
Improving the Expressiveness of Table

Constraints

Jean-Charles Régin

Université Nice-Sophia Antipolis, I3S UMR CNRS 6070

2000, route des Lucioles - Les Algorithmes - BP 121

06903 Sophia Antipolis Cedex - France.

jcregin@gmail.com

Abstract. The time complexity of algorithms establishing arc consis-

tency for table constraints depends mainly on the number of involved

tuples. Thus, several work have been carried out in order to decrease

that number. Notably, Katsirelos and Walsh have proposed to compress

the tuple set. They integrate their method into GAC-Schema and they

showed how a set of f forbidden tuples may be represented by a set of

ndf compressed tuple, where n is the constraint arity and d the size of the
largest domain. However, they left open the integration of their method

into the best improvements of GAC-Schema like Lhomme and Régin's

one. In this paper, we introduce a generalization of compressed tuples:

the tuple sequences. They improve the expressiveness of table constraint,

because they can represent combinations of allowed and forbidden tuples.

We provide an algorithm transforming f forbidden tuples into f + 1 al-

lowed tuple sequences which may eliminate the need for speci�c version

of GAC-Schema for forbidden tuples. We also give an algorithm showing

how allowed tuple sequences and forbidden tuples may be transformed

into a set of tuples that are all allowed. At last, we show how to bene�t

from the best implementation of GAC-Schema.

1 Introduction

Table constraints are ones of the most used constraints in CP. They can be
de�ned from the list of allowed combinations of values of variables (allowed
tuples), by the forbidden tuples or from any Boolean function corresponding to
the constraint satisfaction.

For establishing arc consistency a generic schema has been developed: GAC-
Schema [1]. This algorithm is mainly based on the traversal of allowed tuples
until a valid one (i.e. each value of the tuple is in the domain of its variable)
is found, and its complexity depends on the number of tuples. Thus, some re-
cent works have been carried out for restructuring the tuples [4�6, 2]. Notably,
Katsirelos and Walsh [5] have proposed to compress the set of allowed tuples
into Global Cut Seed (GCS tuples [3]). Such a set of tuples contains all the
tuples of the Cartesian Product of subsets of the domains of the variables. For
instance the compressed tuple ({1, 2}, {2}, {1, 2}) is equivalent to the set of tu-
ples {(1, 2, 1), (1, 2, 2), (2, 2, 1), (2, 2, 2)}. By compressing the list of allowed tuples

they showed that the establishing of arc consistency may be sped up. In addition,
they explained how their algorithm can be integrated into GAC-Schema.

Katsirelos and Walsh's work is mainly focused on the algorithm computing
this tuple compression. They were not really interested in the expressiveness
of the compressed tuples. They have just considered this point for representing
forbidden tuples by a set of allowed tuples. Unfortunately, their method may
require nd times more compressed tuples than the number of forbidden tuples,
where n is the constraint arity and d the size of the largest domain. In this paper,
we propose to show how a simple generalization of GCS tuples, that we will call
tuple sequences, is much more convenient for representing groups of tuples. A
tuple sequence is formed by a GCS tuple, a minimum tuple and a maximum tuple
w.r.t. an ordering. The advantage of these tuple sets is that they can represent
easily forbidden tuples because it becomes easy to represent the complement of
a set.

