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Abstract. Constraint programming (CP) is mainly based on filtering
algorithms; their association with global constraints is one of the main
strengths of CP because they exploit the specific structure of each con-
straint. This chapter is an overview of these two techniques. A collection
of the most frequently used global constraints is given and some filtering
algorithms are detailed. In addition, we try to identify how filtering algo-
rithms can be designed . At last, we identify some problems that deserve
to be addressed in the future.

1 Introduction

Constraint Programming is mainly based on the exploitation of the structure of
the constraints and CP accepts to have constraints whose structure are differ-
ent. This idea seems to be exploited only in CP: we do not want to loose the
structure of the constraints. Other techniques like SAT or MIP impose to model
the problem while respecting some rules : having only boolean variables and 3
clauses for SAT, or having only linear constraints for MIP.

This specificity of CP allows the use of any kind of algorithm for solving a
problem. We could even say that we want to exploit as much as possible the
capability to use different algorithms. Currently, when a problem is modelled
in CP it is possible that a large variety of algorithms are used at the same
time and communicate with each other. For instance, it is really conceivable to
have at the same time flow algorithms, dynamic programming, and automaton
transformations.

1.1 CP principles

In CP, a problem is defined from variables and constraints. Each variable is
associated with a domain containing its possible values. A constraint expresses
properties that have to be satisfied by a set of variables.

In CP, a problem can also be viewed as a conjunction of sub-problems for
which we have efficient resolution methods. These sub-problems can be very easy
like x < y or complex like the search for a feasible flow. These sub-problems
correspond to constraints. Then, CP uses for each sub-problem the available
resolution method associated with it in order to remove from the domains the



values that cannot belong to any solution of the sub-problem. This mechanism
is called filtering. By repeating this process for each sub-problem, so for each
constraint, the domains of the variables are going to be reduced.

After each modification of the variable domains, it is useful to reconsider
all the constraints involving this variable, because that modification can lead to
new deductions. In other words, the domain reduction of one variable may lead
to deduce that some other values of some other variables cannot belong to a
solution. This mechanism is called propagation.

Then, and in order to reach a solution, the search space will be traversed
by assigning successively a value to each variable. The filtering and propagation
mechanisms are, of course, triggered when a modification occurs. Sometimes, an
assignment may lead to the removal of all the values of a domain : we say that
a failure occurs, and the latest choice is reconsidered: there is a backtrack and a
new assignment is tried. This mechanism is called search.

So, CP is based on three principles : filtering, propagation and search. We
could represent it by reformulating the famous Kowalski’s definition of Algorithm
(Algorithm = Logic + Control) [75] as:

CP = filtering + propagation+ search (1)

where filtering and propagation correspond to Logic and Search to Control.

1.2 Global Constraints

One of the most interesting properties of a filtering algorithm is arc consistency.
We say that a filtering algorithm associated with a constraint establishes arc
consistency if it removes all the values of the variables involved in the constraint
that are not consistent with the constraint. For instance, consider the constraint
x + 3 = y with the domain of x equals to D(x) = {1, 3, 4, 5} and the domain
of y equal to D(y) = {4, 5, 8}. Then establishing arc consistency will lead to
D(x) = {1, 5} and D(y) = {4, 8}.

Since constraint programming is based on filtering algorithms, it is quite im-
portant to design efficient and powerful algorithms. Therefore, this topic caught
the attention of many researchers, who discovered a large number of algorithms.

As we mentioned it, a filtering algorithm directly depends on the constraint
it is associated with. The advantage of using the structure of a constraint can
be emphasized on the constraint x ≤ y. Let min(D) and max(D) be respec-
tively the minimum and the maximum value of a domain. It is straightforward
to establish that all the values of x and y in the range [min(D(x)),max(D(y)]
are consistent with the constraint. This means that arc consistency can be effi-
ciently and easily established by removing the values that are not in the above
ranges. Moreover, the use of the structure is often the only way to avoid memory
consumption problems when dealing with non-binary constraints. In fact, this
approach prevents you from explicitly representing all the combinations of values
allowed by the constraint.



Thus, researchers interested in the resolution of real life applications with
constraint programming, and notably those developing languages that encap-
sulate CP (like PROLOG), designed specific filtering algorithms for the most
common simple constraints (like =, ̸=, <,≤, ...). They also developed general
frameworks to exploit efficiently some knowledge about binary constraints (like
AC-5 [148]). However, they have been confronted with two new problems: the
lack of expressiveness of these simple constraints and the weakness of domain
reduction of the filtering algorithms associated with these simple constraints. It
is, indeed, quite convenient when modelling a problem in CP to have at one’s
disposal some constraints corresponding to a set of constraints. Moreover, these
new constraints can be associated with more powerful filtering algorithms be-
cause they can take into account the simultaneous presence of simple constraints
to further reduce the domains of the variables. These constraints encapsulating
a set of other constraints are called global constraints.

Initially, global constraints were defined as a set of constraints having the
same type for which an efficient algorithm was known. Then, this latter point
has been relaxed

One of the most famous examples is the alldiff constraint, especially be-
cause the filtering algorithm associated with this constraint is able to establish
arc consistency in a very efficient way.

An alldiff constraint defined on a set of variables X, states that the values
taken by variables must be all different. This constraint can be represented by
a set of binary constraints. In this case, a binary constraint of difference is built
for each pair of variables belonging to the same constraint of difference. But
the pruning effect of arc consistency for these constraints is limited. In fact,
for a binary alldiff constraint between two variables i and j, arc-consistency
removes a value from domain of i only when the domain of j is reduced to a
single value. Let us suppose we have a CSP with 3 variables x1, x2, x3 and an
alldiff constraint involving these variables with D(x1) = {a, b}, D(x2) = {a, b}
and D(x3) = {a, b, c}. Establishing arc consistency for this alldiff constraint
removes the values a and b from the domain of x3, while arc-consistency for the
alldiff represented by binary constraints of difference does not delete any value.
We will see later that the filtering algorithm associated with a global constraint
is stronger than the conjunction of the independent filtering algorithms of the
local constraints corresponding to the global constraint.

We can further emphasize the advantage of global constraints on a more
realistic example that involves global cardinality constraints (gcc).

A gcc is specified in terms of a set of variables X = {x1, ..., xp} which take
their values in a subset of V = {v1, ..., vd}. It constrains the number of times a
value vi ∈ V is assigned to a variable in X to be in an interval [li, ui]. gccs arise
in many real life problems. For instance, consider the example derived from a
real problem and given in [37] (cf. Figure 1). The task is to schedule managers
for a directory-assistance center, with 5 activities (set A), 7 persons (set P ) over
7 days (set W ). Each day, a person can perform an activity from the set A. The



Mo Tu We Th ...
peter D N O M
paul D B M N
mary N O D D

...
A = {M,D,N,B,O}, P = {peter, paul, mary, ...}

W = {Mo, Tu, We, Th, ...}
M: morning, D: day, N: night B: backup, O: day-off

Fig. 1. An Assignment Timetable.

goal is to produce an assignment matrix that satisfies the following global and
local constraints:

– general constraints restrict the assignments. First, for each day we have
a minimum and maximum number for each activity. Second, for each week,
a person has a minimum and maximum number for each activity. Thus,
for each row and each column of the assignment matrix, there is a global
cardinality constraint.

– local constraints mainly indicate incompatibilities between two consecu-
tive days. For instance, a morning schedule cannot be assigned after a night
schedule.

Each general constraint can be represented by as many min/max constraints
as the number of involved activities. Now, these min/max constraints can be eas-
ily handled with, for instance, the atmost/atleast operators proposed in [147].
Such operators are implemented using local propagation. But as is noted in [37]:
“The problem is that efficient resolution of a timetable problem requires a global
computation on the set of min/max constraints, and not the efficient implemen-
tation of each of them separately.” Hence, this way is not satisfactory. Therefore
global cardinality constraints associated with efficient filtering algorithms (like
ones establishing arc consistency) are needed.
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Fig. 2. An example of a Global Cardinality Constraint (gcc).



In order to show the difference in global and local filtering, consider a gcc
associated with a day (cf figure 2). The constraint can be represented by a bipar-
tite graph called a value graph (left graph in Figure 2). The left set corresponds
to the person set, the right set to the activity set. There exists an edge between
a person and an activity when the person can perform the activity. For each
activity, the numbers between parentheses express the minimum and the max-
imum number of times the activity has to be assigned. For instance, John can
work the morning or the day but not the night; one manager is required to work
the morning, and at most two managers work the morning. We recall that each
person has to be associated with exactly one activity.

Encoding the problem with a set of atmost/atleast constraints leads to no
deletion. Now, we can carefully study this constraint. Peter, Paul, Mary, and
John can work only in the morning and during the day. Moreover, morning and
day can be assigned together to at most 4 persons. Thus, no other persons (i.e.
Bob, Mike, nor Julia) can perform activities M and D. So we can delete the
edges between Bob, Mike, Julia and D, M. Now only one possibility remains for
Bob: N, which can be assigned at most once. Therefore, we can delete the edges
{Mike,N} and {Julia,N}. This reasoning leads to the right graph in Figure 2. It
corresponds to the establishing of arc consistency for the global constraint.

Filtering is a local mechanism, because it is associated to each constraint
independently. If a constraint is decomposed into some other constraints then
the set of filtering are less efficient because they have less information. We can
formally emphasize this idea by the following property:

Property 1 Establishing arc consistency on C = ∧{C1, C2, .., Cn}, i.e. the con-
junction of the constraints C1, C2, ...Cn, is stronger (that is, cannot remove
fewer values) than establishing arc consistency on the network1

(∪C∈CX(C),DX(C), {C1, C2, .., Cn}).

proof: The set of solutions of C = ∧{C1, C2, .., Cn} corresponds to the set of solu-
tion of (∪C∈CX(C),DX(C), {C1, C2, .., Cn}). Therefore, establishing arc consistency on
∧{C1, C2, .., Cn} removes all the values that do not belong to a solution of
(∪C∈CX(C),DX(C), {C1, C2, .., Cn}) which is stronger than the arc consistency of the
previous network.

Therefore, arc consistency on global constraints is a strong property. The
following proposition is an example of the gap between arc consistency for a
global constraint and arc consistency for the network corresponding to this global
constraint

Property 2 Arc Consistency for C =alldiff(X) corresponds to the arc consis-
tency of a Constraint Network with an exponential number of constraints defined
by:
1 A constraint network is defined by a set of variables associated with domains and a

set of constraints involving these variables.



∀A ⊆ X: |D(A)| = |A| ⇒ D(X −A) is reduced to D(X)−D(A), where D(A) is
the union of domain variable of A.

proof: Hall’s theorem states that an assignment problem in the bipartite
graph G = (X,Y,E) has a solution covering X if and only if ∀A ⊆ X |A| ≤
|Γ (A)|. In addition, we can easily prove that if there is A ⊆ X such that
|A| = |Γ (A)| then no element of X −A can be assigned to an element of Γ (A).
Thus, by defining for each subset A of X the constraint |D(A)| = |A| ⇒ D(X−A)
is reduced to D(X)−D(A) we establish arc consistency of the constraint.

However, in practice it is possible to observe results that are not so marked.
We can emphasize this idea on the following graph colouring problem: choose
colours for the nodes of a graph so that adjacent nodes are not the same color.
The kind of graph that we will color is one with n ∗ (n+ 1)/2 nodes, where n is
odd and where every node belongs to exactly two maximal cliques of size n.

For example, for n = 5, there is a graph consisting of the following maximal
cliques:
c0 = {0, 1, 2, 3, 4} , c1 = {0, 5, 6, 7, 8}, c2 = {1, 5, 9, 10, 11}
c3 = {2, 6, 9, 12, 13}, c4 = {3, 7, 10, 12, 14}, c5 = {4, 8, 11, 13, 14}

The minimum number of colours needed for this graph is n since there is a
clique of size n. Consequently, our problem is to find out whether there is a way
to color such a graph in n colours.

We compare the results obtained with the alldiff constraint and without
it (that is only binary constraints of difference are used). Times are expressed in
seconds:

clique size
27 31 51 61

#fails time #fails time #fails time #fails time
binary ̸= 1 0.17 65 0.37 24512 66.5 ? > 6h
alldiff 0 1.2 4 2.2 501 25.9 5 58.2

These results show that using global constraints establishing arc consistency
is not systematically worthwhile when the size of the problem is small, even
if the number of backtracks is reduced. However, when the size of problem is
increased, efficient filtering algorithm are needed.

Thus, we can recapitulate some strong advantages of global constraints:
• Expressiveness: it is more convenient to define one constraint correspond-

ing to a set of constraints than to define independently each constraint of this
set.

• Powerful filtering algorithms can be designed because the set of constraints
can be taken into account as a whole. Specific filtering algorithms make it pos-
sible to use Operations Research techniques or graph theory.

