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Abstract

The GAC-Scheme has become a popular general pur-
pose algorithm for solving n-ary constraints, although it
may scan an exponential number of supporting tuples.
In this paper, we develop a major improvement of this
scheme. When searching for a support, our new algo-
rithm is able to skip over a number of tuples exponen-
tial in the arity of the constraint by exploiting knowl-
edge about the current domains of the variables. We
demonstrate the effectiveness of the method for large
table constraints.

Introduction
Constraint satisfaction problems (CSPs) form a simple for-
mal frame to represent and solve combinatorial problems in
artificial intelligence. They involve finding values for prob-
lem variables subject to constraints on which combinations
are acceptable. The problem of the existence of solutions
to the CSP is NP-complete. Therefore, methods have been
developed to simplify the CSP before or during the search
for solutions. A filtering algorithm associated with one con-
straint aims to remove some values that are not consistent
with the constraint. When all the values that are inconsistent
with the constraint are deleted by the filtering algorithm we
say that it achieves arc consistency.

A constraint explicitly defined by the table of the al-
lowed combinations of values is among the most use-
ful kinds of constraints in practice. Such table constraints
are typically used to express compatibilities between per-
sons, tasks or machines. Binary table constraints have been
extensively studied in the CSP framework, and efficient
filtering algorithms have been proposed (Bessière 1994;
Bessìere, Freuder, & Ŕegin 1999; Bessière & Ŕegin 2001;
Zhang & Yap 2001).

Unfortunately, in practice, table constraints often are
non-binary. Indeed, in some applications, data comes from
databases, and relations from databases are directly trans-
lated as table constraints. This is frequently the case for con-
figuration applications, for modeling the different combina-
tions of options. In such cases, table constraints may have
quite large arity.
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The generalization of the results and algorithms from bi-
nary constraints to n-ary ones is not an easy task in general.
For example, the best known algorithm for n-ary table con-
straints, called GAC-Scheme (Bessière & Ŕegin 1997), is
such a generalization, and it involves several complex sub-
tleties. Nevertheless, it is a too direct generalization of bi-
nary arc-consistency algorithms; we will see that the GAC-
Scheme does not take into account the fact that the con-
straints are n-ary, and may have a behavior which is expo-
nential in the arity of the constraint.

A similar exponential behavior may occur when one
wants to design an algorithm for the conjunction of con-
straints as in (Lhomme 2004), where an efficient algorithm
was proposed to avoid this behavior by exploiting the cur-
rent domains of the variables. Furthermore, it was suggested
that the same approach should be advantageous for arc con-
sistency filtering over table constraints.

In this paper, we apply this idea on the GAC-Scheme,
which leads us to a new filtering algorithm for n-ary table
constraints that really takes into account the fact that their
arity is more than two. It combines in a new way the two
major concepts of any arc consistency filtering algorithm:
the concept ofsupportand the concept ofvalidity. A sup-
port for the valuea of the variablex is a tuple which belongs
to the table and with valuea for x. A support is said to be
valid if all the values it contains belong to their respective
domains.

The goal of arc consistency filtering algorithms is to
search for a valid support for every value of every domain.
Consider the valuea of the variablex, denoted by(x, a). A
valid support for(x, a) can be found by considering succes-
sively the supports of(x, a) of the constraint until a valid one
is found. When constraints are binary, this is a good strat-
egy. Nevertheless, on n-ary constraints, this approach is not
a good one.

Consider the following example: a constraintC is defined
on six variablesx1, x2, . . . , x6 whose domains are the range
of integers from0 to 4, defined by the list of tuples given in
Figure 1.