For instance, consider a Table constraint de�ned on variables having do-
mains equal to {a, b, c, d} by the list of forbidden tuples (a, b, c, d), (b, c, d, a)
and (d, d, a, a). For convenience, we consider the lexicographic order. We can
de�ne a tuple sequence representing the tuple set from the tuple (a, a, a, a) to
the tuple (a, b, c, c), which is the tuple immediately preceding the forbidden tu-
ple (a, b, c, d). Such a tuples sequence is simply expressed by min = (a, a, a, a),
max = (a, b, c, c) and the GCS tuple ({a, b, c, d}, {a, b, c, d}, {a, b, c, d}, {a, b, c, d}).
We will write it:
((a, a, a, a), (a, b, c, c), ({a, b, c, d}, {a, b, c, d}, {a, b, c, d}, {a, b, c, d})). Of course we
could avoid having other values than a for the �rst variable but this is not
even necessary. Then, we can repeat this method by de�ning the tuple sequence
((a, b, d, a), (b, c, c, d), ({a, b, c, d}, {a, b, c, d}, {a, b, c, d}, {a, b, c, d})) representing
the tuples from (a, b, d, a) to (b, c, c, d), and a tuple sequence representing the
tuples from (b, c, d, b) to (d, c, d, d), and a tuple sequence representing the tuples
from (d, d, a, b) to (d, d, d, d). Thus, we can represent f forbidden tuples with
only f + 1 tuple sequences. This improves Katsirelos and Walsh's method by a
factor of nd.

We will also show that tuple sequences may also be quite useful for improving
the expressiveness of Table constraints, because they can mix together allowed
and forbidden tuples.

Outline. The paper is organized as follows. First, we recall some de�nition.
Then, we introduce the notion of tuple cluster and de�ne tuple sequences. Next
we will explain how to represent a set of forbidden tuples only by allowed tuples
sequences and we will show how tuple sequences may improve the expressiveness
of Table constraints. Before concluding, we will detail the integration of tuple
sequences into the best implementation of GAC-Schema.

2 Preliminaries

Constraint network. A �nite constraint network N = (X,D, C) is de�ned as
a set of n variables X = {x1, . . . , xn}, a set of domains D = {D(x1), . . . , D(xn)}

where D(xi) is the �nite set of possible values for variable xi, and a set C of
constraints between variables. A value a for a variable x is often denoted by
(x, a).
Constraint. A constraint C on the ordered set of variables X(C) = (xi1 , . . . ,
xir) is a subset T (C) of the Cartesian product D(xi1)×· · ·×D(xir) that speci�es
the allowed combinations of values for the variables xi1 , . . . , xir . An element of
D(xi1)×· · ·×D(xir) is called a tuple on X(C) and τ [x] is the value of τ assigned
to x. The tuples on X(C) not allowed by C are called the forbidden tuples of
C. |X(C)| is the arity of C. W.l.o.g we will consider that the allowed tuples
are ordered by the relation ≺. We will denote by d the size of the largest initial
domain and by n the arity.
Arc consistency. Let C be a constraint. A tuple τ on X(C) is valid i� ∀x ∈
X(C), τ [x] ∈ D(x); and τ is a support for (x, a) i� τ [x] = a and τ ∈ T (C). A
value a ∈ D(x) is consistent with C i� x /∈ X(C) or there exists a valid support
for (x, a). C is arc consistent i� ∀x ∈ X(C), D(x) 6= ∅ and ∀a ∈ D(x), a is
consistent with C.
Lexicographic ordering. A total ordering <d can be de�ned on D(x),∀x ∈
X, without loss of generality. Two tuples τ and τ ′ on X(C) can be ordered
by the natural lexicographic order ≺lex in which τ ≺lex τ ′ i� ∃k such that
∀j ∈ [1..k − 1], τ [xij] = τ ′[xij] and τ [xik] <d τ

′[xik].

3 Expressiveness

There are several ways to de�ne Table constraints1:
• the tuples satisfying the constraints come from a database.
• all the solutions of a subproblem are computed and they form the allowed

tuples of the constraint.
• the user wants to express directly some compatibilities and incompatibili-

ties between combinations of values. In this case, it is useful to be able to express
that some combinations of a subset of values are allowed. For instance (x1, a)
can be combined only with (x2, b), or the values of {a, b, c} for the variable x3
can be combined with the value {c, d} of the variables x5. At the same time, it
is convenient to forbid some other combinations.

For the �rst way, the compression methods are certainly the best methods
for representing these tuples. This method could also be used in the second way,
but it could be worthwhile to try to compute the solution set in such a way
it could be compressed. In other words, the enumeration method should try to
compress the tuples while enumerating all solutions.