A lot of global constraints have been developed. Simonis proposed the first
state of the art [139], Régin wrote a book chapter about them [115], Beldiceanu



defined a catalogue [9] which tries to be exhaustive and van Hoeve and Katriel
gave a recent presentation of some of them [152]. In this chapter we will try to
present the most important ones by considering the number of applications, the
number of references or the number of papers that are dedicated to them. We
do not claim that we are totally objective, because we will also speak about the
constraints we know the best.

This chapter is organized as follows. First we recall some preliminaries about
Constraint Programming. Then, we propose a collection of global constraints
based on the constraint type. For most of them we explain the ideas on which the
filtering algorithms are based. Next, we consider the design of filtering algorithm
and we try to identify some general principles. Before concluding, we look at some
problems that deserve to be addressed in the future.

2 Preliminaries and Notations

A finite constraint network N is defined as
• a set of n variables X = {x1, . . . , xn};
• a set of current domains D = {D(x1), . . . , D(xn)} where D(xi) is the

finite set of possible values for variable xi;
• a set C of constraints between variables.

We denote by D0 = {D0(x1), . . . , D0(xn)} the set of initial domains of N . Indeed,
we consider that any constraint network N can be associated with an initial
domain D0 (containing D), on which constraint definitions were stated.

A constraint C on the ordered set of variables X(C) = (x1, . . . , xr) is
a subset T (C) of the Cartesian product D0(x1) × · · · × D0(xr) that specifies
the allowed combinations of values for the variables x1, . . . , xr. An element of
D0(x1)× · · · ×D0(xr) is called a tuple on X(C). |X(C)| is the arity of C.

We will use the following notations:
• (x, a) denotes the value a of the variable x.
• var(C, i) represents the ith variable of X(C)
• index(C, x) is the position of variable x in X(C).
• τ [k] denotes the kth value of the tuple τ .
• τ [x] represents τ [index(C, x)] when no confusion is possible.
• D(X) denotes the union of the domains of X (i.e. D(X) = ∪x∈XD(x)).
• #(a, τ) is the number of occurrences of the value a in the tuple τ .

Let C be a constraint. Here are some definitions:
• a tuple τ on X(C) is valid if ∀(x, a) ∈ τ, a ∈ D(x).
• C is consistent iff there exists a tuple τ of T (C) which is valid.
• a tuple τ of T (C) involving (x, a) (that is with a = τ [index(C, x)]) is called

a support for (x, a) on C.
• a value a ∈ D(x) is consistent with C iff x ̸∈ X(C) or there exists a

valid support for (x, a) on C (i.e. a valid tuple τ with (x, a) ∈ τ).



• a constraint is arc consistent iff ∀x ∈ X(C), D(x) ̸= ∅ and ∀a ∈ D(x), a
is consistent with C.

A filtering algorithm associated with a constraint C is an algorithm which
removes some values that are inconsistent with C; and that does not remove
any consistent values. If the filtering algorithm removes all the values that are
inconsistent with C we say that it establishes the arc consistency of C, or that
C is domain consistent.

The propagation is the mechanism that consists of calling the filtering al-
gorithm associated with the constraints involving a variable x each time the
domain of this variable is modified. Note that if the domains of the variables
are finite, then this process terminates because a domain can be modified only
a finite number of times.

We introduce a theorem that will be useful in this chapter. This theorem is
based on hypergraph and is due to [64]. Unfortunately, we were not able to find
the original paper. Thus, we propose to reformulate it in a simpler form which
is easier to understand.

First, we recall the definition of Bipartite Constraint Graph introduced by
Jegou [65] .

Definition 1 (Jegou) Let C be a set of constraints. The bipartite constraint
graph of C is the bipartite graph BCG(C) = (XB , YB , EB) where XB, YB are
node sets and EB an edge set defined as follows:

• Each constraint C ∈ C is associated with a node yi
• XB = ∪C∈CX(C)
• YB = {yi s.t. Ci is associated with yi}
• EB = {{xi, yj} s.t. xi ∈ XB , yj ∈ YB and xi ∈ X(Cj)}

Then, we have the expected theorem

Theorem 1 (Janssen and Villarem). Let C be a set of constraints. If the
bipartite constraint graph of C has no cycle then establishing arc consistency for
the constraint network N = (∪C∈CX(C),DX(C), C) is equivalent to establish arc
consistency for the constraint defined by the conjunction of the constraints of C
that is ∧{C1, C2, .., Cn}.

Proof: Clearly, if a value (x, a) is consistent with ∧{C1, C2, .., Cn} then it is also
consistent with N . On the other hand, the bipartite constraint graph of N has no
cycle therefore two constraints have at most one variable in common and so C can
be represented by disjoint paths, each one of the form C1, x1, C2, x2, ..., xm−1, Cm

where xi are variables and Ci constraints of C and for each constraint Ci,
i = 1...(m − 1) : X(Ci) ∩ X(Ci+1) = {xi} and for each pair of constraints
Ci and Cj : |X(Ci)∩X(Cj)| ≤ 1 and C1 may only share a variable with C2 and
Cm may only share a variable with Cm−1. If a value (xi, a) of this path is consis-
tent with the two constraints in which it can be involved then it straightforward
to extend its support to a complete assignment of all the variables and so (xi, a)
is consistent with the conjunction of constraints ∧{C1, C2, .., Cn} ⊙



We have an immediate useful corollary

Corollary 1 Let C be a constraint and (X(C),DX(C), {C1, .., Cm}) be a con-
straint network equivalent to C. If the bipartite constraint graph of the constraint
set of this network has no cycle then establishing arc consistency of C is equiv-
alent to establish arc consistency of the constraint network.

3 Global Constraints Collection

We can identify at least 5 different categories of global constraints:

• Classical Constraints. This category contains all usual constraints, like
alldiff, gcc, regular, sequence, path...

• Weighted Constraints. This category contains constraints which are as-
sociated with some costs, like the cardinality with cost (cost-gcc), the shorter
path, the knapsack, bin-packing... Usually a summation is implied and there
is a limit on it. A lot of NP-Hard constraint are in this category. The name of
these constraints often contains "weighted", "cost based", "with cost", ...

• Soft Constraints. This category contains the relaxation of classical or
weighted constraints when they cannot be satisfied. In general the soft version
of a constraint involves an additional cost variable which measures the distance
to the satisfaction. Formally these constraints have been introduced by Petit et
al. [98], and the well known local search based language Comet is mainly based
on these constraints [149].

• Constraints on Meta-Variables. This category contains the constraints
that are not defined on classical variables, but rather on set variables or on
graph variables. Set variables have been proposed independently by Gervet [55]
and Puget [100]. Régin implemented global constraints on set variables in ILOG
Solver [118]. The HDR thesis of Gervet [57] contains a lot of interesting ideas
and is certainly the best reference on this topic. Some information can be found
in [126, 151, 58, 56, 127].

• Open Constraints. This category is new and has been proposed by van
Hoeve and Régin [152]. The idea is to define constraint on set of variables that
are not close at the definition. More precisely, we do not know exactly the vari-
ables that will be involved in the constraint: we only now that some variables are
involved and that some others could be involved. Van Hoeve and Régin presented
an efficient AC filtering algorithm for some open global cardinality constraints
and extended this result to conjunctions of them, in case they are defined on
disjoint sets of variables2. Maher studied some variations of the model proposed
2 Van Hoeve and Régin gave an example of a alternatives in scheduling problems:

consider a set of activities and suppose that each activity can be processed either



by Van Hoeve and Régin [86].

In this chapter we will consider only constraints belonging to the two first
categories: the classical and weighted constraints. A chapter of this book presents
the soft constraints.

We can identify two main groups among these constraints: the constraints
that are mainly defined by their functions and the constraints that are defined
by the underlined technique they use. This latter group corresponds to Formal
Language based Constraints, which mainly contains regular and gram-
mar constraints, whereas the former group contains several types of constraints:

• Solution based Constraints. It mainly contains constraints that are
defined from any problem P and table constraints.

• Counting Constraints. It mainly contains: alldiff, permutation,
global cardinality (gcc), global cardinality with cost (cost-gcc) and cardi-
nality matrix constraints (card-matrix).

• Balancing Constraints. It mainly contains: balance, deviation and
spread constraints.

• Combination based Constraints. It mainly contains: max-sat, or and
and constraints

• Sequencing Constraints. It mainly contains: among, sequence, gen-
eralized sequence (gen-sequence), global sequencing constraints (gsc).

• Distance Constraints. It mainly contains: inter-distance and sum of
inequalities constraints (sum-ineq).

• Geometric Constraints. It mainly contains: diff-n constraints.
• Summation based Constraints. It mainly contains: subset-sum and

knapsack constraints.
• Packing Constraints. It mainly contains: symmetric alldiff (sym-alldiff),

stretch, k-diff, number of distinct value (nvalue), bin-packing constraints.
• Graph based Constraints. It mainly contains: cycle, path, tree,

weighted spanning tree (wst) constraints.
• Order based Constraints. It mainly contains: lexicographic lexico≤

and sort constraints.

First, we will consider individually each type of these constraints and then
we will study the formal language based constraints.

on the factory line 1 formed by the set of unary resources R1, or on the factory
line 2 formed by the set of unary resources R2. Thus, at the beginning, the set of
resources that will be used by an activity is not known. Also the set of activities
that will be processed by a resource is not known. However, it is useful to express
that the activities that will be processed on each line must be pairwise different.
This can be done by defining two alldiff constraints, involving the start variables
of each activity, and by stating that a start variable will be involved in exactly
one alldiff constraint. Van Hoeve and Régin shown how arc consistency can be
efficiently establish for the conjunction of these 2 alldiff constraints.



3.1 Solution based Constraints

Often when we are solving a real problem, the various simple models that we
come up with cannot be solved within a reasonable period of time. In such a
case, we may consider a sub-problem of the original problem, say P . Then, we
build a global constraint that is the conjunction of the constraints involved in
that sub-problem.

The main issue is to define an efficient filtering algorithm associated with P .
This task can be difficult. There are several ways to try to solve it and we will
discuss this question in Section 4 of this chapter. However, we will focus our
attention here on two possibilities :

• a generic algorithms is used,
• or all the solutions of P are enumerated and a Table constraint is used.

Generic Constraint (generic)

Suppose that you are provided with a function, denoted by existSolu-
tion(P), which is able to know whether a particular problem P = (X, C,D)
has a solution or not. In this section, we present two general filtering algorithms
establishing arc consistency for the constraint corresponding to P , that is the
global constraint C(P ) = ∧C

These filtering algorithms correspond to particular instantiations of a more
general algorithm: GAC-Schema [29].

For convenience, we will denote by Px=a the problem P in which the domain
of X is restricted to a, in other words Px=a = (X, C ∪ {x = a},D).

Establishing arc consistency on C(P ) is done by looking for supports for the
values of the variables in X. A support for a value (x, a) on C(P ) can be searched
by using any search procedure since a support for (x, a) is a solution of problem
Px=a.

♢ A First Algorithm

A simple algorithm consists of calling the function existSolution with Px=a

as a parameter for every value a of every variable x involved in P , and then to
remove the value a of x when existSolution(Px=a) has no solution. Algorithm
1 is a possible implementation.

This algorithm is quite simple but it is not efficient because each time a value
will be removed, the existence of a solution for all the possible assignments needs
to be recomputed.

If O(P ) is the complexity of function existSolution(P ) then we can reca-
pitulate the complexity of this algorithms as follows:



Algorithm 1: Simple general filtering algorithm establishing arc consis-
tency

SimpleGeneralFilteringAlgorithm(C(P ): constraint; deletionSet: list):
Bool
for each x ∈ X do

for each a ∈ D(x) do
if ¬ existSolution(Px=a) then

remove a from D(x)
if D(x) = ∅ then return False
add (x, a) to deletionSet

return True

Consistency checking Establishing Arc consistency
best worst best worst

From scratch Ω(P ) O(P ) nd×Ω(P ) nd×O(P )
After k modifications k ×Ω(P ) k ×O(P ) knd×Ω(P ) knd×O(P )

♢ A better general algorithm

This section shows how a better general algorithm establishing arc consis-
tency can be designed provided that function existSolution(P ) returns a so-
lution when there is one instead of being Boolean.

First, consider that a value (x, a) has been removed from D(x). We must
study the consequences of this deletion. So, for all the values (y, b) that were
supported by a tuple containing (x, a) another support must be found. The list
of the tuples containing (x, a) and supporting a value is the list SC(x, a); and
the values supported by a tuple τ is given by S(τ).

Therefore, Line 1 of Algorithm 2 enumerates all the tuples in the SC list and
Line 2 enumerates all the values supported by a tuple. Then, the algorithm tries
to find a new support for these values either by “inferring” new ones (Line 3) or
by explicitly calling function existSolution (Line 4).

