Revisiting the cardinality reasoning for
BinPacking constraint

Francois Pelsser!, Pierre Schaus!, Jean-Charles Régin?

! UCLouvain, ICTEAM,
Place Sainte-Barbe 2,
1348 Louvain-la-Neuve (Belgium),
pierre.schaus@uclouvain.be
2 University of Nice-Sophia Antipolis,
13S UMR 6070, CNRS, (France)

jcregin@gmail.com

Abstract. In a previous work, we introduced a filtering for the Bin-
Packing constraint based on a cardinality reasoning for each bin com-
bined with a global cardinality constraint. We improve this filtering with
an algorithm providing tighter bounds on the cardinality variables. We
experiment it on the Balanced Academic Curriculum Problems demon-
strating the benefits of the cardinality reasoning for such bin-packing
problems.

Keywords: Constraint Programming, Global Constraints, Bin-Packing

1 Introduction

The BinPacking([X1, ..., Xy], [w1, ..., wn], [L1, ..., Lyy]) global constraint captures
the situation of allocating n indivisible weighted items to m capacitated bins:

— X, is an integer variable representing the bin where item ¢, with strictly pos-
itive integer weight w;, is placed. Every item must be placed i.e. Dom(X;) C
[1..m].

— L; is an integer variable representing the sum of items weights placed into
that bin.

The constraint enforces the following relations:

i X;=j

The initial filtering algorithm proposed for this constraint in [8] essentially
filters the domains of the X; using a knapsack-like reasoning to detect if forcing
an item into a particular bin j would make it impossible to reach a load L; for
that bin. This procedure is very efficient but can say that an item is OK for a
particular bin while it is not. A failure detection algorithm was also introduced
in [8] computing a lower bound on the number of bins necessary to complete the

partial solution. This last consistency check has been extended in [2]. Cambazard
and O’Sullivan [1] propose to filter the domains using an LP arc-flow formulation.

In classical bin-packing problems, the capacity of the bins fj are constrained
while the lower bounds L; are usually set to 0 in the model. This is why existing
filtering algorithms use the upper bounds of the load variables fj (i.e. capacity
of the bins) and do not focus much on the lower bounds of these variables L;.

Recently [7] introduced an additional cardinality based filtering counting the
number of items in each bin. We can view this extension as a generalization
BinPacking([X1, ..., Xn], [W1, oy wn], [L1, ey L], [C1, .., C]) of the constraint
where C; are counting variables, that is defined by Vj € [1..m] : C; = |{i|X; =
J}. This formulation for the BinPacking constraint is well suited when

— the lower bounds on load variables are also constrained initially L; > 0,

— the items to be placed are approximately equivalent in weight (the bin-
packing is dominated by an assignment problem), or
— there are cardinality constraints on the number of items in each bin.

The idea of [7] is to introduce a redundant global cardinality constraint [5]:

BinPacking([X1, ..., Xpn], (W1, ey i), [L1, ooy Lin], [C1y -ovy Cin))
BinPacking([X1, ..., Xy, [w1, .., wn], [L1, .., Lin])A (1)
GCC([X1, .-+, Xn], [C1, .., Cia])

with a specialized algorithm used to adjust the upper and lower bounds of the
C; variables when the bounds of the L;’s and/or the domains of the X;’s change.
Naturally the tighter are the bounds computed on the cardinality variables, the
stronger will be the filtering induced by the GCC constraint.

We first introduce some definitions, then we recall the greedy algorithm in-
troduced in [7] to update the cardinality variables.

Definition 1. We denote by pack; the set of items already packed in bin j :
pack; = {i|Dom(X;) = {j}} and by cand; the candidate items available to go in
bin j: cand; = {i|j € Dom(X;) A |Dom(X;)| > 1}. The sum of the weights of a
set of items S is sum(S) =), q w;.

As explained in [7], a lower bound on the number of items that can be
additionally packed into bin j can be obtained by finding the size of the smallest
cardinality set A; C cand; such as sum(A;) > L; — sum(pack;). Then we have
C; > |pack;| + |A;|. Thus we can filter the lower bound of the cardinality C; as
follows:

G max(Cy, pack;] + |4,]).

This set A; is obtained in [7] by scanning greedily elements in cand; with
decreasing weights until an accumulated weight of L; — sum(pack;) is reached.
It can be done in linear time assuming the items are sorted initially by weight.