We propose to focus our attention on the latter point.
The main idea of this paper, is to introduce some structure in the de�nition

of Table constraints. Since we can establish arc consistency for them, even if it

1 It is also possible to de�ne the Table constraint from a predicate, but this method

is not really used in practice. Therefore, we will not consider it.

may be costly, then, with Table constraints we can easily express some complex
constraints and bene�t from powerful �ltering algorithms. The drawback is that
the number of tuples may be large and this prevents the de�nition of Table
constraints for some complex constraints.

We propose to introduce a new notion: tuple clusters in order to try to keep
the facility to express some constraints with the e�ciency of a generic �ltering
algorithm. In other words, tuple clusters reduce the number of tuples but keep
the easy way of expressing some constraints.

3.1 Tuple cluster

A tuple cluster is a general notion which encapsulates the notion of group of tu-
ples provided that we can use them e�ciently in conjunction with GAC-Schema.

De�nition 1 A tuple cluster is a data structure corresponding to a set of
tuples and associated with an e�cient operation (i.e. linear in the size of the data
structure) returning a valid tuple of this set if there exists and nil otherwise.

Global Cut Seed (GCS tuple) proposed by Focacci and Milano [3] is an example
of tuple cluster. A GCS tuple is equivalent to the set of tuples obtained by
performing the Cartesian Product of subsets of the domains of the variables.
For instance the compressed tuple ({a, b}, {b, c}, {a, d}) is equivalent to the set
of tuples {(a, b, a), (a, b, d), (a, c, a), (a, c, d), (b, b, a), (b, b, d),
(b, c, a), (b, c, d)}.

It is easy to check whether a GCS tuple contains a valid tuple or not: if there
is no empty intersection between the domains of the GCS tuple and the corre-
sponding current domains, then a valid tuple is contained in the GCS tuple. It is
also easy to check whether a GCS tuple contains a support for the value (x, a).
We simply set the current domain of x to {a} and compute the intersections
between domains. If there is no empty intersection then the GCS tuple contains
a valid tuple involving (x, a), that is a support for (x, a). This operation may
be done in O(nd) in the worst case, because computing if an intersection of two
domains is not empty can be done in O(d), for domains of size d. We will see
later that we can re�ne this point.

We propose a generalization of GCS tuples: the tuple sequences. In a GCS
tuple there is no ordering and we have some problems to express some subsets
of the tuples obtained by the Cartesian product of domains. Tuple sequences
remedy to this drawback by introducing boundaries in this enumeration. A tuple
sequence is just a GCS associated with a minimum and a maximum tuple w.r.t.
the lexicographic ordering. In other words, it contains all the tuples of the GCS
that are greater than or equal to the minimum tuple and smaller than or equal to
the maximum tuple. Note that a similar introduction of minimum and maximum
tuples for guiding the enumeration of set variables has been proposed by Yip
and Van Hentenryck [8]. Here is the formal de�nition of a tuple sequence:

De�nition 2 Let C be a Table constraint de�ned on X(C) = {x1, ..., xn}.
A tuple sequence s de�ned by the triplet

(τsmin, τ
s
max, (D

s(x1), D
s(x2), ..., D

s(xn))) is the set of tuples t such that t ∈
Ds(x1)× · · · ×Ds(xn) and τsmin �lex t �lex τ

s
max

Note that if we have τsmax �lex τsmin then the tuple sequence is empty. For
convenience, we will also denote a tuple sequence by (τsmin, τ

s
max, g) where g is

the GCS involved in the tuple sequence.
The main advantage of tuple sequences is their capability to represent in a

positive way a set of forbidden tuples. Even if we could compress some domains,
for instance a star ('*') could represent any value of the initial domain, we have
to consider that the memory consumption of a tuple sequence is equal to the
number of values it contains. The minimum is n and the maximum is in O(nd).
In this later case it is important to recall that an exponential number of tuples
are expressed by only one tuple sequence.