Here is an example of this algorithm:
Consider X = {x1, x2, x3} and ∀x ∈ X,D(x) = {a, b};
and T (C(P )) = {(a, a, a), (a, b, b), (b, b, a), (b, b, b)} (i.e. these are the possible so-
lutions of P ).
First, a support for (x1, a) is sought: (a, a, a) is computed and (a, a, a) is added
to SC(x2, a) and SC(x3, a), (x1, a) in (a, a, a) is added to S((a, a, a)).
Second, a support for (x2, a) is sought: (a, a, a) is in SC(x2, a) and it is valid,
therefore it is a support. There is no need to compute another solution.
Then a support is searched for all the other values.
Now, suppose that value a is removed from x2, then all the tuples in SC(x2, a)
are no longer valid: (a, a, a) for instance. The validity of the values supported by
this tuple must be reconsidered, that is the ones belonging to S((a, a, a)), so a



Algorithm 2: function GeneralFilteringAlgorithm
GeneralFilteringAlgorithm(C(P ): constraint; x: variable; a: value,
deletionSet: list): Bool
// SC(x, a) : list of tuples supported by (x, a)
// S(τ) : list of values supported by the tuple τ
// this function studies the consequence of the deletion of the value a of D(x)
for each τ ∈ SC(x, a) do1

for each (z, c) ∈ τ do remove τ from SC(z, c)
for each (y, b) ∈ S(τ) do2

// (x, a) was the valid support of (y, b)
remove (y, b) from S(τ)
if b ∈ D(y) then

// we search for another valid support for (y, b)
// first by inference
σ ← seekInferableSupport(y, b)3
if σ ̸= nil then add (y, b) to S(σ)
else

// second we explicitly check if P has a solution when y = b
σ ← existSolution(Py=b)4
if σ ̸= nil then

// a valid support is found
add (y, b) to S(σ)
for k = 1 to |X(C)| do add σ to SC(var(C(P ), k), σ[k])

else
// there is no valid support : b is deleted from D(y)
remove b from D(y)
if D(y) = ∅ then return False
add (y, b) to deletionSet

return True

new support for (x1, a) must be searched for and so on...

The program which aims to establish arc consistency for C(P ) must create
and initialize the data structures (SC , S), and call function
GeneralFilteringAlgorithm(C(P ), x, a, deletionSet) (see Algorithm 2) each
time a value a is removed from a variable x involved in C(P ), in order to prop-
agate the consequences of this deletion. deletionSet is updated to contain the
deleted values not yet propagated. SC and S must be initialized in a way such
that:

• SC(x, a) contains all the allowed tuples τ that are the current support for
some value, and such that τ [index(C(P ), x)] = a.

• S(τ) contains all values for which τ is the current support.
Function seekInferableSupport of GeneralFilteringAlgorithm “in-

fers” an already checked allowed tuple as support for (y, b) if possible, in order
to ensure that it never looks for a support for a value when a tuple support-



ing this value has already been checked. The idea is to exploit the property: “If
(y, b) belongs to a tuple supporting another value, then this tuple also supports
(y, b)”. Therefore, elements in SC(y, b) are good candidates to be a new support
for (y, b). Algorithm 3 is a possible implementation of this function.

Algorithm 3: function seekInferableSupport
seekInferableSupport(y: variable, b: value): tuple
// we search whether (y, b) belong to a valid tuple supporting another value
while SC(y, b) ̸= ∅ do

σ ← first(SC(y, b))
if σ is valid then return σ /* σ is a support */
else remove σ from SC(y, b)

return nil

The complexity of the GeneralFilteringAlgorithm is given in the fol-
lowing table:

Consistency checking Establishing Arc consistency
best worst best worst

From scratch Ω(P ) O(P ) nd×Ω(P ) nd×O(P )
After k modifications Ω(1) k ×O(P ) nd×Ω(P ) knd×O(P )

Moreover, the space complexity of this algorithm is O(n2d), where d is the
size of the largest domain and n is the number of variables involved in the
constraint. This space complexity depends on the number of tuples needed to
support all the values. Since there are nd values and only one tuple is required
per value, we obtain the above complexity.

Table Constraint (table)

A table constraint is a constraint defined explicitly by the list of allowed
tuples or by the list of forbidden tuples. This constraint is one of the most useful
constraints. GAC-Schema or one of its recent variations [84, 82, 73, 54] can be
used for establishing arc consistency.

We would like to emphasize the complexity of such an algorithm because
we will reuse it several times in this chapter. Consider for instance a table
constraint involving r variables and a tuple set containing T elements. For every
value a of every variable x we can define T (x, a) the subset of T containing the
tuples involving (x, a). For a given variable x all these lists are disjoints and the
sum of their size is bounded by |T |. Searching for a valid support for (x, a) is
equivalent to find a valid tuple in T (x, a). We can use a method which do not
repeat several time the same validity check of an element of T (x, a). Therefore,
all the searches for a valid support for (x, a) can be done with at most |T (x, a)|
validity checks. So, for one variable the overall cost for all the values in the



domain is r|T |, where r is the cost of one validity check, because the T (x, a) sets
are disjoint. We can amortize the cost of validity checks: if we discover that a
tuple is no longer valid then we can remove it from each of the set |T (x, a)| for
each value (x, a) it contains. This does not cost more than checking the validity
of the tuple once. However, this means that globally a tuple can be checked
unvalid only once, so globally the cost of all checks is in O(r|T |). This number is
also the maximum number of time the support of a value of x can be no longer
valid. Therefore, the time complexity for establishing arc consistency and for
maintaining it for one branch of the tree search is in O(r|T |):

Proposition 1 Let C be a table constraint involving r variables and defined by
the set T of allowed tuples. The time complexity for establishing arc consistency
for C and for maintaining it for one branch of the tree search is in O(r|T |).

3.2 Counting Constraints

Counting constraints ensure rules defined on the number of times values are
taken in any solution. These constraints express conditions that are strongly
related to assignment problems that can be solved by the flow theory. Therefore,
we propose to consider first the Flow theory and then to present the counting
constraints and the way their filtering algorithms are based on flow theory. This
presentation also clearly show how OR algorithms can be integrated into CP.

Flow theory

♢ Preliminaries

The definitions about graph theory come from [144]. The definitions, theo-
rems and algorithms about flow are based on [26, 79, 144, 2].

A directed graph or digraph G = (X,U) consists of a node set X and
an arc set U , where every arc (u, v) is an ordered pair of distinct nodes. We
will denote by X(G) the node set of G and by U(G) the arc set of G.

A path from node v1 to node vk in G is a list of nodes [v1, ..., vk] such that
(vi, vi+1) is an arc for i ∈ [1..k−1]. The path contains node vi for i ∈ [1..k] and
arc (vi, vi+1) for i ∈ [1..k − 1]. The path is simple if all its nodes are distinct.
The path is a cycle if k > 1 and v1 = vk.

If {u, v} is an edge of a graph, then we say that u and v are the ends or
the extremities of the edge. A matching M on a graph is a set of edges no
two of which have a common node. The size |M | of M is the number of edges
it contains. The maximum matching problem is that of finding a matching
of maximum size. M covers X when every node of X is an endpoint of some
edge in M .

Let G be a graph for which each arc (i, j) is associated with two integers lij
and uij , respectively called the lower bound capacity and the upper bound
capacity of the arc.



A flow in G is a function f satisfying the following two conditions:
• For any arc (i, j), fij represents the amount of some commodity that can

“flow” through the arc. Such a flow is permitted only in the indicated direction
of the arc, i.e., from i to j. For convenience, we assume fij = 0 if (i, j) ̸∈ U(G).

• A conservation law is observed at each node: ∀j ∈ X(G) :
∑

i fij =∑
k fjk.

We will consider two problems of flow theory:
• the feasible flow problem: Does there exist a flow in G that satisfies the

capacity constraint? That is, find f such that ∀(i, j) ∈ U(G) lij ≤ fij ≤ uij .

• the problem of the maximum flow for an arc (i, j): Find a feasible
flow in G for which the value of fij is maximum.

Without loss of generality (see p.45 and p.297 in [2]), and to overcome nota-
tion difficulties, we will consider that:

• if (i, j) is an arc of G then (j, i) is not an arc of G.
• all boundaries of capacities are nonnegative integers.

In fact, if all the upper bounds and all the lower bounds are integers and if there
exists a feasible flow, then for any arc (i, j) there exists a maximum flow from j
to i which is integral on every arc in G (See [79] p113.)

orientation

peter

paul

mary

john

bob

mike

julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

t s

O (0,2)

2
2

0

1

1

Fig. 3. A flow from s to t. For convenience, the arc (t, s) is omitted. All arcs have
a minimum capacity of 0 and a maximum capacity of 1, excepted the outgoing arcs
from s where the capacities are given in parenthesis. For instance, the arc (s,D) has a
minimum capacity equals to 1 and a maximum equals to 2.

♢ Flow Computation

Consider, for instance, that all the lower bounds are equal to zero and suppose
that you want to increase the flow value for an arc (i, j). In this case, the flow
of zero on all arcs, called the zero flow, is a feasible flow. Let P be a path from
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Fig. 4. The residual graph for the flow given in Figure 3.For convenience, the arc (t, s)
and (s, t) are omitted. All arcs have a minimum capacity of 0 and a maximum capacity
of 1.

j to i different from [j, i], and val = min({uij} ∪ {upq s.t. (p, q) ∈ P}). Then
we can define the function f on the arcs of G such that fpq = val if P contains
(p, q) or (p, q) = (i, j) and fpq = 0 otherwise. This function is a flow in G. (The
conservation law is obviously satisfied because (i, j) and P form a cycle). We
have fij > 0, hence it is easy to increase the flow of an arc when all the lower
bounds are zero and when we start from the zero flow. It is, indeed, sufficient to
find a path satisfying the capacity constraint.

The main idea of the basic algorithms of flow theory, is to proceed by succes-
sive modifications of flows, that are computed in a graph in which all the lower
bounds are zero and the current flow is the zero flow. This particular graph can
be obtained from any flow and is called the residual graph:

Definition 2 The residual graph for a given flow f , denoted by R(f), is the
digraph with the same node set as in G. The arc set of R(f) is defined as follows:
∀(i, j) ∈ U(G):

• fij < uij ⇔ (i, j) ∈ U(R(f)) and upper bound capacity rij = uij − fij.
• fij > lij ⇔ (j, i) ∈ U(R(f)) and upper bound capacity rji = fij − lij.

All the lower bound capacities are equal to 0.

Figure 3 and Figure 4 are examples of flow and residual graph of the example
given in Figure 2.

Instead of working with the original graph G, we can work with the residual
graph R(fo) for some fo. From f ′ a flow in R(fo), we can obtain f another flow
in G defined by: ∀(i, j) ∈ U(G) : fij = fo

ij + f ′
ij − f ′

ji. And from a path in R(fo)
we can define a flow f ′ in R(fo) and so a flow in G:

Definition 3 We will say that f is obtained from fo by sending k units
of flow along a path P from j to i if:

• P is a path in R(fo)− {(j, i)}



• k ≤ min({rij} ∪ {ruvs.t.(u, v) ∈ P})
• f corresponds in R(fo) to the flow f ′ defined by:

• f ′
pq = k for each arc (p, q) ∈ P ∪ {(i, j)}

• f ′
pq = 0 for all other arcs.

If k is not mentioned it will be assumed that k = min({rij}∪{ruvs.t.(u, v) ∈ P})

In the previous definition the path must be different from [j, i], otherwise f ′ will
be the zero flow.

The following proposition shows that the existence of a path in the residual
graph is a necessary and sufficient condition:

Theorem 1 Let fo be any feasible flow in G, and (i, j) be an arc of G.
• There is a feasible flow f in G with fij > fo

ij if and only if there exists a
path from j to i in R(fo)− {(j, i)}.

• There is a feasible flow f in G with fij < fo
ij if and only if there exists a

path from i to j in R(fo)− {(i, j)}.

proof: see [79] p112. ⊙

♢ Maximum flow algorithm

Theorem 1 gives a way to construct a maximum flow in an arc (i, j) by
iterative improvement, due to Ford and Fulkerson:
Begin with any feasible flow f0 and look for a path from j to i in R(f0)−{(j, i)}.
If there is none, f0 is maximum. If, on the other hand, we find such a path P ,
then define f1 obtained from f0 by sending flow along P . Now look for a path
from j to i in R(f1) − {(j, i)} and repeat this process. When there is no such
path for fk, then fk is a maximum flow.

A path can be found in O(m), thus we have3:

Property 3 A maximum flow of value v in an arc (i, j) can be found from a
feasible flow in O(mv).

♢ Feasible flow algorithm

For establishing a feasible flow, several methods exist. For instance, it is pos-
sible to transform this problem into one in which all the lower bounds capacities
are equal to zero and searching for a particular maximum flow value for one arc.
(See [2] p 169.) However, there is a simple method which repeatedly searchs for
maximum flows in some arcs:
Start with the zero flow fo. This flow satisfies the upper bounds. Set f = fo,
and apply the following process while the flow is not feasible:
1) pick an arc (i, j) such that fij violates the lower bound capacity in G (i.e.
fij < lij).
2) Find P a path from j to i in R(f)− {(j, i)}.
3 This complexity comes from the integer capacities. In this case, the flow is augmented

by at least one for each iteration.