Ezample 1. Five items with weights 3,3,4,5,7 can be placed into bin 1 having
a possible load Ly € [20..22]. Two other items are already packed into that bin
with weights 3 and 7 (|packi| = 2 and I3 = 10). Clearly we have that |A;| = 2
obtained with weights 5, 7. The minimum value of the domain of the cardinality
variable C is thus set to 4.

A similar reasoning can be used to filter the upper bound of the cardinality
variable Cj.
This paper further improves the cardinality based filtering, introducing

1. In Section 2, an algorithm computing tighter lower/upper bounds on the
cardinality variables C; of each bin j, and

2. In Section 3, an algorithm to update the load variables L; based on the
cardinality information.

The new filtering is experimented on the Balanced Academic Curriculum Prob-
lem in Section 4.

2 Filtering the cardinality variables

The lower (upper) bound computation on the cardinality C; introduced in [7]
only considers the possible items cand; and the minimum (maximum) load value
to reach i.e. L; (L;). Stronger bounds can possibly be computed by also consid-
ering the cardinality variables of other bins. Indeed, an item which is used for
reaching the minimum cardinality or minimum load for a bin j, may not be us-
able again for computing the minimum cardinality of another bin & as illustrated
on next example:

Ezxample 2. A bin j can accept items having weights 3,3,3 with a minimum
load of 6 and thus a minimum cardinality of 2 items. A bin k£ with a minimum
load of 5 can accept the same items plus two items of weight 1. Clearly, the bin
k can not take more than one item with weight 3 for computing its minimum
cardinality because it would prevent the bin j to reach its minimum cardinality
of 2. Thus the minimum cardinality of bin k£ should be 3 and not 2 as would be
computed with the lower bound of [7].

Minimum Cardinality of bin j Algorithm 1 computes a stronger lower bound
also taking into account the cardinality variables of other bins Cj Vk # j. The
intuition is that it prevents to reuse again an item if it is required for reaching a
minimum cardinality in another bin. This is achieved by maintaining for every
other bin k£ the number of items this bin is ready to give without preventing it
to fulfill its own minimum cardinality requirement Cj.

Clearly if a bin k must pack at least Cj, items and has already packed |packy|
items, this bin can not give more than |candy| — (Ck — |packy|) items to bin
j. This information is maintained into the variables available ForOtherBinsy,
initialized at line 5.

Ezample 3. Continuing on Example 2, bin j will have available ForOther Bins; =
3 —(2—0) = 1 because this bin can give at most one of its item to another bin.

Since items are iterated in decreasing weight order at line 7, the other bins
accept to give first their "heaviest” candidate items. This is an optimistic sit-
uation from the point of view of bin j, justifying why the algorithm computes
a valid lower bound on the cardinality variable C;. Each time an item is used
by bin j, the other bins (where this item was candidate) reduce their quantities
availableForOther Binsy, since they ”consume” their flexibility to give items.
If at least one other bin k£ absolutely needs the current item ¢ to fulfill its own
minimum cardinality (detected at line 13), available is set to false meaning
that this item can not be used in the computation of the cardinality of bin j to
reach the minimum load.

On the other hand, if the current item can be used (available=true), then
other bins which agreed to give this item have one item less available. The
avatlable ForOther Bins;, numbers are decremented at line 22.

Finally notice that the algorithm may detect unfeasible situations when it is
not able to reach the minimum load at line 28.

Mazimum Cardinality The algorithm to compute the maximum cardinality is
similar. The changes to bring to Algorithm 1 are:

The variable binMinCard should be named binMazCard

The items are considered in increasing weight order at line 7, and
The stopping criteria at line 8 becomes binLoad + w; > fj
There is no feasibility test at lines 27 - 29.

=W =

Complerity Assuming the items are sorted initially in decreasing weights, this
algorithm runs in O(n-m) with n the number of items and m the number of bins.
Hence adjusting the cardinality of every bins takes O(n - m?). This algorithm
has no guarantee to be idempotent. Indeed the bin j may consider an item ¢ as
available, but the later adjustment of the minimum cardinality of another bin &
may cause this item to be unavailable if bin j is considered again.