3.2 Representation of Forbidden tuples

A set of forbidden tuples can be easily represented by a set of allowed tuple
sequences. The idea is to represent it by the complementary of this set. Then,
we will see that this complimentary set may be represented by a set of allowed
tuple sequences.

We will use the following notation:

• the minimal value in D(x) is denoted by D(x), and its maximal value is
denoted by D(x).

• τ(C) is the minimum combination of values on X(C): (D(x1), ..., D(xn))
• τ(C) is the maximum combination of values on X(C): (D(x1), ..., D(xn))
• n-comb(t, C) denotes the combination of values succeeding immediately t
on X(C) w.r.t. the lexicographic ordering. It is equal to nil if t is the last
combination.

• p-comb(t, C) denotes the combination of values preceding immediately t on
X(C) w.r.t. the lexicographic ordering. It is equal to nil if t is the �rst
combination.

Consider a Table constraint C de�ned on X(C) = {x1, ..., xn} whose the
domain of xi is D(xi), and F = {f1, ...fq} a set of lexicographically ordered
forbidden tuples on X(C). Let P the Cartesian Product of the domains of the
variable of X(C), that is D(x1)× · · · ×D(xn). Then the set of allowed tuples is
equal to A = P − F .

Let g be the GCS formed by all the domains of the variables of X(C). The set
A can be represented by |F | + 1 allowed tuple sequences {as1, as2, ..., as|F |+1}
de�ned as follows:

• the �rst tuple sequence is as1 =(τ(C),p-comb(f1, C),g).
• for i = 2, ..., |F | the tuple sequence is asi =(n-comb(fi−1, C),p-comb(fi, C),g)
• the last tuple sequence is as|F |+1 =(n-comb(fn,τ(C),g).

Of course, the GCS part of these tuple sequences may be re�ned. Note also
that some tuple sequences may be empty. This is the case when the minimum
or the maximum tuple of the tuple sequence is nil or when the maximum tuple
is smaller than the minimum tuple. In this case, it is not necessary to represent
them.

Clearly, each tuple sequence may be represented in O(nd). Thus, globally the
memory consumption is in O(nd|F |). This is more than the representation of |F |
forbidden tuples which is in O(n|F |) (because a tuple contains n values), but this
is less than Katsirelos and Walsh's method which needs O(nd|F |) GCS tuples
and therefore has a memory consumption in O(n2d2|F |). Consequently we gain
a factor of nd in regards to a pure GCS representation and we lose a factor of d
in regards to the explicit representation of forbidden tuples. Therefore we have

Property 1 A set F of forbidden tuples can be represented by at most |F | + 1
allowed tuple sequences.

Another advantage of our method in regards to Katsirelos and Walsh's one
is its simplicity.

Combination with allowed tuple sequences In the previous section, we
considered that all the tuples that not in the set F of forbidden tuples are
allowed. In this section, we study the case where a set A of allowed tuples
sequences is given in addition to the set F . Thus, only the tuple of A that are
not in F are allowed.

First, we order lexicographically F , the forbidden tuple set. Then, we select
each tuple sequence as ∈ A in turn, and we search for the forbidden tuples that
are contained in as. If we have k forbidden tuples that are included then we can
split the tuple sequence as into k + 1 tuple sequences with the method used in
the previous section. Thus globally, we may obtained |A| × |F | tuple sequences.
This value is certainly an upper bound of the tuple sequences obtained at the
end. For instance, if the tuple sequences of A are disjoint then we will require
only O(|A| + |F |) sequences because a forbidden tuple can intersect only one
tuple sequence.

Property 2 A table constraint de�ned by a set A of allowed tuple sequences
and a set F of forbidden tuples, can be represented only by a set of allowed tuple
sequences having at most |F ||A| elements.