Then, suppose that arc consistency has been established.
In particular,(0, 0, 0, 0, 0, 0) is the valid support found for
(x1, 0). Now assume that the value(x6, 0) is deleted. Thus
(0, 0, 0, 0, 0, 0) is no longer valid, and a new valid support
has to be found for the value(x1, 0). The GAC-Scheme



(0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 1, 0)
(0, 0, 0, 0, 2, 0)
(0, 0, 0, 0, 3, 0)
(0, 0, 0, 0, 4, 0)
(0, 0, 0, 1, 0, 0)
(0, 0, 0, 1, 1, 0)

. . .
(0, 4, 4, 4, 4, 0)
(1, 1, 1, 1, 1, 1)
(2, 2, 2, 2, 2, 2)
(3, 3, 3, 3, 3, 3)
(4, 4, 4, 4, 4, 4)

Figure 1: Table of the supports of ConstraintC

searches for this new valid support by traversing all the sup-
ports involving (x1, 0) until a valid one is found. But all
the supports for(x1, 0) have the value0 for x6. Thus, in
this case, the GAC-Scheme considers successively all the
tuples under the form(0, ∗, ∗, ∗, ∗, 0), that is54 supports,
and checks the validity of all these supports. Since none is
valid, the value0 will be removed fromD(x1). This exam-
ple perfectly shows that the GAC-Scheme is mainly focused
on the concept of support. In this paper, we propose another
method whose principles are quite simple. This method as-
sumes that the tuples are ordered and that we can know for
any supportt and for every value the next support aftert
containing this value. More precisely, ift = (0, 0, 0, 0, 0, 0)
is the current support for(x1, 0), then we can know the
next support aftert which is a support for(x6, 1) (i.e.
(1, 1, 1, 1, 1, 1).) Then, we can focus our attention on the
current domains and deduce some properties based on these
current domains.

To be valid, a support for(x1, 0) must have forx6 one
of the values in the current domain ofx6. The next sup-
port aftert which is a support for(x6, 1) is (1, 1, 1, 1, 1, 1);
the next support aftert which is a support for(x6, 2) is
(2, 2, 2, 2, 2, 2); the next support aftert which is a support
for (x6, 3) is (3, 3, 3, 3, 3, 3), The next support aftert which
is a support for(x6, 4) is (4, 4, 4, 4, 4, 4). Thus, a valid sup-
port for (x1, 0) is at least the smallest of the above four sup-
ports, i.e.,(1, 1, 1, 1, 1, 1). This means that it is useless to
check the validity of a support smaller than(1, 1, 1, 1, 1, 1).
Obviously(1, 1, 1, 1, 1, 1) is not a support for(x1, 0), so we
must take a support which is greater since(1, 1, 1, 1, 1, 1)
was the smallest possible one. So we look for the next sup-
port for (x1, 0) after(1, 1, 1, 1, 1, 1). There is none and thus
the value(x1, 0) can be removed.

So, on this example, compared with GAC-Scheme, we
have avoided a number of validity checks exponential in
the arity of the constraint. The paper develops the idea pre-
sented in the above example, and proposes to revise the
GAC-Scheme. We will see with the experiments that this
method allows us to reduce computation time from one to
several orders of magnitude, even on random problems.

Background
Preliminary definitions
Constraint network. A finite constraint networkN =
(X,D, C) is defined as a set ofn variables X =
{x1, . . . , xn}, a set ofdomainsD = {D(x1), . . . , D(xn)}
whereD(xi) is the finite set of possiblevaluesfor variable
xi, and a setC of constraintsbetween variables.D(xi) de-
notes the highest value inD(xi). A valuea for a variablex
is often denoted by(x, a).
Constraint. A constraintC on the ordered set of variables
X(C) = (xi1 , . . . , xir ) is a subsetT (C) of the Carte-
sian productD(xi1) × · · · × D(xir ) that specifies theal-
lowedcombinations of values for the variablesxi1 , . . . , xir .
An element ofD(xi1) × · · · × D(xir

) is called atuple on
X(C) andτ [x] is the value ofτ assigned tox. The tuples
on X(C) not allowed byC are called theforbiddentuples
of C. |X(C)| is thearity of C.
Arc consistency. Let C be a constraint. A tupleτ onX(C)
is valid iff ∀x ∈ X(C), τ [x] ∈ D(x); andτ is asupportfor
(x, a) iff τ [x] = a andτ ∈ T (C). A valuea ∈ D(x) is con-
sistent withC iff x /∈ X(C) or there exists a valid support
for (x, a). C is arc consistentiff ∀x ∈ X(C), D(x) 6= ∅ and
∀a ∈ D(x), a is consistent withC.