3) Obtain f ′ from f by sending flow along P ; set f = f ′ and goto 1)
If, at some point, there is no path for the current flow, then a feasible flow does
not exist. Otherwise, the obtained flow is feasible.

Property 4 Let kij be the infeasibility number w.r.t. the zero flow of each
arc (i, j) in G. We can find a feasible flow in G or prove there is none in
O(m

∑
(i,j)∈U(G) kij).

♢ Flow properties

The most interesting property for us is a Corollary of Theorem 1.

Corollary 2 Let fo be any feasible flow in G, and (i, j) be an arc of G. The
flow value fij is constant for any feasible flow f if and only if:

• there is no path from j to i in R(fo)− {(j, i)}; and
• there is no path from i to j in R(fo)− {(i, j)}.

We will also consider a specific case which is useful for our purpose:

Corollary 3 Let fo be any feasible flow in G, and (i, j) be an arc of G with
fo
ij = 0. The flow value fij is equal to 0 for any feasible flow f if and only if i

and j belong to two different strongly connected component of R(fo)

The search for strongly connected components can be done in O(m + n + d)
[144]. The advantage of this proposition is that all the arcs (i, j) with a constant
0 flow value can be identified by only one identification of the strongly connected
components in R(fo).

This corollary is used in the following way: suppose that i represents a vari-
able and j a value of i. Now, if the constraint is equivalent to the search of a
feasible flow in a graph which contain an arc from i to j iff j belongs to the
domain of i then if the corollary gives us a necessary and sufficient condition to
determine if (i, j) is consistent with the constraint.

This is exactly the reasoning used for the global cardinality constraint as we
will see later in this chapter.

Alldiff and Permutation Constraints (alldiff,permutation)

The alldiff constraint constrains the values taken by a set of variables to
be pairwise different. The permutation constraint is an alldiff constraint in
which |D(X(C))| = |X(C)|.

Definition 4 An alldiff constraint is a constraint C defined by
alldiff(X) = {τ s.t. τ is a tuple on X(C) and ∀ai ∈ D(X(C)) : #(ai, τ) ≤ 1}

This constraint is used in a lot of real world problems like rostering or re-
source allocation. It is quite useful to express that two things cannot be at the
same place at the same moment.



A filtering algorithm establishing arc consistency for the alldiff is given in
[108]. Its complexity is in O(m) with m =

∑
x∈X |D(x)|, after the computation

of the consistency of the constraint which requires O(
√
nm). When the domain of

the variables are intervals, [90] proposed a filtering algorithm establishing bound
consistency with a complexity which is asymptotically the same as for sorting
the internal endpoints. If the interval endpoints are from an integer range of
size O(nk) for some constant k the algorithm runs in linear time. Therefore,
Melhorn’s algorithm is linear for a permutation constraint. Lopes et al. [85]
have designed an original and simple algorithm having the same complexity. A
comparison between several algorithms is available in [142].

On the other hand, [81] has proposed an algorithm which considers that the
domains are intervals, but which can create “holes” in the domain, that is the
resulting domain will be union of intervals. His filtering algorithm is in O(n2d).

In the original paper, Régin’s filtering algorithm is based on matching theory,
but we can also use the flow theory in order to obtain almost the same algorithm.
We will not describe this algorithm here, because we prefer to detail a more
general constraint : the global cardinality constraint. From this constraint we
can immediately obtain a filtering algorithm for the alldiff constraint.

Global Cardinality Constraint (gcc)

A global cardinality constraint (gcc) constrains the number of times every
value can be taken by a set of variables. This is certainly one of the most useful
constraints in practice. Note that the alldiff constraint corresponds to a gcc
in which every value can be taken at most once.

Definition 5 A global cardinality constraint is a constraint C in which
each value ai ∈ D(X(C)) is associated with two positive integers li and ui with
li ≤ ui defined by
gcc(X, l, u) = { τ s.t. τ is a tuple on X(C)

and ∀ai ∈ D(X(C)) : li ≤ #(ai, τ) ≤ ui}

This constraint is present in almost all rostering or car-sequencing problems.

A filtering algorithm establishing arc consistency for this constraint has been
proposed by Régin [110]. The consistency of the constraint can be checked in
O(nm) and the arc consistency can be computed in O(m) providing that a maxi-
mum flow has been defined. Two other algorithms establishing bound consistency
for this constraint have been developed by Quimper et al. [103] and Katriel et
al. [71]. The first one is original whereas the second is an adaptation of Régin’s
algorithm [110].

We propose to describe Régin’s algorithm here.
This algorithm is mainly based on the following observation: a gcc C is

consistent iff there is a flow in a directed graph N(C) called the value network
of C [110]:



Definition 6 Given C = gcc(X, l, u) a gcc; the value network of C is the
directed graph N(C) with lower bound capacity and upper bound capacity on each
arc. N(C) is obtained from the value graph GV (C)4, by:

• orienting each edge of GV (C) from values to variables. For such an arc
(u, v): luv = 0 and uuv = 1.

• adding a node s and an arc from s to each value. For such an arc (s, ai):
lsai = li, usai = ui.

• adding a node t and an arc from each variable to t. For such an arc (x, t):
lxt = 1, uxt = 1.

• adding an arc (t, s) with lts = uts = |X(C)|.

Figure 3 and Figure 4 are examples of flow and residual graph of the example
of the gcc given in Figure 2.

Proposition 2 Let C be a gcc and N(C) be the value network of C; the fol-
lowing two properties are equivalent:

• C is consistent;
• there is a feasible flow in N(C).

sketch of proof: We can easily check that each tuple of T (C) corresponds to a flow
in N(C) and conversely. ⊙

From Corollary 3 we immediately have:

Proposition 3 Let C be a consistent gcc and f be a feasible flow in N(C). A
value a of a variable x is not consistent with C if and only if fax = 0 and a and
x do not belong to the same strongly connected component in R(f).

For our problem, a feasible flow can be computed in O(nm) therefore we have
the same complexity for the check of the constraint consistency. Moreover flow
algorithms are incremental.

The search for strongly connected components can be done in O(m + n +
d) [144], thus a good complexity for computing arc consistency for a gcc is
obtained.

Corollary 4 Let C be a consistent gcc and f be a feasible flow in N(C). Arc
consistency for C can be established in O(m+ n+ d).

Here is a recapitulation of the complexities:

Consistency Arc consistency
From scratch O(nm) O(m+ n+ d)
After k modifications O(km) O(m+ n+ d)

4 The value graph of a constraint C is the bipartite graph GV (C) =
(X(C), D(X(C)), E) where {x, a} ∈ E iff a ∈ D(x)



Cardinality Matrix Constraint (card-matrix)

This constraint has been proposed by Régin and Gomes [121].
Cardinality matrix problems are the underlying structure of several real world

problems such as rostering, sports scheduling, and timetabling. These are hard
computational problems given their inherent combinatorial structure. The car-
dinality matrix constraint takes advantage of the intrinsic structure of the car-
dinality matrix problems. It uses a global cardinality constraint per row and
per column and one cardinality (0,1)-matrix constraint per symbol. This lat-
ter constraint corresponds to solving a special case of a network flow problem,
the transportation problem, which effectively captures the interactions between
rows, columns, and symbols of cardinality matrix problems.

In order to show the advantage of this constraint, consider a restricted form
of the cardinality matrix problems: the alldiff matrix problem[59]. In this case,
each value has to be assigned at most once in each row and each column. The
alldiff matrix characterizes the structure of several real world problems, such as
design of scientific experiments or fiber optics routing. Consider the following
example: a 6x6 matrix has to be filled with numbers ranging from 1 to 6 (this is
a latin square problem). A classical model in CP consists of defining one variable
per cell, each variable can take a value from 1 to 6, and one alldiff constraint
per row and one alldiff constraint per column. Now, consider the following
situation:

1 2
2 1
3 4
4 5

• • • •
• • • •

In this case, the alldiff constraints are only able to deduce that:
• only the values 5 and 6 can be assigned to the cells (5, 3) and (6, 3)
• only the values 3 and 6 can be assigned to the cells (5, 4) and (6, 4).

However, with a careful study we can see that the value 6 will be assigned
either to (5, 3) and (6, 4) or to (5, 4) and (6, 3) this means that the other columns
of rows 5 and 6 cannot take these values and therefore we can remove the value
6 from the domains of the corresponding variables (the ones with a • in the
figure). The cardinality (0,1)-matrix, automatically performs these inferences.

Definition 7 A cardinality matrix constraint is a constraint C defined on a
Matrix M = x[i, j] of variables taking their values in a set V , and on two sets
of cardinality variables rowCard[i, j] and colCard[i, j] and
card-Matrix(M,V, rowCard, colCard) = { τ s.t. τ is a tuple on X(C)

and ∀ak ∈ V, ∀i ∈ Row(M) : #(ak, vars(i, ∗,M)) = rowCard[i, k]
and ∀ak ∈ V, ∀j ∈ Col(M) : #(ak, vars(i, ∗,M)) = colCard[j, k]}



If the matrix contains only (0,1)-variables then we say that we have a (0,1)-
matrix.

Régin and Gomes proposed an AC filtering algorithm for matrix variables
of the card-(0,1)-Matrix constraint by a similar method to the one used for
gccs[121]. A similar constraint, althrough expressed in a quite different way,
with the same kind of algorithm to establish arc consistency, is given in [74].

Experimental results have shown that the card-matrix constraint outper-
forms standard constraint based formulations of cardinality matrix problems.

Global Cardinality Constraint with Costs (cost-gcc)

A global cardinality constraint with costs (cost-gcc) is the conjunction of
a gcc constraint and a sum constraint:

Definition 8 A cost function on a variable set X is a function which as-
sociates with each value (x, a), x ∈ X and a ∈ D(x) an integer denoted by
cost(x, a).

Definition 9 A global cardinality constraint with costs is a constraint C
associated with cost a cost function on X(C), an integer H and in which each
value ai ∈ D(X(C)) is associated with two positive integers li and ui; and de-
fined by
cost-gcc(X, l, u, cost,H) = { τ s.t. τ is a tuple on X(C)

and ∀ai ∈ D(X(C)) : li ≤ #(ai, τ) ≤ ui

and Σ
|X(C)|
i=1 cost(var(C, i), τ [i]) ≤ H }

This constraint is used to model some preferences between assignments in
resource allocation problems.
Note that there is no assumption made on the sign of costs.

The integration of costs within a constraint is quite important, especially to
solve optimization problems, because it improves back-propagation, which is due
to the modification of the objective variable. In other words, the domain of the
variables can be reduced when the objective variable is modified. [38] have used
an alldiff constraint with costs, but only the consistency of the constraint has
been checked, and no specific filtering has been used. The first proposed filtering
algorithm comes from [49] and [50], and is based on reduced cost. A filtering
algorithm establishing arc consistency has been proposed by Régin [112, 114].
The consistency of this constraint can be checked by searching for a minimum
cost flow and arc consistency can be established in O(|∆|S(m,n + d, γ)) where
|∆| is the number of values that are taken by a variable in a tuple, and where
S(m,n+ d, γ)) is the complexity of the search for shortest paths from a node to
every node in a graph with m arcs and n nodes with a maximal cost γ.



3.3 Balancing Constraints

Pesant and Régin introduced the notion of balancing constraints [97].
Many combinatorial problems require of their solutions that they achieve

a certain balance of given features. Balance is often important in assignment
problems or in problems with an assignment component. We give a few examples.
In assembly line the workload of the line operators must be balanced. In rostering
we may talk of fairness instead of balance, because of the human factor. Here
we want a fair distribution of weekends off or of night shifts among workers,
for example. In vehicle routing one dimension of the problem is to partition the
customers into the different routes - balancing the number of customers served
on each route, the quantity of goods delivered, or the time required to complete
the route may be of interest.

We could describe the balance in the following way:
• the average value should be close to a given target, corresponding to the

ideal value;
• there should be no outliers, as they would correspond to an unbalanced

situation;
• values should be grouped around the average value.

Pesant and Régin claimed that statistics provide appropriate mathematical
concepts to express this concept and they proposed the first constraints based
on statistic: the spread constraint and bound consistency filtering algorithms
associated with it. Roughly, the spread constraint is defined on a set of nu-
merical variables and combines the mean of these variables with the standard
deviation. Schaus et al. noticed that this idea can be generalized to the concept
of Lp norm [130, 129, 131].