Representation of Forbidden Tuple Sequences Two di�erent cases must
be considered depending on whether the tuple sequences are disjoint or not.
If the forbidden tuple sequences are disjoint then a method similar to the one
presented in the previous section may be used. Therefore, we obtain the same
complexity. Unfortunately, this case is very speci�c and the general case, where
we are provided with A a set of allowed tuple sequences and F a set of forbidden
tuple sequences, requires an exponential number of allowed tuple sequences for
representing both allowed and forbidden tuple sequences.

4 Integration into GAC-Schema

In this section, we show how tuple sequences may be integrated into GAC-
Schema. First we show that a tuple sequence is a tuple cluster.

4.1 Minimum valid tuple

Searching for the minimum valid tuple2 of a tuple sequence s can be e�ciently
performed by applying the following algorithm:

1. We start with the minimum tuple of s (i.e. τsmin). If τ
s
min is valid then we

return it and we stop the algorithm. Otherwise, we search for the �rst index
i such that the value of τsmin involving xi is no longer in the domain of D(xi).
That is we have ∀j = 1..i− 1 τsmin[xj] ∈ D(xj) and τ

s
min[xi] 6∈ D(xi).

2. We search, from i to 1, for the �rst index j such that Ds(xj) contains a valid
value greater than τsmin[xj]. If such index j does not exist then the algorithm
returns nil and stops.

3. We build a new tuple t as follows: for k = 1 to j − 1 we set t[xk] = τsmin[xk];
t[xj] contains the �rst value of Ds(xj) which is valid and greater than
τsmin[xj] and for k = j + 1 to n we set t[xk] to the minimum valid value
of Ds(xk). If t is less than or equal to τsmax then the algorithm returns t else
it returns nil.

For instance, suppose we have D(x1) = {a, b, c},D(x2) = {a},D(x3) = {a, b}
and D(x4) = {a, b, c} and s = (tsmin = (a, b, c, c), tsmax = (c, b, b, b),
({a, b, c}, {a, b, c}, {a, b, c}, {a, b, c})). Then, the index computed by Step 1 is i =
2. From Step 2 we compute j = 1 and from Step 3 we obtain (b, a, a, a) which is
the �rst valid tuple of s.

Clearly the algorithm is in O(nd) because each step is in O(nd) therefore a
tuple sequence is a tuple cluster.

It is easy to search for the minimum valid tuple in s involving a given value
(x, a). We just need to consider that D(x) = {a} in the algorithm. Thus, we can
easily search for a new support for a given value.

It is also interesting to note that this algorithm can be used in an incremental
manner. In this case, we can prove that its time complexity can be amortized.
It is straightforward to adapt this algorithm in order to search for the minimum
valid tuple in s greater than a given tuple σ � τsmin: we just need to replace
τsmin by σ in the algorithm. Thus, if for a value (x, a) we perform a sequence of
searches, each of them starting from the result of the previous one and if this
previous one is no longer valid then the cost of all these searches is in O(nd).
In addition it is clear that it does not cost more than traversing independently
all the tuples involving (x, a) and contained in a tuple sequence s. This means
that using tuple sequences cannot cost more than considering independently the
tuples of the sequences.

2 the minimum valid tuple in s is the tuple t ∈ s such that t is valid and there is no

valid tuple t′ ∈ s with t′ ≺lex t.

We can now detail the integration into GAC-Schema. We will consider only
constraints de�ned by the list of allowed tuples.

4.2 Tuple sequences instead of tuples

Establishing arc consistency means maintaining a support for each value of each
variable. When a value has no longer any support it can be safely deleted because
it means that the value is not consistent with the constraint.

There are two processes in general purpose arc consistency algorithm: one for
determining what are the values for which a support must be sought when a value
has been deleted; and another one for searching for a new support for a value.
The former process is usually done by associating with each value (x, a) a list
of tuples containing it and that are currently a support of another value. Then,
when the value (x, a) is deleted we know the values that have lost their support
(because the tuple is no longer valid) by traversing this list of supported tuple.
The latter process is the key of the algorithms and all the recent improvements
are focused on the search for a new support for a given value.

