(b, a) >

H − cost(fo) − rcay − rcyb. From Property 4 it can be rewritten as d
R

t
(fo)

(b, a) −
dR(fo)(t, b) + dR(fo)(t, a) > H − cost(fo) − [ct

ay − dR(fo)(t, a) + dR(fo)(t, y)] − [ct
yb −

dR(fo)(t, y)+ dR(fo)(t, b)] which is equivalent to d
R

t
(fo)

(b, a) > H − cost(fo)− ct
ay − ct

yb ¯

Algorithm 1 is a possible implementation of the achievement of arc consistency
for a costgcc. Function computeShortestPaths(b, δ(b), R

t
(fo)) computes the

shortest path in R
t
(fo) from a node b to every node in δ(b).

Since we have |∆| ≤ min(n, d), the previous complexity is improved.

Property 5 Let C be a consistent costgcc, fo be a minimum cost flow in N(C).
Arc consistency for C can be achieved in O(|∆|S(m,n + d, γ)).

16 J-C. RÉGIN

Practical improvements

We can propose some heuristics for improving the behavior of the arc consistency
algorithm in practice .

Let (a, y) be any arc with fo
ay = 0 and b be the value with fo

by = 1. First, if
ct
ay > H − cost(fo)− ct

yb then we can immediately remove the value a from D(y),
since any shortest path distance is nonnegative. Using for each arc (b, y) with
fo

by = 1, m(b) = min({ct
zb + ct

zc with z 6= y and c ∈ D(z)}) can refine this idea.
Let M = H − cost(fo), then, (y, a) is not consistent with C if one of the following
conditions holds:

• fsa < usa and fsb > lsb and ct
ay > M − ct

yb

• fsa < usa and fsb = lsb and ct
ay + m(b) > M

• fsa = usa and fsb > lsb and ct
ay + m(a) > M − ct

yb

• fsa = usa and fsb = lsb and ct
ay + m(a) + m(b) > M

Furthermore, it is not necessary to search for the shortest path distances from
a value b in ∆ to every node in δ(b). When all the current distances from b to
nodes in δ(b) do not satisfy the inequality of corollary 4 we can stop the algorithm,
because all the values of δ are consistent with the constraint. Moreover, if we use
Disjkstra’s algorithm for searching for shortest paths then if the current scanned
node of the Disjkstra’s algorithm is greater than H − cost(fo) then we can also
stop the algorithm, because the shortest path distances of the nodes that have not
been scanned will not be less than the H − cost(fo). And since all the costs are
nonnegative, all the values that have not been scanned will satisfy corollary 4.

There are several possible ways for implementing the priority queue needed by the
Dijkstra’s algorithm [6]. We can implement the Dijkstra’s algorithm in O(m + H)
with a simple bucket data structure or in O(m + n log γ) with a radix heap data
structure. We can also use a Fibonacci heap in order to obtain a strongly polynomial
algorithm O(m + n log(n)).

6. Discussion

6.1. Removal of negative costs

Consider C = costgcc(X, l, u, cost,H) and suppose that some costs are negative.
This constraint can be transformed into an equivalent one in which there are only
nonnegative costs [9]. Let K be the opposite of the minimum value of costs. If this
value is added to all costs then all the obtained costs are nonnegative. In general
this method does not work, because the problem is transformed. Indeed, two paths
with a different number of arcs and the same length in the initial problem will
have different length in the new problem. However, in our case, each variable will
be instantiated to exactly one value, thus by adding K to each cost, the cost of
the minimum cost flow will be increased by |X|K. This means that the constraint
costgcc(X, l, u, cost+K,H+|X|K), where (cost+K)(e) = cost(e)+K, is equivalent
to the constraint costgcc(X, l, u, cost, H), and contains only nonnegative costs.

COST BASED ARC CONSISTENCY FOR GLOBAL CARDINALITY CONSTRAINTS 17

6.2. Constraint on the sum of all different variables

An interesting example of costgcc is the constraint on the sum of all different vari-
ables. Some real-world problems involve this constraint. More precisely, for a given
set of variable X, this constraint is the conjunction of the constraint

∑
xi∈X xi ≤ H

and alldiff(X).
Let us define the boundaries and cost function as follows:
• For each value ai ∈ D(X) we define li = 0 and ui = 1
• For each variable x ∈ X and for each value a ∈ D(x), cost(x, a) = a

Then, it is easy to prove that the costgcc constraint costgcc(X, l, u, cost, H) repre-
sents the conjunction of the constraint

∑
xi∈X xi ≤ H and alldiff(X).

Thus, with the algorithm we propose, we are able for the first time to achieve arc
consistency for this constraint.