Definition 10 Let X = {x1, x2, ..., xn} be a set of n variables, µ be a variable,
L be a cost variable and the Lp(X,µ)-norm defined as Lp(X,µ) = [

∑n
i=1 |xi −

µ|p)]
1
p . The balance constraint is the constraint C defined on X, {µ} and L,

and associated with a value of p such that C holds if and only if Lp(X,µ) = L
and

∑n
i=1 xi = nµ where the different norm are:

• L0 = |{x ∈ X s.t. x ̸= µ is the number of values different from the mean
• L1 =

∑
x∈X |x− µ| is the sum of deviations from the mean

• L2 =
∑

x∈X(x− µ)2 is the sum of square deviations from the mean
• L∞ = maxx∈X |x− µ| is the maximum deviation from the mean

it is denoted by balance(X,µ,L, p)

Note that the balancing constraint considers the two sums simultaneously.
None of these balance criteria subsumes the others. For instance, the mini-

mization of L1 does not imply in general a minimization of criterion L2. This
is illustrated on the following example. Assume a constraint problem with four
solutions given in Figure 5. The most balanced solution depends on the chosen
norm. Each solution exhibits a mean of 100 but each one optimizes a different
norm. Choosing the "best" criteria is an old question which has no definitive
answer.



sol. num. solution L0 L1 L2 L∞

1 100 100 100 100 30 170 2 140 9800 70
2 60 80 100 100 120 140 4 120 4000 40
3 70 70 90 110 130 130 6 140 3800 30
4 71 71 71 129 129 129 6 174 5046 29

Fig. 5. Illustration showing that no balance criterion defined by the norm L0, L1, L2

or L∞ subsumes the others. The smallest norm is indicated in bold character. For
example, solution 2 is the most balanced according to L1.

Pesant and Régin considered the case where p = 2 and named the constraint
spread. They gave a bound consistency filtering algorithm for the X variables
in O(n2). Note that the spread constraint in its general form considers µ and L
(i.e. σ) as variables and not constant. Then, Schaus et al. proposed to simplify
the algorithm when µ is a given constant [130]. They also derived some other
filtering algorithms for L, X and µ. Having µ as a constant is quite frequent
in practice. However, this is not always the case, for instance when X variables
measures a slack or an overflow, the ideal should be to have no overflow, so 0 for
the mean, but we do not have negative x, because it has no practical meaning
(an underflow does not compensate an overflow).

Next, Schaus et al. studied the deviation constraint, that is the balance
constraint with p = 1 [129]. They proposed efficient bound consistency filtering
algorithms (in O(n)) when considering the mean as a constant value. Further
investigations and recent developments can be found in Schaus’s PhD thesis
[128].

3.4 Combination based Constraints

Max-SAT constraint (max-sat)

A lot of work have been carried out in order to improve the computation
of minimization of the number of violated constraints in an over-constrained
problem (Max-CSP).

Several algorithms have been designed. First, Partial Forward Checking [51],
which has been improved by PFC-DAC [156, 78], then by PFC-MRDAC [77]5.
The major drawback of these algorithms is that they are ad-hoc algorithms
based on a branch-and-bound procedure and they mainly consider only binary
constraints. Therefore, their integration into a CP Solver is not easy. Thus, Régin
et al. have proposed to define a constraint corresponding to this specific problem
like any other global constraint [122].

Definition 11 Let C = {Ci, i ∈ {1, . . . ,m}} be a set of constraints, cost(C) be
a set of cost variables associated with the constraints of C and unsat a variable.
5 This algorithm can be viewed as a generalization of the constructive disjunction in

the case where several constraints must be satisfied and not only one.



A Max-SAT constraint is a constraint ssc(C, cost(C), unsat) defined by the
conjunction of the constraint

unsat =
∑
C∈C

cost(C)

and the set of disjunctive constraints

{[(C ∧ (cost(C) = 0)) ∨ (C ∧ (cost(C) = 1))], C ∈ C}

It is denoted by max-sat(C)

Then Régin et al. integrated some classical algorithms defined for solving
over-constrained problem as filtering algorithm of this global constraint. Let
P = (X,D, C) be a constraint network.

Notation 1
• v∗(P ) is the number of violated constraints of P
• v(P ) is any lower bound of v∗(P )
• v∗((x, a), P ) is the number of violated constraints of P when x = a
• v((x, a), P ) is any lower bound of v∗((x, a), P )

Definition 12 Two sub-problems Q1 = (X,D,K) and Q2 = (X,D,L) of P are
constraint disjoint iff K ∩ L = ∅

Theorem 2 (Régin et al.) Given P = (X,D, C) a constraint network and Q
the set of sub-problems of P that are pairwise constraint disjoint then :

v∗(P ) ≥
∑
Q∈Q

v∗(Q) ≥
∑
Q∈Q

v(Q)

Then we have two corollaries:

Corollary 5 Let obj be a value. If
∑

Q∈Q v(Q) > obj then there is no solution
of P with v∗(P ) ≤ obj

Corollary 6 Let obj be a value and a be a value of a variable x involved in a
sub-problem Q of Q. If

∑
R∈(Q−Q) v(R) + v((x, a), Q) > obj then there is no

solution of P with v∗((x, a), P ) ≤ obj

This corollary will permit to remove some inconsistent values.
The main issue is the computation of a set Q and the choice of v(Q) for a

given problem Q.
Régin et al. noted that PFC-MRDAC algorithm proposes, in fact, to build

the set Q in the following way: we begin with the set of constraints K = C and
we order the variables (with any order). Then, we select the variable in that
order. When a variable x is selected we take all the constraints of K involving x



in order to create a sub-problem denoted by Q(x) and we remove from K these
constraints before considering the next variable.

From the specific construction of Q we obtain a value of v(Q) which is easy to
compute: since each sub-problem is defined from a variable x which is involved
in all the constraints of the sub-problem, we can compute for each value a of
x the number of constraints violated if x = a, and we define v(Q) as the value
having the smallest number of violations. This information can be maintained
efficiently.

Then several improvements of this integration, and so also of PFC-MRDAC
algorithm, have been proposed notably to deal efficiently with interval variables
[123, 99]. At last, a new algorithm based on conflict set has been proposed [123].
A conflict set is a set of constraints which is inconsistent.

Some information about this constraint can also be found in Régin’s HDR
thesis [118].

Or and And constraints (and,or)

Lhomme [83] studied the logical combination of constraints, sometimes called
meta-constraints because it noticed that although these constraints are extremely
useful for modelling problems, they have either poor filtering algorithms or are
not very efficient.

First, Lhomme considered the constraint or(C1, C2) which is satisfied if C1
is satisfied or if C2 is satisfied. He showed that the constructive disjunction (See
[150] for more information) establishes arc consistency for this constraint but
constructive disjunction is complex to implement and not very efficient. Hence
he proposed another algorithm much more efficient. It is based on the following
remarks:

• Let x be a variable involved in C1 and in C2. If we find a support for (x, a)
on C1 then it is useless to search for a support for (x, a) on C2 because (x, a)
satisfies the disjunction (i.e. has a support on at least one constraint)

• It is useless to search for supports for variables of X(C2) that are not in
X(C1), because C1 can be true and in this case all the values of these variables
are consistent with the or constraint. The same reasoning applied for variables
of X(C1) that are not in X(C2).

Therefore, Lhomme established the following Proposition:

Proposition 4 Let C =or(C1, C2) be the constraint equals to the disjunction
between the constraint C1 and the constraint C2. Then, C is arc consistent if
and only if the values of the variables of (X(C1) ∩X(C2)) are consistent either
with C1 or with C2.

Lhomme also addressed the constraint equivalent to the conjunctions of two
constraints C1 and C2. We have already mentioned the difference between estab-
lishing arc consistency for the constraints taken separately and for the constraint
C =and(C1, C2). Lhomme proposed an algorithm based on the simultaneous
search for support for the variables involved in both constraints. Unfortunately



such a search imposes the availability of some functions for each constraints
which is rarely the case. However, this is the case for table constraints given in
extension and Lhomme gave an algorithm for them.

The principles given in this section can be easily generalized to combinations
of several constraints and not only two.

3.5 Sequencing Constraints

Sequencing constraints are useful in rostering or car sequencing problems to con-
strains the number of time some values are taken by any group of k consecutive
variables. For instance, they are used to model that on an assembly line, at most
one car over three consecutive cars can have a sun roof. They are based on a
conjunction of among constraints, which are defined as follows

Among Constraint (among)

Definition 13 Given X a set of variables, l and u two integers with l ≤ u and
V a set of values. The among constraint ensures that at least l variables of X
and at most u will take a value in V , that is
among(X,V, l, u) = {t | t is a tuple of X and l ≤

∑
a∈V #(a, τ) ≤ u}

This constraint has been introduced in CHIP [17].
It is straightforward to design a filtering algorithm establishing arc consis-

tency for this constraint. For instance, we can associate with each variable xi

of X a (0, 1) variable yi defined as follows: yi = 1 if and only if xi = a with
a ∈ V . Then the constraint can be rewritten l ≤

∑
yi ≤ u. Note that the among

constraint is sometimes directly defined in that way, that is by involving only
this set Y of (0, 1) variables.

The sequence constraint is a conjunction of gliding among constraints.

Sequence Constraint (sequence)

Definition 14 Given X a set of variables, q, l and u three integers with l ≤ u
and V a set of values. The sequence constraint holds if and only if for 1 ≤ i ≤
nq + 1 among({xi, ..., xi+q−1}, V, l, u) holds. More precisely
Sequence(X,V, q, l, u) = { t | t is a tuple of X and for each sequence S

of q consecutive variables: l ≤
∑

v∈V #(v, t, S) ≤ u}

This constraint has been introduced in CHIP [17].
Several filtering algorithms have been proposed for this constraint. First, it is

possible to use only the set of overlapping among constraints, but this does not
lead to efficient domain reductions. The card-path constraint of Beldiceanu
and Carlsson can also be used [10]. However, the filtering algorithm does not
establish arc consistency. Some pseudo polynomial algorithms for establishing
have been designed. Bessiere et al. [27] gave a domain consistency propagator
that runs in O(nqdq) time. van Hoeve et al. [153] proposed an encoding into a



regular constraint which runs in O(n2q) time. The first strongly polynomial
algorithm (in O(n3)) establishing arc consistency has been proposed by van
Hoeve et al. [153, 154]. Then, several algorithms with different complexities have
been introduced by Brand et al. [33] and, at last, a very nice model leading to
the best filtering algorithm is described in [87]. We propose to describe quickly
some of these algorithms because it is rare to obtain several algorithms while
using different approaches, and this could be useful for some other constraints.

For the sake of clarity, we will use the two equivalent representations of the
among constraint. The one using the X variable set and the other using the Y
variable set.

First, van Hoeve et al. [153] remarked that when l is equal to u then arc
consistency can be established in linear time. In this case, in any solution xi will
be equal to xi+q because two among constraints ensure that yi + ...yi+q−1 = l
and yi+1+ ...yi+q = l. So, by adding these new equality constraints and by using
the filtering algorithm associated with each among constraint, arc consistency
will be established by the propagation mechanism.

Then, three strongly polynomial filtering algorithms establishing arc consis-
tency have been proposed. They are based on different concepts: cumulative
sum, difference constraint and flow.

Filtering Algorithm based on cumulative sum

A set of n + 1 new variables si are introduced. A variable si correspond to
the sum of the yj variables for j = 1 to i. The S variables are encoded as follows:
s0 = 0 and si = yi + si−1. Then, the constraints sj ≤ sj+q − l and sj+q ≤ sj + u
for 1 ≤ j ≤ n − q + 1 are added to the model. Brand et al. [33] have proposed
this model and shown that enforcing singleton bound consistency on these vari-
ables establishes arc consistency for the sequence constraint. In addition, they
proved that the complexity of maintaining arc consistency on a branch of the
tree search is in O(n3). This model is also a reformulation (and an improvement)
of the first filtering algorithm establishing arc consistency in polynomial time of
van Hoeve et al. [153, 154].

Filtering Algorithm based on difference constraint

This approach uses difference constraints, that is constraints of the form
S ≤ S′ + d, for encoding the sequence constraint. It has been proposed by
Brand et al. [33] and it uses the S variables like in the previous approach,
but the constraint si = yi + si−1 is replaced by the two equivalent constraints
si−1 ≤ si ≤ si−1+1 and yi ⇔ si−1 ≤ si−1. The consistency of a set of distance
constraints can be checked by searching for the presence of negative cycle in
a graph (see [42] or [39] section 24.4). Thus, an AC filtering algorithm can be
simply derived by using the current assignment of the Y variables in order to
define the set DC of distance constraints. After checking the consistency of DC,
the boundaries of the Y variables are explicitly tested. That is, if DC implies



that si−1 ≤ si−1 then yi = 1 and if DC implies that si ≤ si−1 then yi = 0. The
authors show that this FA can be maintained during the search with a complex-
ity on a branch of the tree search in O(n2 log(n)).

Filtering Algorithm based on flow

W1 W2 W3 W4 W5 W6

TB T12 T23 T34 T45 T56 TE

s

t

Fig. 6. The graph associated with a sequence problem.