The GAC-Scheme

Algorithm 1: function GENERALFILTER

GENERALFILTER(C: constraint; x: variable; a: value,
deletionSet: list): Boolean

1 for each τ ∈ SC(x, a) do
for each (z, c) ∈ τ do removeτ from SC(z, c)

2 for each (y, b) ∈ S(τ) do
remove(y, b) from S(τ)
if b ∈ D(y) then

3 σ ← SEEKINFERABLEVALID SUPPORT(y, b)
if σ 6= nil then add(y, b) to S(σ)
else

4 σ ← SEEKVALID SUPPORT(C, y, b)
if σ 6= nil then

add(y, b) to S(σ)
for eachx ∈ X(C) do

addσ to SC(x, σ[x])

else
removeb from D(y)
if D(y) = ∅ then return False
add(y, b) to deletionSet

return True

Let us review the GAC-Scheme presented in (Bessière
& Régin 1997). Function GENERALFILTER of the GAC-
Scheme is given in Algorithm 1.

Consider that a value(x, a) has been removed fromD(x).
We must study the consequences of this deletion. So, for all
the values(y, b) that were supported by a tuple containing
(x, a) another valid support must be found. In order to per-
form these operations, the GAC-Scheme uses two lists:



• SC(x, a) contains all the allowed tuplesτ that are the
current support for some value, and such thatτ [x] = a.

• S(τ) contains all values for whichτ is the current sup-
port.

Thus, Line 1 of Algorithm 1 enumerates all the tuples in
theSC list and Line 2 enumerates all the values supported by
a tuple. Then, the algorithm tries to find a new valid support
for these values either by “inferring” new ones (Line 3) or by
explicitly calling functionSEEKVALID SUPPORT(Line 4).

Here is an example of this algorithm:
ConsiderX = {x1, x2, x3} and∀x ∈ X, D(x) = {a, b};
andT (C) = {(a, a, a), (a, b, b), (b, b, a), (b, b, b)}. First, a
valid support for(x1, a) is sought:(a, a, a) is computed
and (a, a, a) is added toSC(x2, a) andSC(x3, a), (x1, a)
in (a, a, a) is added toS((a, a, a)). Second, a valid support
for (x2, a) is sought:(a, a, a) is in SC(x2, a) and it is valid,
therefore it is a valid support and so there is no need to
compute another solution. Then the algorithm searches for
a valid support for all the other values.

Now, suppose that valuea is removed fromx2. Then all
the tuples inSC(x2, a) are no longer valid, such as, for ex-
ample,(a, a, a). The validity of the values supported by this
tuple must be reconsidered; that is, the ones belonging to
S((a, a, a)). Therefore, a new valid support for(x1, a) must
be searched for and so on...

The program which aims to establish arc consistency for
C must create and initialize the data structures (SC , S), and
call function GENERALFILTER(C, x, a, deletionSet) (see
Algorithm 1) each time a valuea is removed from a variable
x involved inC, in order to propagate the consequences of
this deletion. The setdeletionSet is updated to contain the
deleted values not yet propagated.

The search for a valid support, which is the main and
most difficult task of the GAC-Scheme, is performed by
the functionsSEEKINFERABLEVALID SUPPORTandSEEK-
VALID SUPPORTof GENERALFILTER. These functions try
to take into account themultidirectionality inherent in any
constraint when establishing arc consistency. Roughly, the
advantage of such an approach is to avoid checking several
times whether a tuple is a support for the constraint or not.