Let us detail these two steps. Consider that a value (x, a) has been removed
from D(x): for all the values (y, b) that were supported by a tuple containing
(x, a) another support must be found because the current one is no longer valid.
These values are involved in a tuple of the list denoted by SC(x, a). Thus, GAC-
Schema enumerates all the tuples in the SC lists and considers the valid values
supported by the tuple. Then, the algorithm tries to �nd a new valid support
for these values.

The search for a valid support, is the main and the most di�cult task of the
GAC-Schema. For the sake of clarity we will not consider here the "multidirec-
tional" aspect of GAC-Schema and assume that the search for a new support is
mainly based on the traversal of the allowed tuples of the constraints. It consid-
ers successively the allowed tuples involving the value (y, b) for which a support
is sought until a valid one is found. This can be done e�ciently by linking to-
gether the allowed tuples involving the same value. That is, for each value (y, b)
we de�ne the list of allowed tuples involving it. It costs only one pointer (to the
next tuple) for each value of each tuple. This is equivalent to the memory cost
for representing all the tuples.

There is almost no change if we consider tuple clusters instead of tuples: we
just need to associate the two notions. That is, when we consider a tuple we also
need to know the tuple cluster it comes from. The set of tuples is now a set of
tuple clusters. Each value in the tuple cluster is linked to the next tuple cluster
containing it. This does not increase the memory consumption because it adds
only one pointer for each value in the tuple cluster. Thus, while searching for a
support for (y, b), instead of traversing the tuples containing (y, b) we traverse
tuple clusters involving (y, b) by following the pointers associated with (y, b),
until a valid tuple t belonging to the current tuple cluster is found. Such a valid
tuple t is a support for (y, b). Since several tuples involving (y, b) may be valid in
the tuple cluster we compute the minimum one by using the algorithm given in
section 4.1. We give this information to GAC-Schema and also the tuple cluster k

from where it comes. That is, we return a pair (t, k). Then, GAC-Schema places
t in SC lists and uses t and k for computing another support.

A pair (t, k) contains two important information that will be useful to control
the time complexity: k is the �rst tuple cluster containing a valid tuple involving
(y, b) and t is the minimum valid tuple containing (y, b) in k. Thus, when t will
no longer be valid we will be able to continue the search for a support from the
point we stopped it. Therefore, within a tuple cluster we can avoid repeating
the same computation. In fact, as we mentioned it in the previous section, if
we start the search for a valid tuple in the tuple cluster from t the latest valid
support, then we can amortize the time complexity. In addition, we can go from
a tuple cluster to another tuple cluster as we did with tuple in the classical
implementation of GAC-Schema. Therefore, considering tuple clusters instead
of tuples may save a lot of memory and will not increase the worst case time
complexity.

Traversing the list of allowed tuples or of tuple clusters containing (y, b) while
searching for a support for (y, b) is a simple method but it has a major drawback:
it does not consider the current domains of the variables for improving the search.
The domain are only used to check the validity of tuples. In 2005, Lhomme and
Régin [7] dramatically improved GAC-Schema by using the domain information
while searching for a new support.

4.3 Integration into Lhomme and Régin's algorithm

In GAC-Schema the tuples are linked together: each value is associated with
a pointer to the next tuple containing it. Lhomme and Régin shown that the
algorithm can be speed up if for each tuple t and for each value (x, a) we know
the �rst tuple following t which contains (x, a). It is important to note that
we need this information for all values and not only for the values belonging
to t. With this information huge parts of the tuple set can be avoided because
they cannot contain any valid tuple. In fact, a support for a value (y, b) must
contain (y, b) but it must also be valid, that is containing valid values for the
other variables. So, the validity of values is used while searching for a support
for (y, b), thanks to this chaining.

With tuples, there are two methods for implementing this chaining:
• for each tuple, we associate each value of each variable with a pointer

representing the link to the next tuple containing the value. This methods is
particularly e�cient in practice. However it multiplies the memory consumption
by a factor of d, which is a lot!