This clever approach has been proposed in [87]. The idea is to represent
a sequence constraint by an integer linear program formed by the among
constraints it contains. Then, the specific structure of the obtained matrix (it
has the consecutive ones property for the column) is exploited and the model
is transformed into a network flow problem. Thus, the computation of some
properties of the flow problem, like the constant arc for all feasible flow, leads to
an AC filtering algorithm. This approach has two main advantages: the problem



is just transformed into a flow problem and so there is no need to write any
specific algorithms, and the complexity is reduced. This FA, indeed, can be
maintained during the search with a complexity on a branch of the tree search
in O(n2). Maher et al. use an existing transformation from matrix having the
consecutive ones property to a network flow problem. This transformation is
explained in [2] and leads to a flow which is not really easy to understand. We
propose here to try to directly explain the obtained flow.

Consider the following problem: 9 variables from x1 to x9, a sequence of
width 4, l = 1, and u = 3, meaning that at least one variable and at most 3
variables of each sequence of 4 consecutive variables must be set to 1. Figure 6.
The graph on which the flow is built as follows:
First we define the nodes:

• we create a source s and a sink t.
• we create as many W-nodes as there are complete sequences. For the

example, we have 6 complete sequences, so we create 6 W-nodes: w1, ..., w6. A
W-node is a windows node and corresponds to a sequence. Node W1 represents
the sequence x1, x2, x3, x4, node W2 the sequence x2, x3, x4, x5 etc...

• we create as many T-nodes as there are non empty intersection between
consecutive W-nodes and we add 2 special T-nodes: TB and TE. A T-node is a
transition node and represents what two W-nodes have in common. Node T12
corresponds to the W-nodes W1 and W2, node T23 corresponds to the W-nodes
W2 and W3 etc... Node TB corresponds to the beginning of the sequence and
node TE to the end of the sequence
Then, we define the arcs:

• there is an arc from t to s (not represented in Figure 6).
• there is an arc between s and each W-node. The required quantity of flow

(i.e. the flow must be equal to this value) in each arc is [u− l] corresponding to
the slack we have for sequence from the minimum (i.e. l).

• there is an arc from each T-node but TB to t. The required quantity of
flow in each arc is [u− l] corresponding to the slack we have a sequence from the
minimum (i.e. l), except for TE for which the required quantity of flow is u.

• there is an arc between s and TB. The required quantity of flow in this
arc is l. The idea is that each sequence must have at least l units of flow. TB is
used to receive this quantity and then to transmit it to the other T-nodes.

• there is an arc between any W-node and the two T-nodes associated with
it. Node Wi is linked to T-node T (i − 1)i and node Ti(i + 1). W1 is linked to
TB and T12 and W6 is linked to T5 and TE. All these arcs have are (0,u-l) arcs
(the flow traversing them has a value in [0, u− l]).

• there are arcs between T-nodes. Each T-node Ti(i + 1), except TB and
TE, has one entering arc and one leaving arc. The entering arc represent the
variable which is in Wi but not in W (i + 1) and the leaving arc represents the
variable which is in W (i+ 1) and not in Wi. For instance, the arc from T12 to
T56 represents variable x5. TB has 4 leaving arcs corresponding to the 4 first
variables x1, x2, x3, x4 and TD has 4 entering arcs corresponding to the 4 last
variables x6, x7, x8, x9. All these arcs are (0,1) arcs and their flow value corre-



sponds to the value of the variable in any solution.

Now, a feasible flow in this graph corresponds to a solution of the problem.
The intuitive idea is that we send the minimum unit of flow TB and this quantity
of flow will be propagated to the sequences thanks to arcs defined by x variables.
The arcs leaving s and entering t are used to ensure the flow conservation and
to express the fact that some sequences have more 1 than others. Then arc
consistency of the variables x is computed by searching for constant values for
the arcs corresponding to these variables, which can be done thanks to Corollary
2 (See Flow Properties).

Figure 7 shows an example of feasible flow for some values of x variables.
The arc having a constant flow value equal to 0 have been removed.

W1 W2 W3 W4 W5 W6

TB T12 T23 T34 T45 T56 TE

s

t

2 1 1 2 1 1 2 0,11,2 0,1

Fig. 7. A feasible flow when x1 = 0,x2 = {0, 1},x3 = 0,x4 = 0,x5 = 1,x6 = {0, 1},x7 =
1,x8 = 1,x9 = {0, 1}. The arcs that cannot carry any unit of flow in any feasible flow
have been removed. Number indicates the flow value. There are separated by comma
when there are several possible flow values for other solutions



Some experiments given in [33, 87] show that the algorithms based on cumu-
lative sums and the flows are the best in practice. The latter one seems to be
more robust.

Some generalizations or variations of the sequence constraint have also been
studied.

Generalized Sequence Constraint (gen-sequence)

This constraint generalizes the sequence constraint by adding some other
among constraints. These among constraints must be defined using the same
set of value V than the sequence.

Definition 15 Given an ordered set of variables X, a set of ordered subset of X
(i.e subset of consecutive variables of X) Q where each subset Qi is associated
with two numbers li and ui and V a set of values. The generalized sequence
constraint constraint holds if and only if for each Qi ∈ Q among(Qi, V, li, ui)
holds. More precisely
gen-sequence(X,V,Q, {li}, {ui}) = { t | t is a tuple of X and ∀Qi ∈ Q

li ≤
∑

v∈V #(v, t,Qi) ≤ ui}

This constraint has been proposed by van Hoeve et al. [153]. The authors
gave a filtering algorithm establishing arc consistency for it, whose complexity is
in O(n4). This algorithm is based on the same idea as the cumulative sum for the
sequence constraint. However, Maher et al. [87] also considered this constraint
in order to try to apply the modeling idea of representing the constraint by a
flow. Sometimes, the obtained matrix satisfies the consecutive one property (See
[2]) and the method can be applied and so a quadratic AC filtering algorithm
exists. It is also possible that the matrix will satisfy the consecutive one property
if the subset of X are reordered. Such a result can be obtained in polynomial
time (see [87]). However, for some matrices it will not be possible to obtain
the desired property. In this case, an encoding based on difference can be used
leading to an AC Filtering algorithm whose complexity is in O(nm+ n2 log(n))
for any branch of the tree search, where m is the number of elements of Q.

Global Sequencing Constraint (gsc)

The global sequencing constraint (gsc) has been designed mainly to try to
solve some car sequencing instances. It combines a sequence constraint and
global cardinality constraints.

A global sequencing constraint C is specified in terms of a ordered set of
variables X which take their values in D, some integers q, min and max and a
given subset V of D. On one hand, a gsc constrains the number of variables in
X instantiated to a value vi ∈ D to be in an interval [li, ui]. On the other hand,
a gsc constrains for each sequence Sj of q consecutive variables of X(C), that
at least min and at most max variables of Sj are instantiated to a value of V .



Definition 16 Given X an ordered set of variables, m,M, q three positive inte-
gers, a set of values D in which each value ai ∈ D is associated with two positive
integers li and ui, and a set of values V . The global sequencing constraint
is defined by
gsc(X,D, {li}, {ui}, V,m,M, q) = { t | t is a tuple of X

and ∀ai ∈ D : li ≤ #(ai, t) ≤ ui

and for each sequence S of q consecutive
variables: m ≤

∑
vi∈V #(vi, t, S) ≤ M}

This constraint has been proposed by Régin [124].
It arises in car sequencing or in rostering problems. A filtering algorithm is

described in [124]. It is based on the reformulation of the problem mainly using
flows and it has been implemented in ILOG Solver. Thanks to it, some prob-
lems of the CSP-Lib have been closed and a recent and nice experimental study
of [154] shows that this constraint leads to good results for solving some car
sequencing instances of the CSP-Lib. In fact 12 problems are solved by a CP
model only if this constraint is used.

About sequencing constraints, some other combinations of among constraints
with or without cardinality constraints have been considered. For instance, Ré-
gin [119] studied several combinations of among constraints. He mainly showed
that in general a combination of among constraints is an NP-Complete problem.
Nevertheless, if the among constraints are pairwise value disjoint (i.e. the set of
values associated with each among constraint are disjoint), then it is possible
to represent the set of among constraints by a unique gcc and so to obtain
a polynomial AC filtering algorithm. In addition, Régin proposed some kind of
shaving or singleton arc consistency to improve the combination of among and
cardinality constraints. He applied his result to the inter-distance constraint.

At last, we need to mention two other variations of the sequencing constraints
have been recently considered: the multiple sequence and the sliding-sum. The
multiple sequence has been introduced in [33] and combines several sequence
constraints provided that the values counted by each sequence are pairwise
disjoint. Then, an AC filtering algorithm based on the regular constraint has
been proposed. The sliding-sum has been introduced by Beldiceanu [9] and is
a generalization of the sequence constraint to non (0,1) variables, that is the
sum of variable is directly considered. An efficient bound consistency filtering
algorithm has been proposed for this constraint in [87].

3.6 Distance Constraints

Inter-distance Constraint (inter-distance)

Régin [111] introduced, under the name "Global Minimum Constraint", a
constraint defined on X a set of variables stating that for any pair of variables
x and y of X the constraint |x− y| ≥ k is satisfied. This constraint is mentioned
in [63].



Definition 17 An inter-distance constraint is a constraint C associated with
an integer k and defined by
inter-distance(k) = { τ s.t. τ is a tuple of X(C)

and ∀ai, aj ∈ τ : |ai − aj | ≥ k}

This constraint is present in frequency allocation problems or in scheduling prob-
lems in which tasks require p contiguous units of resource to be completed.
A filtering algorithm has been proposed for this constraint [111]. Note that there
is a strong relation between this constraint and the sequence constraint. An
1/q sequence constraint constrains two variables assigned to the same value to
be separated by at least q− 1 variables, in regard to the variable ordering. Here,
we want to select the values taken by a set of variables such that are all pairs of
values are at least k units apart.

Then, a bound consistency algorithm has been proposed by Artiouchine and
Baptiste [5, 6]. This algorithm runs in O(n3). It has been improved later by
Quimper et al. [102] for running in O(n2).

Sum and Binary Inequalities Constraint (sum-ineq)

This constraint is the conjunction of a sum constraint and a set of distance
constraints, that is constraints of the form xj − xi ≤ c.

Definition 18 Let SUM(X, y) be a sum constraint, and Ineq be a set of binary
inequalities defined on X. The sum and binary inequalities constraint is a
constraint C associated with SUM(X, y) and Ineq defined by:
sum-ineq(X, y, Ineq) = { τ s.t. τ is a tuple of X ∪ y

and (
∑|X|

i=1 τ [i]) = τ [y]
and the values of τ satisfy Ineq }

This constraint has been proposed by Régin and Rueher [125]. It is used to
minimize the delays in scheduling applications.
Bound consistency can be computed in O(n(m+n log n)), where m is the number
of inequalities and n the number of variables. It is also instructive to remark that
the bound consistency filtering algorithm still works when y = Σi=n

i=1 αixi where
αi are non-negative real numbers.

3.7 Geometric Constraints

The most famous geometric constraint is the diff-n constraint. We quote [17]:
“The diff-n constraint was introduced in CHIP in order to handle multi-dimensional
placement problems that occur in scheduling, cutting or geometrical placement
problems. The intuitive idea is to extend the alldiff constraint which works on
a set of domain variables to a nonoverlapping constraint between a set of objects
defined in a n-dimensional space.”



Definition 19 Consider R a set of multidirectional rectangles. Each multidi-
rectional rectangle i is associated with 2 set of variables Oi = {oi1, .., oin} and
Li = {li1, .., lin}. The variables of Oi represent the origin of the rectangle for
every dimension, for instance the variable oij corresponds to the origin of the
rectangle for the jth dimension. The variables of Li represent the length of the
rectangle for every dimension, for instance the variable lij represents the length
of the rectangle for the jth dimension.
A diff-n constraint is a constraint C associated with a set R of multidirectional
rectangles, such that:
diff-n(R) = { τ s.t. τ is a tuple of X(C)

and ∀i ∈ [1,m],∀j ∈ [1,m], j ̸= i,∃k ∈ [1, n]
s.t. τ [oik] ≥ τ [ojk] + τ [ljk] or τ [ojk] ≥ τ [oik] + τ [lik]}

This constraint is mainly used for packing problems. In [20], an O(d) fil-
tering algorithm for the non-overlapping constraint between two d-dimensional
boxes and so a filtering algorithm for the non-overlapping constraint between
two convex polygons are presented.

Some other geometric constraints, often based on the notion of non-overlapping
objects, have been studied. More information can be found in [20, 11, 25, 1].