Definition 1 (multidirectionality) LetC be a constraint.
If σ is a support for a value(x, a) onC, then it is a support
onC for all the values(y, σ[y])y∈X(C) composing it.

Function SEEKINFERABLEVALID SUPPORT “infers” an
already checked allowed tuple as support for(y, b) if pos-
sible, in order to ensure that it never looks for a support for
a value when a tuple supporting this value has already been
checked. The idea is to exploit the property: “If(y, b) be-
longs to a tuple supporting another value, then this tuple also
supports(y, b)”. Therefore, elements inSC(y, b) are good
candidates to be a new valid support for(y, b). Algorithm 2
is a possible implementation of this function.

FunctionSEEKVALID SUPPORTis instantiated differently
depending on the type of the constraint involved. (Bessière
& Régin 1997) provided three instantiations of the scheme
to efficiently handle constraints defined by a list of al-
lowed tuples (GAC-Scheme+allowed), by a list of forbid-

Algorithm 2: Function SEEKINFERABLEVALID SUP-
PORT

SEEKINFERABLEVALID SUPPORT(y: variable,b: value): tu-
ple
while SC(y, b) 6= ∅ do

σ ← first(SC(y, b))
if σ is valid then returnσ /* σ is a valid support */
elseremoveσ from SC(y, b)

return nil

den tuples (GAC-Scheme+forbidden), and by any predicate
(GAC-Scheme+predicate).

However, all these instantiations used the concept of last
support to take into account multidirectionality. For every
valueb of every variabley of X(C), last(y, b) is the last tu-
ple returned bySEEKVALID SUPPORTas a support for(y, b)
if SEEKVALID SUPPORT(C, y, b) has already been called;
nil otherwise. There is an ordering on the tuples, which is
local toSEEKVALID SUPPORT, andlast(y, b) gives the point
whereSEEKVALID SUPPORTwill have to restart the search
for a support for(y, b) on C at the next call. Thus, we can
avoid considering tuples that have been previously studied
for (y, b). In addition, (Bessìere & Ŕegin 1999) have pro-
posed to exploit the presence of the last support for every
value in order to avoid checking whether some tuples are a
support for(y, b) when they have already been unsuccess-
fully checked foranother value.

In the next section, we propose simpler and stronger prop-
erties by introducing lower and upper bounds of valid tuples.

Lower bounds on the next valid support
Let C be a constraint defined on the setX of variables. For
the sake of clarity and without loss of generality, we will
consider that the tuples onX are lexicographically ordered
and we will denote by≺ this order , and by> a tuple greater
than any other tuple.

The goal of functionSEEKVALID SUPPORT is to find a
valid support as quickly as possible. For instance, the instan-
tiation of this function for GAC-Scheme+allowed traverses
the elements ofT (C) until a valid one is found. We pro-
pose to accelerate this traversal by exploiting lower bounds
on valid supports.

Definition 2 Givenx ∈ X anda ∈ D(x):
• T (C, x, a) is the set of tuples ofT (C) in which x is

assigned toa (i.e. the set of support for(x, a)).
• a tupleτ onX is a lower bound of the smallest valid

tuple (lbsvt) w.r.t. (x, a) and C iff ∀σ ∈ T (C, x, a): σ ≺
τ ⇒ σ is not valid.

• a tuple τ on X is an upper bound of the greatest
valid tuple (ubgvt) w.r.t. (x, a) and C iff ∀σ ∈ T (C, x, a):
σ � τ ⇒ σ is not valid.
We will denote by:

• lb any function which associates with every valuea of
every variablex a lbsvt w.r.t.(x, a) andC

• ub any function which associates with every valuea of
every variablex an ubgvt w.r.t.(x, a) andC
We also define∀x ∈ X: minlb(x) = min

a∈D(x)
(lb(x, a))



The functionlast is an example of functionlb. The function1

which associates with every value(x, a) the highest possible
tuple of the Cartesian Product of the current domains assign-
ing a to x is an example of functionub.