Moreover, note that the constraint which is the conjunction of the constraint∑
xi∈X αixi ≤ H and alldiff(X), can also be represented by a costgcc, by defining

in the previous model cost(xi, a) = αia.

6.3. Constraint on the minimum value of the sum

Suppose that instead of constraining the maximum value of the sum of an instan-
tiation of any solution of a gcc, we would like to constraint the minimum value of
this sum. More precisely for each tuple τ of a given gcc C = gcc(X, l, u), we impose
that Σ|X(C)|

i=1 cost(var(C, i), τ [i]) ≥ L.
In this case we have to solve a maximum cost flow problem instead of a minimum

cost flow problem. This problem can be solved by replacing all costs by their
opposite value. Therefore this constraint can be represented by the costgcc defined
by costgcc(X, l, u,−cost,−L).

However, it is not easy to take into account at the same time a constraint on
the minimum value of the sum and on the maximum value. We can prove that
there is a tuple which satisfies the lower bound condition on the sum, we can
also prove that there is a tuple which satisfies the upper bound condition on the
sum, but, unfortunately, we have absolutely no guarantee on the existence of a
tuple that satisfies both these two conditions. For instance, consider the problem
involving three variables x1, x2 and x3 with D(x1) = {a, b}, D(x2) = {b, c} and
D(x3) = {a, c}. Each value has to be taken at most 1. A cost function is defined as
follows: cost(x1, a) = cost(x2, b) = cost(x3, c) = 1 and cost(x1, b) = cost(x2, c) =
cost(x3, a) = 3. The sum of any instantiation of all the variables must be greater
than 4 and less than 8. Clearly, there are only two possible ways for satisfying
the gcc: ((x1, a), (x2, b), (x3, c)) and ((x1, b), (x2, c), (x3, a)). The cost of the first
solution is 3 and satisfies 3 ≤ 8, the cost of the second one is 9 and satisfies 9 ≥ 4.
However, this problem has no solution. We do not know any general algorithm for
obtaining such a result.

18 J-C. RÉGIN

6.4. Interest of shortest path distances as heuristic

We can use the information given by the shortest path distance for guiding the
search for solutions, and in particular, for choosing the next variable to instantiate.

In many optimization problems, the max-regret heuristic is considered as one
of the best heuristics. For each variable the regret can be defined as the difference
between the cost of the best assignment and the cost of the second best. Then, the
variable with the regret of maximal value is chosen. Intuitively, the idea is that
if we do not choose this variable and if this variable is instantiated with a value
different from the one leading to the best assignment, we will have to pay at least
the value of the regret.

Usually, the regret is not exactly computed and an approximation of the regret is
considered. For instance, the regret is often defined for every variable as the differ-
ence between the minimum cost involving this variable and the second minimum.
With our approach it becomes possible to exactly compute the value of the regret,
and so to improve the search for solution.

7. Conclusion

In this paper we have proposed an efficient way of implementing generalized arc-
consistency for the global cardinality constraint with costs. We have shown that
costgcc constraints are powerful constraints for modelling several conjunctions of
constraints often arising in practice. We have also explained how the algorithms
we propose can help in the definition of an interesting heuristic.

References

1. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows. Prentice Hall, 1993.
2. N. Beldiceanu and E. Contejean. Introducing global constraints in chip. Journal of Mathe-

matical and Computer Modelling, 20(12):97–123, 1994.
3. C. Berge. Graphe et Hypergraphes. Dunod, Paris, 1970.
4. Y. Caseau, P-Y. Guillo, and E. Levenez. A deductive and object-oriented approach to a

complex scheduling problem. In Proceedings of DOOD’93, 1993.
5. Y. Caseau and F. Laburthe. Solving various weighted matching problems with constraints.

In Proceedings CP97, pages 17–31, Austria, 1997.
6. B.V. Cherkassky, A.V. Goldberg, and T. Radzik. Shortest paths algorithms: Theory and

experimental evaluation. Mathematical Programming, 73:129–174, 1996.
7. J.-L. Laurière. A language and a program for stating and solving combinatorial problems.

Artificial Intelligence, 10:29–127, 1978.
8. E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Win-

ston, 1976.
9. J-F. Puget. Personal communication, 1999.

10. J-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceedings AAAI-
94, pages 362–367, Seattle, Washington, 1994.

11. J-C. Régin. Generalized arc consistency for global cardinality constraint. In Proceedings
AAAI-96, pages 209–215, Portland, Oregon, 1996.

12. R.E. Tarjan. Data Structures and Network Algorithms. CBMS-NSF Regional Conference
Series in Applied Mathematics, 1983.