3.8 Summation based Constraints

Some variations of constraints based on the summation problems have been pro-
posed. Trick proposed, under the name "knapsack constraint", a subset-sum
constraint whose filtering is pseudo polynomial and based on dynamic program-
ming [145, 146]. This paper triggered some other researches like Pesant’s one on
regular constraints. Then, Shaw introduces another filtering algorithm which
is polynomial but not characterized [138]. This means that we don’t have a prop-
erty defining the values that are removed by the algorithm. On the other hand,
Fahle and Sellmann introduced a knapsack constraint involving an objective
to maximize (the profit) [48]. This constraint is closer to the original knapsack
problem whereas the Trick’s one is more related to the subset sum problem.

Subset-Sum Constraint (subset-sum)

The subset sum problem is: given a set of integers, does the sum of some
non-empty subset equal exactly zero? For example, given the set -7, -3, -2, 5,
8, the answer is yes because the subset -3, -2, 5 sums to zero. The problem
is NP-Complete. Trick proposed to consider the following variations: given a
set of 0-1 variables X = {x1, ..., xn} where each variable xi is associated with a
coefficient αi and L and U tow bounds, find an assignment of variables such that
L ≤

∑
xi∈X αixß ≤ U . For the sake of clarity we will use the name subset-sum

constraint for the Trick’s knapsack constraint.

Definition 20 A Subset-Sum constraint is a constraint C defined on 0-1
variables and associated with a set of n = |X(C)| coefficients : A = {α1, ..., αn}



and two bounds L and U such that
subset-sum(X,A,L,U) = { τ s.t. τ is a tuple of X(C)

and L ≤ Σn
i=1αiτ [i]) ≤ U }

Trick proposed to use the classical dynamic programming approach to check
whether the constraint is consistent or not. We reproduce some parts of his
presentation:
Define a function f(i, b) equals to 1 if the variables x1, ...xi can fill a knapsack of
size b and 0 otherwise, with i = 1..n and b = 0..U . We define then the dynamic
programming recursion as follows :

• f(0, 0) = 1
• f(i, b) = max(f(i− 1, b), f(i− 1, b− αi))

The second point means that there are two possibilities to have f(i, b) equals
to 1: either f(i− 1, b) is equal to 1 and if we set xi to 0 then f(i, b) will also be
equal to 1, or f(i−1, b−αi) is equal to 1 and then by setting xi to 1 we increase
b− αi to b and f(i, b) will also be equal to 1.
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Fig. 8. On the left, the knapsack (or subset-sum) graph proposed by Trick [146] for
the constraint 10 ≤ 2x1 +3x2 +4x3 +5x4 ≤ 12. On the right, the resulting graph after
establishing arc consistency

Then, Trick introduced the idea of visualizing these recursion equations as a
network with one node for every (i, b) and edges going from (i − 1, b) to (i, b′)



that is between nodes with a 1 value of f (See Figure 8: an horizontal edge from
(i−1, b) to (i, b) corresponds to the assignment xi = 0 and an edge from (i−1, b)
to (i, b+ αi) corresponds to the assignment xi = 1).

Trick proved that:

• The consistency of the constraint is equivalent to the existence of a path
from the node (0, 0) to the nodes (4, 10), (4, 11) or (4, 12), because L = 10 and
U = 12.

• Any node which does not belong to such a path can be removed from
the graph, and once all these nodes have been deleted then the value (xi, 0) is
consistent iff there exists a b and an arc from (i − 1, b) to (i, b) and the value
(xi, 1) is consistent iff there exists a b an an arc from (i− 1, b) to (i, b+ αi).

Figure 8 gives an example of such pruning.

Trick gave an algorithm establishing arc consistency whose space and time
complexity is in O(nU2), thus pseudo-polynomial.

We can show that there is no need of an extra filtering algorithm and that
this complexity can be reduced. In fact, we can reformulate the problem with a
set of binary constraints in a way similar as the one used by Beldiceanu et al. [15]
for reformulating automaton based constraints. For i = 1..n, a binary constraint
at the level i is simply defined by: (Si = Si−1 OR Si = Si−1 + αi). In the
constraint definition the initial and the final summations are added: S0 = 0 and
L ≤ Si ≤ U . This reformulation satisfies Corollary 1 (See Preliminaries section)
therefore establishing AC on this reformulation corresponds to establish AC on
the subset-sum constraint. It is not difficult to maintain AC for each constraint
of the form (Si = Si−1 OR Si = Si−1+αi). The complexity depends on the size of
the domain and the number of allowed combinations for each constraint. Clearly
each value v of Si has at most 2 compatible values v and v − αi, so there are
2U allowed tuples per constraint. Thus, by Proposition 1 on the complexity for
establishing arc consistency for table constraint, we can establish and maintain
AC for this constraint with a time complexity in O(2×2U) = O(U). Since there
are n constraints the overall complexity if O(nU).

Note that this reformulation can be improved. For instance, we can add the
constraint Si ≤

∑i
j=1 αi.

We could also benefit from this representation and easily deal with non bi-
nary variables by adding some other OR parts into the binary constraints or
by changing the reformulation in order to use ternary constraints of the form
(Si−1, Xi, Si) where Si = Xi×αi+Si−1 instead of binary constraints. The overall
complexity is multiplied by d, that is the size of the domains.

At last, we need to mention that Shaw [138] gave another filtering algorithm
for the subset-sum constraint. Unfortunately, his algorithm is too much complex
to be included here.



Knapsack Constraint (knapsack)

Fahle and Sellmann proposed to study the constraint corresponding to the
classical knapsack problem [48].

The knapsack problem is defined as follows: Given a set of items, each with a
weight and a profit, determine the number of each item to include in a collection
so that the total weight is less than a given limit and the total profit is as large
as possible.

Definition 21 A knapsack constraint is a constraint C defined on 0-1 vari-
ables where xi is the variable representing the belonging of item i to the knapsack,
and associated with a set of n = |X(C)| integer weights : W = {w1, ..., wn}, a
set of n integer profits P = {p1, ..., pn} and a capacity K and a lower bounds B
such that
knapsack(X,W,P,K,B) = { τ s.t. τ is a tuple of X(C)

and Σn
i=1wiτ [i] ≤ K and Σn

i=1piτ [i] ≤ B }

The knapsack problem is NP-hard in general, therefore, Fahle and Sellmann
do not propose to establish AC but give a weaker filtering algorithm having
a low complexity. Then, Sellman in collaboration with some other researchers
improved some aspects of the algorithm [133, 135, 70].

The algorithm is mainly based on a nice observation made by Dantzig [41]:
Unlike the integer problem, the fractional problem is easy to solve:

• First, we arrange the items in non-decreasing order of efficiency, that is
we assume that p1/w1 ≥ p2/w2 ≥ ... ≥ pn/wn.

• Then, we select the most efficient item until doing so would exceed the
capacity K. When this point is reached we have reached the critical item de-
noted by s (and represented by the variable xs) such that

∑s−1
i=1 wj ≤ K and∑s−1

i=1 wj + ws > K. If we put the maximum fraction of xs that can fit into
the knapsack (K −

∑s−1
i=1 wj) then we obtain an optimal solution whose profit is

P̂ =
∑s−1

j=1 pj +
ps

ws
(K −

∑s−1
i=1 wj).

We will denote by relax(C), the fractional version of the knapsack con-
straint C and by P̂ (relax(C)) the optimal profit of the relax(C). Fahle and
Sellmann defined the following property:

Property 5 Let i be an item and xi the 0-1 variable associated with it.
• If P̂ (relax(C ∧ (xi = 0)) < B then xi = 1 (because without xi we cannot

reach the minimum of the required profit) and i is named a mandatory item.
• If P̂ (relax(C ∧ (xi = 1)) < B then xi = 0 (because by imposing item i we

cannot reach the minimum of the required profit)6 and i is named a forbidden
item.

6 Note that imposing an item means that the problem is equivalent to the problem
where the item is ignored and K becomes K − wi and B becomes B − pi.



In order to apply these rules as quickly as possible, Fahle and Sellmann iden-
tified all the items satisfying the previous property in linear time plus the time
to sort the items by weight.

First, for each item i, they define si the critical item of relax(C ∧ (xi = 0)).
Then, they made two observations:

• If s is the critical item of relax(C) then the item from 1 to s− 1 are not
forbidden and the items from s+ 1 to n are not mandatory.

• If, for two items i and j we have wi ≤ wj then si ≤ sj .

Hence, if we traverse the items of {1, ..., s} by non-decreasing weight, then
all si items can be identified by a single linear scan of the items of {s, ...n},
because the search for the next critical item can begin at the location of the
current critical item, and it always proceeds in one direction. If we constantly
keep track of the sum of weights and the sum of profits of all items up to the
current critical item, then we only need linear time to determine all mandatory
elements.

Similarly, for each item i, we can define si the critical item of relax(C∧(xi =
1)). And we can show that if we traverse the items in {s, ..., n} by non-decreasing
weight, each critical item is always to the left of the previous critical item and
we can identify the all forbidden elements with a single linear scan.

Sellmann [133] noticed that the same result can be obtained by sorting the
items by non-increasing efficiency (i.e ei = pi/wi). This approach avoids the
double sort of the items.

In addition, Katriel et al. [70] proved that if i and j are two items with
i ≤ j ≤ s and such that ei ≥ ej and wi ≥ wi then if i is not mandatory then j
is not mandatory. They proposed a (complex) algorithm based on this idea.

3.9 Packing Constraints

We propose to study different kinds of packing constraints, that is constraints
which impose conditions on how items can be grouped together, for instance by
pair or by limiting the number of consecutive variables having the same value.

Symmetric Alldiff Constraint (sym-alldiff)

The symmetric alldiff constraint constrains some entities to be grouped by
pairs. It is a particular case of the alldiff constraint, a case in which variables
and values are defined from the same set S. That is, every variable represents
an element e of S and its values represent the elements of S that are compatible
with e. This constraint requires that all the values taken by the variables are
different (similar to the classical alldiff constraint) and that if the variable
representing the element i is assigned to the value representing the element j,
then the variable representing the element j is assigned to the value representing
the element i.



Definition 22 Let X be a set of variables and σ be a one-to-one mapping from
X ∪D(X) to X ∪D(X) such that
∀x ∈ X: σ(x) ∈ D(X); ∀a ∈ D(X): σ(a) ∈ X and σ(x) = a ⇔ x = σ(a).
A symmetric alldiff constraint defined on X is a constraint C associated
with σ such that:
sym-alldiff(X,σ) = { τ s.t. τ is a tuple on X

and ∀a ∈ D(X) : #(a, τ) = 1
and a = τ [index(C, x)] ⇔ σ(x) = τ [index(C, σ(a))]}

This constraint has been proposed by Régin [113]. It is useful to be able
to express certain items that should be grouped as pairs, for example in the
problems of sports scheduling or rostering. Arc consistency can be established
in O(nm) after computing the consistency of the constraint which is equivalent
to the search for a maximum matching in a non-bipartite graph, which can be
performed in O(

√
nm) by using the complex algorithm of [91].

In [113], another filtering algorithm is proposed. It is difficult to characterize
it but its complexity is O(m) per deletion. In this paper, it is also shown how
the original problem can be solved by usigne the classical alldiff constraint
and some other additional constraints. The comparison between this approach,
the sym-alldiff constraint, and the alldiff constraint has been carried out
in [62].

Stretch Constraint (stretch)

This constraint has been proposed by Pesant [94]. It can be seen as the
opposite of the sequence constraint. The stretch constraint aims to group
the values by sequence of consecutive values, whereas the sequence is often used
to obtain a homogeneous repartition of values.

A stretch constraint C is specified in terms of an ordered set of variables
X(C) = {x1, ..., xp} which take their values in D(C) = {v1, ..., vd}, and two set
of integers l = {l1, ..., ld} and u = {u1, ..., ud}, where every value vi of D(C) is
associated with li the ith integer of L and ui the ith integer of U . A stretch
constraint states that if xj = vi then xj must belong to a sequence of consecutive
variables that also take value vi and the length of this sequence (the span of the
stretch) must belong to the interval [li, ui].

Definition 23 A stretch constraint is a constraint C associated with a subset
of values V ⊆ D(C) in which each value vi ∈ D(C) is associated with two positive
integers li and ui and defined by
stretch(X,V, {li}, {ui}) = { t s.t. t is a tuple of X(C)

and ∀xj ∈ [1..|X(C)|], (xj = vi and vi ∈ D(C))
⇔ ∃p, q with q ≥ p, q − p+ 1 ∈ [li, ui]
s.t. j ∈ [p, q] and ∀k ∈ [p, q] xk = vi}

This constraint is used in rostering or in car sequencing problems (especially
in the paint shop part).



A filtering algorithm has been proposed by Pesant [94]. The case of cyclic se-
quence (that is, the successor of the last variable is the first one) is also taken into
account by this algorithm. Its complexity is in O(m2max(u)max(l)). Pesant also
described some filtering algorithms for some variations of this constraint, notably
one that deals with patterns and constrains the successions of patterns (that is
some patterns cannot immediately follow some other patterns). An AC filtering
algorithm based on dynamic programming and running in O(nd2), where n is
the number of variables and d the number of values, is described in [61].