• a complex data structure is used: the hologram tuples. This data structure
sacri�ces a part of the time complexity in order to amortize the space complex-
ity. We do not consume more memory but we need O(d) to access to the next
pointer for any value

We propose to apply the same ideas for tuple clusters. If we consider tuple
clusters instead of tuples we do not really change the algorithm. We associate
with each value of a tuple cluster a pointer to the next tuple cluster containing

it. Thus, if the tuple cluster involves all values then we can reach the next
tuple cluster for each value! If this is not the case, then we can add the missing
information, either explicitly and we increase the memory consumption or by
using the hologram data structure in which tuples are replaced by tuple clusters.
Note that the memory increasing in the former case is less problematic with tuple
clusters than with simple tuples, because we have already more information in
tuple clusters since they can involve more than n values. Thus, we can consider
that there is no change with tuple clusters in regards to the use of simple tuples.

5 Discussion

Tuple sequences could be generalized by considering for each tuple sequence a
speci�c ordering for the variables and a speci�c ordering for the domain of each
variable. This would not change the algorithm that would work in that case. We
did not impose such orderings because it would have complicated the de�nitions
and we did not �nd any real world example requiring such a modi�cation.

The compression techniques like the one proposed by Katsirelos and Walsh
could also be used in our case, because tuple sequences integrate GCS tuples. The
drawback of this method is that it can be time consuming (See [5]). Nevertheless,
it could be worthwhile to investigate the possibility to compress tuples into tuple
sequences instead of GCS tuples.

We have also mentioned two points that deserve more attention. First, when
the constraint is de�ned from the set of solutions of a problem (usually de�ned
by a subset of constraints of the whole problem), we should try to compress
the set of solutions while computing them. In that way, we could improve the
time for computing all the solutions and obtain a more pertinent set of tuples.
Secondly, a better integration of a set of forbidden combinations within a set
of allowed combinations should be more considered. We have proposed a �rst
method, but it is insu�cient for representing some real world constraints.

6 Conclusion

In this paper we have introduced a new kind of tuple cluster: the tuple se-
quences. They generalize the GCS tuples used in Table constraints by Katsirelos
and Walsh. The representation of forbidden tuples by allowed tuple sequences
is simple and requires less memory than their representation by GCS tuples.
Therefore, there is currently almost no more any reason to have a dedicated
version of GAC-Schema dealing only with forbidden tuples. In addition, we have
shown that tuple sequences may be used for mixing allowed and forbidden tuples
in a simple way. At last, we have explained how tuple clusters may be easily in-
tegrated into the best implementations of GAC-Schema like the one of Lhomme
and Régin.

References

1. C. Bessière and J-C. Régin. Arc consistency for general constraint networks: pre-

liminary results. In Proceedings of IJCAI'97, pages 398�404, Nagoya, 1997.

2. K. Cheng and R. Yap. An mdd-based generalized arc consistency algorithm for

positive and negative table constraints and some global constraints. Constraints,

15, 2010.

3. F. Focacci and M. Milano. Global cut framework for removing symmetries. In Proc.

CP'01, pages 77�92, Paphos, Cyprus, 2001.

4. I. Gent, C. Je�erson, I. Miguel, and P. Nightingale. Data structures for generalised

arc consistency for extensional constraints. In Proc. AAAI'07, pages 191�197, Van-

couver, Canada, 2007.

5. G. Katsirelos and T. Walsh. A compression algorithm for large arity extensional

constraints. In Proc. CP'07, pages 379�393, Providence, USA, 2007.

6. C. Lecoutre. Optimization of simple tabular reduction for table constraints. In

Proc. CP'08, pages 128�143, Sydney, Australia, 2008.

7. O. Lhomme and J-C. Régin. A fast arc consistency algorithm for n-ary constraints.

In Proc. AAAI'05, pages 405�410, Pittsburgh, USA, 2005.

8. Justin Yip and Pascal Van Hentenryck. Exponential propagation for set variables.

In Proc. CP-10, pages 499�513, 2010.