We immediately have:

Property 1 Givenx ∈ X anda ∈ D(x).
If lb(x, a) � ub(x, a) then(x, a) is not consistent withC.

The minimum of the lower bound associated with the val-
ues of the domain of a given variable is a general lower
bound:

Property 2 ∀y ∈ X,∀x ∈ X and∀a ∈ D(x):
minlb(y) is an lbsvt w.r.t.(x, a) andC.

proof: The smallest valid tuple ofT (C, x, a) contains one value
b of D(y). This tuple is valid, so it is greater than or equal to the
lbsvt w.r.t. (y, b) andC. Thus, it is also greater than or equal to
minlb(y). Thus,minlb(y) is an lbsvt w.r.t.(x, a) andC �

It is important to note that this property deals only with
the values ofD(y).

From this property, we can compute a lower bound asso-
ciated with every variable. Thus, we can take the maximum
value of these lower bounds in order to compute a new lower
bound:

Corollary 1 Givenx ∈ X, a ∈ D(x), and
σ = max[lb(x, a), max

y∈(X−{x})
(minlb(y))]:

σ is an lbsvt w.r.t.(x, a) andC.

Consider the example given in the Introduction section.
We definelb = last. After establishing arc consistency
we have last(x6, 1) = (1, 1, 1, 1, 1, 1), last(x6, 2) =
(2, 2, 2, 2, 2, 2), last(x6, 3) = (3, 3, 3, 3, 3, 3) and
last(x6, 4) = (4, 4, 4, 4, 4, 4). After the deletion of(x6, 0)
we haveminlb(x6) = min((1, 1, 1, 1, 1, 1), (2, 2, 2, 2, 2, 2)
, (3, 3, 3, 3, 3, 3), (4, 4, 4, 4, 4, 4)) = (1, 1, 1, 1, 1, 1). Corol-
lary 1 applied forx1 givesσ = max

y∈(X−{x1})
(minlb(y)) �

minlb(x6) = (1, 1, 1, 1, 1, 1) thereforeub(x1, 0) ≺ σ
because0 < σ[x1] and so there is no valid support for
(x1, 0).

Improvement versus related work
With our notations, we can simplify the result of (Bessière
& Régin 1999) on which their filtering algorithms are based.
Property 1 generalizes their first result and their second re-
sult can be rewritten (and generalized) as:

Property 3 Letx ∈ X with D(x) = {a} andy 6= x be any
variable ofX andb be any value ofD(y).
If ∀σ ∈ T (C, y, b): σ ≺ lb(x, a) then(y, b) is not consistent
with C.

This property leads to fewer deductions than the new
corollary we have proposed. Consider the previous example;
it is not possible to deduce the same things as Corollary 1 by
using Property 3, because after the deletion of(x6, 0) there
is no instantiated variable and if we search for a new valid
support for(x1, 0) then we havelb(x1, 0) = last(x1, 0) =

1More preciselyub(x, a) is defined as follows:
∀y ∈ (X − {x}): ub(x, a)[y] = D(y); andub(x, a)[x] = a.

(0, 0, 0, 0, 0, 0) which precedes all the other tuples according
to the lexicographic order. Thus, an explicit search for a new
valid support will be required in order to prove that there is
none. Hence, Corollary 1 clearly outperforms the previous
results.

Implementation
There is no particular difficulty to implement Corollary 1.
Algorithm 3 gives a synopsis of functionSEEKVALID SUP-
PORT.

Algorithm 3: Synopsis of FunctionSEEKVALID SUP-
PORT

SEEKVALID SUPPORT(C: constraint,x: variable,a: value):
tuple

1 σ ← max[lb(x, a), max
y∈(X(C)−{x})

(minlb(y))]

if σ � ub(x, a) then return nil
else

search for a new valid support for(x, a) from σ
return this support if exists and nil otherwise

For every variabley, we can maintainminlb(y) by re-
computing the new minimum each timeD(y) is modified.
If the two variables having the largestminlb(y) are main-
tained then we can know the value ofmax

y∈(X−{x})
(minlb(y))

for every variablex. There is no need to maintain the values
ub(x, a) for every(x, a) because this value can be computed
while performing the testσ ≺ ub(x, a).