Ezample 4. The instance considered - depicted in Figure 1 (a) - is the following;:

BinPacking([X1,..., X4, [w1,...,w4],[L1,...,L3])
X1 €{1,2}, X5 € {1,2}, X3 € {2,3}, X4 € {2,3},
wy =1w =1, wg =3, wy =3

Ly € {1,2},Ls € {2,3}, L3 € {2,4}

(2)

We consider first the computation of the cardinality of bin 2. This bin must
have at least one item to reach its minimum load. We now consider the maximum
cardinality of this bin. Items 1 and 2 can both be packed into bin 2 but doing

Algorithm 1: Computes a lower bound on the cardinality of bin j

Data: j a bin index
Result: binMinCard a lower bound on the min cardinality for the bin j

1 binLoad + sum(pack;) ;
2 binMinCard < |pack;| ;
3 othersBins + {1,...,m}\j;
4 foreach k € otherBins do
5 | availableForOther Binsy < |candi| — (Cx — |packy|);
6 end
7 foreach ¢ € cand; in decreasing weight order do
8 if binLoad > L; then
9 ‘ break ;
10 end
11 available < true;
12 for k € othersBins do
13 if k € Dom(X;) A availableForOtherBins, = 0 then
14 ‘ available < false ;
15 end
16 end
17 if available then
18 binLoad + binLoad + w; ;
19 binMinCard < binMinCard 4+ 1 ;
20 for k € othersBins do
21 if k € Dom(X;) then
22 ‘ avatlable ForOther Binsy < available ForOther Binsy — 1 ;
23 end
24 end
25 end
26 end
27 if binLoad < L; then
28 ‘ The constraint is unfeasible ;
29 end

so would prevent bin 1 to achieve its minimum load requirement of 1. Hence
only one of these items can be used during the computation of the maximum
cardinality for bin 2. Assuming that item 1 is used, the next item considered
is item 3 having a weight of 3. But Adding this item together with item 1
would exceed the maximum load (4 > 3) (stopping criteria for the maximum
cardinality computation). Hence the final maximum cardinality for bin 2 is one.
The cardinality reasoning also deduces that bin 1 must have between one and
two items and bin 3 must have exactly one item. Based on these cardinalities,
the global cardinality constraint (GCC) is able to deduce that item 1 and 2 must
be packed into bin 1. This filtering is illustrated on Figure 1 (b).

The algorithm from [7] deduces that bin 2 must have between one and two
items (not exactly one as the new filtering). The upper bound of two items is
obtained with the two lightest items 1 and 2. As for the new algorithm, it deduces

@ Bin3 ®) Bin3

Lefle]

Fig.1: (a) BinPacking instance with 3 bins and 4 items. The arcs represent for
each item, the possible bins. (b) Domains resulting from the filtering induced
with the tighter computation of the cardinalities. The grey in a bin stands for
the minimum level to reach.

that bin 1 must have between one and two items and bin 3 must have exactly
one item. Unfortunately, the GCC is not able to remove any bin from the item’s
domains based on these cardinality bounds. Thus, this algorithm is less powerful
than the new one.

3 Filtering the load variables

We introduce a filtering of the load variable taking the cardinality information
into account. No such filtering was proposed in [7]. Algorithm 2 is similar to
Algorithm 1 except that we try to reach the minimum cardinality requirements
by choosing first the ”lightest” items until the minimum cardinality C; is reached
(line 8). Again a similar reasoning can be done to compute an upper bound on
the maximum load.

4 Experiments

The Balanced Academic Curriculum Problem (BACP) is recurrent in Univer-
sities. The goal is to schedule the courses that a student must follow in order
to respect the prerequisite constraints between courses and to balance as much
as possible the workload of each period. Each period also has a minimum and
maximum number of courses. The largest of the three instances available on
CSPLIB (http://www.csplib.org) with 12 periods, 66 courses having a weight

Algorithm 2: Computes a lower bound on load of bin j

Data: j a bin index
Result: binMinLoad a lower bound on the load of bin j

1 binCard < |pack;]| ;
2 binMinLoad < sum(pack;) ;
3 othersBins < {1,...,m}\ j;
4 foreach k € otherBins do
5 | availableForOther Binsy < |candi| — (Cx — |packy|);
6 end
7 foreach ¢ € cand; in increasing weight order do
8 if binCard > (C;) then
9 ‘ break ; -
10 end
11 available < true;
12 for k € othersBins do
13 if k € Dom(X;) A availableForOther Binsy, = 0 then
14 ‘ available < false ;
15 end
16 end
17 if available then
18 binMinLoad < binLoad + w; ;
19 binCard < binCard + 1 ;
20 for k € othersBins do
21 if k € Dom(X;) then
22 ‘ available ForOther Binsy < availableForOther Bins, — 1 ;
23 end
24 end
25 end
26 end
27 if binCard < C; then
28 ‘ The constraint is unfeasible ;
29 end

limit(s) [A B C
15 13 27 41
30 18 34 46
60 21 37 51
120 25 43 57
1800 ||37 62 69

Table 1: Number of instances for which is was possible to prove optimality within
the time limit.