It is also possible to implement the multidirectionality by
a constraint as proposed by (Bessière & Ŕegin 1999). From
Corollary 1 we deduce the following corollary which leads
to a filtering algorithm:

Corollary 2 Givenx ∈ X andσ = max
y∈(X−{x})

(minlb(y)).

∀a ∈ D(x): ub(x, a) ≺ σ ⇒ (x, a) is not consistent withC.

Combination of two major concepts: support
and validity

The instantiation of the GAC-Scheme (named GAC-
Scheme+allowed) dealing with a constraint explicitly de-
fined by the list of its allowed tuples considers that for ev-
ery value(x, a) the list of tuples involving this value is
explicitly given, and that it is possible from a tuple to ac-
cess the tuple which follows it in that list thanks to function
NEXT((x, a), σ). This function returns, if it exists, the tuple
following σ in the list of tuples ofT (C, x, a); otherwise it re-
turns>. Then, functionSEEKVALID SUPPORTtraverses the
values ofT (C, x, a) until a valid tuple is found. Algorithm 4
gives the specific GAC-Scheme+allowed instantiation. The
definition of arc consistency involves two main concepts: the
concept of support (i.e. a tuple allowed by the constraint) and
the concept of validity (i.e. a tuple whose values belong to
their respective domains.)

In this section, we show for the first time how these two
concepts can be combined and not only independently con-
sidered as in previous studies. In other words, we improve
Algorithm 4 by integrating the ideas of Corollary 1, that is



Algorithm 4: Function SEEKVALID SUPPORT of GAC-
Scheme+allowed

SEEKVALID SUPPORT(C: constraint,x: variable,a: value):
tuple

1 σ ← last(x, a)
if σ � ub(x, a) then return nil
while ¬ ISVALID (σ) do

2 σ ← NEXT((x, a), σ)
if σ � ub(x, a) then return nil

last(x, a)← σ
returnσ

by using the lower bounds obtained from all the current do-
mains of the variables. That is, we try to extract some infor-
mation from the values that currently belong to the domains
of the variables in order to avoid considering tuples contain-
ing values that have been deleted.

First, we show how Line 1 is modified in order to take into
account Corollary 1.

FunctionNEXT of GAC-Scheme+allowed makes a strong
assumption on the tuples that it considers. For a value(x, a)
this function takes a tuple ofT (C, x, a) as parameter and re-
turns a tuple ofT (C, x, a). Unfortunately, the lower bound
of Corollary 1 does not necessary involve(x, a). Therefore,
we need a function which is able to compute a tuple of
T (C, x, a) from a tuple which does not assigna to x. We
will denote byNEXTIN such a function:

Definition 3 ∀x ∈ X, ∀a ∈ D(x), ∀σ ∈ T (C):
NEXTIN((x, a), σ) = σ if σ[x] = a
NEXTIN((x, a), σ) = τ if σ[x] 6= a and ∃τ ∈ T (C, x, a)
with τ � σ and 6 ∃t ∈ T (C, x, a) s.t.σ ≺ t ≺ τ .
NEXTIN((x, a), σ) = > if σ[x] 6= a and the previous condi-
tion is not satisfied.

Now, we can replace Line 1 of Algorithm 4 by the code
consisting of the call of functionNEXTIN with (x, a) and
theσ value of Line 1 of Algorithm 3 as parameters, that is:
σ ← NEXTIN((x, a),max[lb(x, a), max

y∈(X−{x})
(minlb(y))])

We can further reduce the number of computations made
by Algorithm 4, by using functionNEXTIN in the loop.

First, we have a property similar to Property 2:

Property 4 Let σ be a lbsvt w.r.t.(x, a) andC, andy 6= x
be a variable ofX. Then

n(y, σ) = min
b∈D(y)

[NEXTIN((y, b),max(lb(y, b), σ))]

is an lbsvt w.r.t.(x, a) andC.

proof : The smallest valid tuplesvt containing(x, a) will also
contain one valueb of D(y). By definitionsvt is greater than any
lbsvt w.r.t. (x, a), so we havesvt � σ, andsvt is greater than
any lbsvt w.r.t.(y, b) and C becausesvt is valid andsvt[y] =
b. Therefore, we havesvt � max(lb(y, b), σ). By definition of
functionNEXTIN the property holds.�

The advantage of this property is that only the values that
are currently in the domain of any variabley are considered.
So we increase the chance that we will avoid considering
tuples that are not valid. This is a way to combine the con-
cept of support and the concept of validity. For the first time,

the domains of the variables are explicitly considered before
testing the validity of a tuple. These domains are used to
compute the next tuple whose validity will be checked.

Then, we obtain a corollary similar to Corollary 1:

Corollary 3 Letσ be a lbsvt w.r.t.(x, a) andC, andy 6= x
be a variable ofX. Then

NEXTIN((x, a),max[lb(x, a), max
y∈(X−{x})

(n(y, σ))])

is an lbvst w.r.t.(x, a) andC.

Algorithm 5: New FunctionSEEKVALID SUPPORT

SEEKVALID SUPPORT(C: constraint,x: variable,a: value):
tuple

1 σ ← NEXTIN((x, a), max[lb(x, a), max
y∈(X(C)−{x})

(minlb(y))])

if σ � ub(x, a) then return nil
while ¬ ISVALID (σ) do

2 σ ← NEXT((x, a), σ)
3 for eachy ∈ (X(C)− {x}) do

n(y, σ)← min
b∈D(y)

[NEXTIN((y, b), max(lb(y, b), σ))]

4 t← NEXTIN[(x, a), max
y∈(X(C)−{x})

(n(y, σ))]

5 if t � σ then σ ← t
if σ � ub(x, a) then return nil

lb(x, a)← σ
returnσ

Algorithm 5 gives a possible design of a new functionSEEK-
VALID SUPPORTbased on this corollary. This algorithm uses
a functionlb which associates with every value(x, a) a lbsvt
w.r.t.(x, a) andC. Of course, this function could be replaced
by functionlast.

Note that ifσ is valid after Line 2 then∀y ∈ (X − {x}) :
σ[y] ∈ D(y) andn(y, σ) � σ sot � σ.

Implementation of Function NEXTIN. This function can
be easily implemented if we accept increasing the space
complexity of the GAC-Scheme.

First, as with functionNEXT, we define for each value
(x, a) the ordered listT (C, x, a). That is, for each tupleσ ∈
T (C, x, a), and for each value(x, a) of σ we add a pointer
to the next tuple ofT (C, x, a) according to the ordering.

Then, for each tupleσ ∈ T (C) and for each value(x, a)
of this tuple we add|D(x)| pointers. Each pointer is as-
sociated with a value ofD(x); thus we will denote it by
p(σ, x, b). Each pointerp(σ, x, b) points to a tupleτ ∈
T (C, x, b) such thatτ � σ, and there is not ∈ T (C, x, b)
with σ ≺ t ≺ τ . With this mechanism of pointer we sim-
ply have: if σ[x] = a then NEXTIN((x, a), σ) = σ else
NEXTIN((x, a), σ) = p(σ, x, a). If d is the size of the largest
domain then the addition of pointers for every tuple multi-
plies the space complexity of the GAC-Scheme by a factor
of d.

It is possible to implement functionNEXTIN without in-
creasing the space complexity of the GAC-Scheme, by using
a specific data structure and a more complex procedure. For
more information the reader can consult (Lhomme 2004).

In addition, comparisons between tuples can be per-
formed with a time complexity independent of the size of



tuples provided that the listT (C) is given. In this case, we
can give a number to each tuple inT (C) which corresponds
to its rank according to the ordering on the tuple. Then, the
comparison between these two rank numbers is sufficient to
compare the two tuples.