between 1 and 5 (credits) and 65 prerequisites relations, was modified in [6] to
generate 100 new instances® by giving each course a random weight between

3 Available at http://becool.info.ucl.ac.be/resources/bacp

1 and 5 and by randomly keeping 50 out of the 65 prerequisites. Each period
must have between 5 and 7 courses. As shown in [3], a better balance property
is obtained by minimizing the variance instead of the maximum load. For each
instance, we test three different filtering configurations for bin-packing:

— A: The BinPacking constraint from [8] + a GCC constraint,
— B: A + the cardinality filtering from [7],
— C: A + the cardinality filtering introduced in this paper.

time (ms) best bound number of failures
instance A B C A B C A B C
inst2.txt||{timeout|timeout 679|| 3243| 3247|3237|| 835459(1064862 829
inst14.txt||timeout| 45625| 6925|| 3107|3105{3105|/1043251| 228294 8530
inst22.txt||timeout| 13971 281|| 3045|3041(3041| 811852| 48482 353
inst30.txt||timeout| 118964 192|| 3416|3402(3402|| 795913| 707487 129
inst36.txt||timeout|timeout 337|| 2685| 2685|2671 || 847641 915849 364
inst47.txt|[timeout |timeout 112} 3309| 3309|3303|[2561038|3812512 269
inst65.txt|[timeout [timeout 222|| 3416| 3414|3402|| 921694|1091396 168
inst70.txt||timeout|timeout|101060|| 3043| 3043|3041|/1917729(1516627|125270
inst87.txt|| 16275/ 15089 251||3643|3643|3643|| 109173| 65493 207
inst98.txt|[timeout |timeout 48|| 2987| 2987|2979|/7023383|8261509 261

Table 2: Detailed statistics obtained on some significant instances.

The experiments were conducted on a Macbook Pro 2.3 Ghz, 17. The solver
used is OscaR [4] running on JVM 1.7 of Oracle and implemented with Scala
2.10. The source code of the constraint is available on OscaR repository.

Table 1 gives the number of solved instances for increasing timeout values.
Table 2 illustrates the detailed numbers (time, best bound, number of failures) for
some instances with a 30 minutes timeout. As can be seen, the new filtering allows
to solve more instances sometimes cutting the number of failures by several order
of magnitudes.

5 Conclusion

We introduced stronger cardinality bounds on the BinPacking constraint by also
integrating the cardinality requirements of other bins during the computation.
These stronger bounds have a direct impact on the filtering of placement vari-
ables through the GCC constraint. The improved filtering was experimented on
the BACP allowing to solve more instances and reducing drastically the number
of failures on some instances.

References

1. Hadrien Cambazard and Barry O’Sullivan. Propagating the bin packing constraint
using linear programming. In David Cohen, editor, CP, volume 6308 of Lecture
Notes in Computer Science, pages 129-136. Springer, 2010.

2. Julien Dupuis, Pierre Schaus, and Yves Deville. Consistency check for the bin
packing constraint revisited. In Andrea Lodi, Michela Milano, and Paolo Toth,
editors, CPAIOR, volume 6140 of Lecture Notes in Computer Science, pages 117—
122. Springer, 2010.

3. Jean-Noél Monette, Pierre Schaus, Stéphane Zampelli, Yves Deville, and Pierre
Dupont. A CP approach to the balanced academic curriculum problem. In Sev-
enth International Workshop on Symmetry and Constraint Satisfaction Problems,
volume 7, 2007.

4. OscaR Team. OscaR: Scala in OR, 2012. Available from
https://bitbucket.org/oscarlib/oscar.

5. Jean-Charles Régin. Generalized arc consistency for global cardinality constraint.
In Proceedings of the thirteenth national conference on Artificial intelligence- Volume
1, pages 209-215. AAAT Press, 1996.

6. Pierre Schaus et al. Solving balancing and bin-packing problems with constraint
programming. PhD thesis, PhD thesis, Universit catholique de Louvain Louvain-la-
Neuve, 2009.

7. Pierre Schaus, Jean-Charles Régin, Rowan Van Schaeren, Wout Dullaert, and Birger
Raa. Cardinality reasoning for bin-packing constraint: Application to a tank allo-
cation problem. In Michela Milano, editor, CP, volume 7514 of Lecture Notes in
Computer Science, pages 815-822. Springer, 2012.

8. Paul Shaw. A constraint for bin packing. In Principles and Practice of Constraint
Programming—CP 200/, pages 648—662. Springer, 2004.