Experiments
All the experiments have been made on a Pentium III,
400Mhz, with ILOG Solver 6.1 (ILOG 2005) which imple-
ments our method for n-ary constraints explicitly defined by
the list of allowed tuples. The gain in efficiency our algo-
rithm may bring is directly related to the number of tuples.
If the table contains only a few tuples, there is no efficiency
problems: GAC is very fast and there is nothing to gain.
Thus, in our experiments, we consider tables with a big num-
ber of tuples.

There are two distinct cases to consider: structured sets of
tuples and random sets of tuples. As expected, our method
leads to a huge improvement in the former case. We also
show that, even for problems with no structure at all, i.e. on
random problems, our method is worthwhile.

Structured sets of tuples
In practice, tables represent relations between variables from
real data, and, in applications, it is almost always the case
that the set of tuples is not random. Some structure is thus
hidden in the set of tuples. In such cases, our method may
dramatically reduce computation time: the gain can be linear
in terms of the number of tuples in the table, i.e., exponen-
tial in the arity of the table, as for the example given in the
Introduction section. If we consider the very same kind of
example but with 8 variables and 10 values per domain, then
our method requires less than 10 ms to establish again arc
consistency after the deletion of(x8, 0) whereas the previ-
ous GAC-Scheme+allowed requires 5648 ms.

Of course, the structure in the table may be not as obvious
as in the above example but our improvement typically leads
to a much more robust behavior w.r.t. the tuple ordering and
the search strategy.

Random sets of tuples
First we consider a test that is an adaptation of a local search
benchmark on Boolean variables. The problems of the
first test involve 24 variables. All the constraints have the
same arity (14). Each constraint is defined over randomly
chosen variables. The Cartesian product size is214. We take
randomly213 tuples in each table. Thus, the density of each
constraint is around 0.5. The advantage of this model is that,
by varying only one parameter, the number of constraints,
we vary the difficulty in solving the problem. The cpu time
for finding the first solution is reported in the following
table.

#ct #bk new old gain • #ct is the number of constraints
time time • #bk the number of choice points

8 184 1.9 26.1 13.7 • “old” corresponds to the GAC-Scheme+allowed
10 382 5.0 59.8 12.0 algorithm of (Bessìere & Ŕegin 1997)
12 421 6.3 73.6 11.7 • “new” represents our method
14 305 5.2 59.3 11.4 • “gain” is the cpu time ratio
16 199 3.8 41.5 10.9 Times are expressed in seconds.

Our method clearly improves the previous one by an order
of magnitude.

Then, we test sparse constraints with larger arity (20), on
Boolean variables again. The 20 variables of each constraint
are randomly chosen among 40, and there are 30,000 tuples
per constraint.

#ct #bk new old gain
time time

1 34 0.02 0.56 28
2 30 0.04 1.94 48
3 23 0.09 1.96 22
4 53 0.64 26.28 41
5 1122 21.64 > 300 > 10

The gains are even better than in the previous test.
Now, we test variables with larger domain size (10). The

constraints are of arity 6, and share the same set of tuples
which contains 100,000 tuples (density 0.1).

#ct #bk new old gain
time time

1 10 0.05 0.4 8
2 8 0.01 0.6 60
3 8 0.04 1.0 25
4 59 0.3 13.5 45
5 14 0.2 7.9 40
6 155 2.9 188 65
7 133 3.3 207 63
8 313 6.3 407 65
9 2439 64 > 3, 600 > 56

Once again, our method clearly outperforms the previous
studies by almost two orders of magnitude.

Conclusion
In this paper, we have proposed a new algorithm for estab-
lishing arc-consistency on n-ary constraints given in exten-
sion by their allowed combinations of values. The idea is
to exploit the current domains of the variables to boost the
search for a new valid support. Our method outperforms the
best known arc-consistency algorithm.
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