Note that this constraint can be easily represented by an automaton and so
filtered by the techniques presented in the regular language based constraints
section, notably by reformulating it.

k-diff Constraint (k-diff)

The k-diff constraint constrains the number of variables that are different
to be greater than or equal to k.

Definition 24 A k-diff constraint is a constraint C associated with an integer
k such that
k-diff(X, k) = {τ s.t. τ is a tuple on X(C) and

|{ai ∈ D(X(C)) s.t. #(ai, τ) ≤ 1}| ≥ k}

This constraint has been proposed by Régin [109]. It is useful to model some
parts of over-constrained problems where it corresponds to a relaxation of the
alldiff constraint.
A filtering algorithm establishing arc-consistency is detailed in [109]. Its com-
plexity is the same as for the alldiff constraint, because the filtering algorithm
of the alldiff constraint is used when the cardinality of the maximum match-
ing is equal to k. When this cardinality is strictly greater than k, we can prove
that the constraint is arc consistent (see [109].)

Number of Distinct Values Constraint (nvalue)

The number of distinct values constraint constrains the number of distinct
values taken by a set of variables to be equal to another variable.

Definition 25 An number of distinct values constraint is a constraint C
defined on a variable y and a set of variables X such that
nvalue(X, y) = {τ s.t. τ is a tuple on X(C) and

|{ai ∈ D(X(C)) s.t. #(ai, τ) ≤ 1}| = τ [y]}

A filtering algorithm based on the search of a lower bound of the dominating
set problem [40] has been proposed by Beldiceanu [8]. When all the domains of
the variables are intervals this lead to an O(n) algorithm, if the intervals are
already sorted.



Bin packing constraint (bin-packing)

The bin packing problem is defined as follows: objects of different volumes
must be packed into a finite number of bins of capacity V in a way that minimizes
the number of bins used. Note that the problem can be viewed as the conjunction
of two problems: for any bin, the problem to be solved is a subset sum problem
and the goal is then to minimize the number of bins that are globally needed.

Shaw introduced the first constraint for one-dimensional bin packing [138]
under the name of "Pack constraint". This constraint is mainly based on prop-
agation rules incorporating knapsack-based reasoning. It also deals with lower
bounds on the number of bins needed.

The more detailed and complete document about bin packing constraint is
the PhD thesis of Schaus [128]. Some part of the following presentation is taken
from his thesis.

We consider here a version which is more general than the classical bin pack-
ing because we accept bins with different capacities.

Definition 26 Let m be a set of bins, L = {l1, ..., lm} be a set of loads (also
named capacities) such that each bin i is associated with the load li, I be a set
of n items, S = {s1, ..., sn} be a set of sizes such that each item j is associated
with the size sj A bin packing constraint is a constraint C defined on a set of
n variables whose values express the bins in which the corresponding item may
be placed, such that
bin-packing(X,L, S,m) = { τ s.t. τ is a tuple of X(C)

and ∀b = 1..m Σn
i=1((τ [i] = b)× si) ≤ lb }

When the capacities (i.e. loads) are large, Sellmann proposes in [133] to
palliate the pseudo-polynomial time by weakening the propagation strength by
dividing down item sizes and bin capacities.

The filtering algorithm proposed by Shaw essentially works separately on each
bin with a knapsack reasoning and detects non packable bins or non packable
items into bins. The relaxation is that an item can be used in more than one
bin.

Shaw also introduces a failure detection test based on fast bin-packing lower
bound algorithms, because the general problem can be relaxed to the classical
bin-packing problem with a fixed capacity (i.e all bins have the same capacity).

Hence bin-packing lower bounds can be very useful to detect quickly incon-
sistencies by comparing the lower bound to the number of available bins m. If
the lower bound is larger than m in the reduced problem, then the constraint
fails.

In order to be able to integrate the items that have been already packed into
bins and the difference of capacities between items, Shaw proposed the following
reduction:

• take the maximum load Lmax as capacity for all the bins
• the set of items to be packed is U ∪ {a1, ..., am}, where

• U is the set of unassigned items



• for each bin i we create an item ai for taking into account the already
packed items into bin i and the fact that li may be smaller than Lmax. Let
Ri be the sum of the size of the items already packed into i. The size of ai is
Ri + Lmax − li.

Then, Shaw uses the Martello and Toth lower bound denoted L2 [89] to
compute a lower bound on the number of bins required. If this number is larger
than m then the constraint is not consistent. The bound L2 can be computed
in linear time when the items are sorted by non increasing sizes. Therefore the
complexity is n plus the time to sort the ai values.

Schaus proposed other lower bounds based on different approaches. First,
Schaus proposed to slightly modify the reformulation to the standard bin packing
problem. Instead of considering for Lmax the largest capacity of the bins, he
proposed to considered the largest free space capacity of the bins (the size of the
already assigned items are deduced from the maximum load of the bin). Then,
he investigated the possibility to use the recent lower bound L3 of Labbé et al.
[76].

At last and contrarily to Shaw who proposed to work on each bin separately,
Schaus proposed to consider the bins globally and to relax the belonging property
and to accept to split an item among several bins. His idea is emphasized on the
following example.

Consider 5 bins with capacity 5, and 11 items of size 1 and another of size 2
with the additional constraint that 9 items of size 1 and the item of size 2 can be
placed only in the bins 4 and 5. Clearly there is no solution because we need to
put 9 items of size 1 and 1 of size 2, that is a size of 11 in two bins whose added
capacity is only 10. Shaw’s algorithm is unable to detect this inconsistency.

Schaus used a network flow to detect such inconsistencies. More information
can be found in [128]. The algorithm is close to the one used to solve the pre-
emptive scheduling problem, hence this method is called filtering based on pre-
emption relaxation. Experimental results confirm the improvement of Schaus’s
method over Shaw’s one.

Shaus also considered a generalisation of the bin packing constraint which
incorporates precedence constraints between items. A precedence constraint be-
tween items a and a′ is satisfied if item a is placed in a bin Bi, and item a′ in a
bin Bj , with i < j. An original filtering algorithm dealing with that constraint
is detailed in [132].

3.10 Graph based Constraints

Some constraints are naturally defined as properties that a graph has to sat-
isfy, or as graph theory problems. These constraints are named graph based
constraints. They cause some problem of definition because it is often more con-
venient to define a graph variable (See [80] for the original introduction of the
concept or [117] and [44] for a more detailed presentation) but graph variables
are not classical CP variables.



Another possibility which is more convenient especially for mixing different
types of variables is to use the neighbour variables representation of a directed
graph G. It consists of a variable set X corresponding to the nodes of D (i.e.
xi is associated with the node i in G and conversely) such that the domain of a
variable xi is equivalent to the neighbours of i in G (i.e. j ∈ D(xi) ⇔ j ∈ N(i)
of G). If the graph is non oriented then this representation can also be used. In
this case we will have in addition j ∈ D(xi) ⇔ i ∈ D(xj).

Then, there is an equivalence between the cost of an edge in G and the cost
of a value of a variable (i.e. cost(i, j) = cost(xi, j)).

Cycle Constraint (cycle)

We present here only the "cycle/2" constraint. Here is the idea of this con-
straint [17]: “The cycle constraint was introduced in CHIP to tackle complex
vehicle routing problems. The cycle/2 constraint can be seen as the problem of
finding N distinct circuits in a directed graph in such a way that each node is vis-
ited exactly once. Initially, each domain variable xi corresponds to the possible
successors of the ith node of the graph.”

Definition 27 A cycle constraint is a constraint C associated with a positive
integer n and defined on a set X of variables, such that:
cycle(X,n) = { τ s.t. τ is a tuple of X(C)

and the graph defined from the arcs (k, τ [k])
has n connected components
and every connected component is a cycle}

This constraint is mentioned in the literature but no filtering algorithm is
explicitly given. It is mainly used for vehicle routing problems or crew scheduling
problems.

Path Constraint (path)

Some path constraints have been designed in existing solvers for a long time
now. However, until recently there were no publication about this constraint.
In our opinion, this comes from two facts. First, searching for a simple path
from a node i to a node j which traverses a given node k is an NP-Complete
problem! This means that it will be difficult to find a filtering algorithm able
to find some mandatory nodes. Second, the relaxation of the notion of simple
path for path leads to the simple filtering: let d(i, j) be the minimum distance
from node i to node j, then d(i, k)+ d(k, j) is a lower bound of the distance of a
simple path from i to j which traverses the node k. This lower bound can easily
be modelled by the constraint d(i, k) + d(k, j) ≤ d(i, j). This filtering has been
used for solving a lot of problems, for instance network design [80].

Motivated by scheduling applications where it is often critical to evaluate the
makespan or the earliest or latest completion time, Michel and Van Hentenryck



[92] addressed the problem of maintaining longest paths in directed acyclic graph
(DAG). This problem is also known as Dynamic Heaviest Path [68]. The Heaviest
Path problem or longest path problem is defined as follows: Given a DAG G =
(V,E) with a weight w(e) for each edge e, compute for each node v the weight
of the heaviest path from the source of G to v, where the weight of the path is
the sum of the weight of the edges it contains. Then the Dynamic Heaviest Path
problem or the Maintenance of Longest Path problem is to efficiently update
this information when a small change is performed on G. Efficient means that
the running time is proportional to the size of the portion of the graph that is
affected by the change. There is no constraint definition here, but principles are
close to the one used to maintain properties which is a common task in CP, hence
we mention these works. Several algorithms have been proposed and refined [92,
68, 69]. The best algorithm maintain the information in O(∥ δ ∥ +|δ| log(|δ|) for
arc insertion and O(∥ δ ∥) for arc deletion, where ∥ δ ∥ and |δ| measure the
change in the input and output. The same result has been obtained on graphs
whose cycles have strictly negative lengths.

Path Partitioning Constraint (path-partition)

Beldiceanu and Lorca [22] have proposed the path partitioning constraint
which is defined as follows:

Definition 28 A path partitioning constraint is a constraint C defined on
X, the neighbour variable representation of a digraph D = (V,A), and associated
with an integer k and a set T ⊆ V of potential final nodes such that
path-partition(X, k, T ) = { τ such that τ is a tuple on X(C)

and the digraph defined by τ is a set of
k connected components such that each one
is an elementary path that ends up in T .}

In general, the path partitioning problem is NP-Complete (even for k = 2).
However, for some cases the problem becomes polynomial, for instance for inter-
val graph. It is also polynomial for acyclic digraphs. In this case, the problem can
be transformed into a flow problem and it is possible to compute the minimum
number of paths partitioning the digraph by computing a minimum feasible flow.
The authors nicely exploited this idea to derive a filtering algorithm for this par-
ticular case. Then, they used the dominance theory to get a general necessary
condition for the path partitioning constraint.

Shorter Path Constraint (shorter-path)

Sellmann defined the shorter path constraint [134, 137]. This constraint searches
for paths whose length is smaller than a given threshold value.

Definition 29 A shorter path constraint is a constraint C defined on X the
neighbour variable representation of a graph G whose edges have a cost in W ,



and associated with an integer k and two nodes of G: a source s and a sink t
shorter-path(X,W, k, s, t) = { τ such that τ is a tuple on X(C) and

τ defined a path from s to t in G whose
the sum of the edges is smaller than k.}

Sellmann proposed a relaxation of the constraint such that an efficient filter-
ing algorithm can be designed. He also developed filtering for directed acyclic
graph and general digraph with non-negative costs or graph that at least does
not contain any negative weight cycle. An experimental study shown the ad-
vantage of this approach [53]. Unfortunately, it is not really easy to measure
the difference of strengths between the new proposed filtering and the one we
mentioned at the beginning of this section.

Tree Constraint (tree)

The tree constraint has been proposed by Beldiceanu et al. [18]. This con-
straint enforces the partitioning of a digraph into a set of vertex-disjoint anti-
arborescences. An anti-arborescence is roughly a tree whose edges are oriented in
the opposite way: from the nodes to the root. A digraph A is an anti-arborescence
with anti-root r iff there exists a path from all vertices of A to r and the undi-
rected graph associated with the digraph A is a tree

Definition 30 A tree constraint is a constraint C defined on X the neigh-
bour variable representation of a digraph D, and associated with an integer k
such that
tree(X, k) = { τ such that τ is a tuple on X(C)

and the digraph defined by τ is
a set of k vertex disjoint anti-arborescences }

Beldiceanu et al. [18] gave a linear consistency checking algorithm and an AC
Filtering algorithm whose time complexity is in O(nm) where n is the number
of nodes of the digraph and m its number of arcs.

In another paper [19] the authors proposed to extend the original tree con-
straint with the following useful side constraints (we reproduce their presenta-
tion):

• Precedence constraints: a node u precedes a node v if there exists a directed
path from u to v.

• Incomparability constraints: two nodes u and v are incomparable if there
is no directed path from u to v or from v to u.

• Degree constraints that restrict the in-degrees of the nodes in the tree
partition.

• Constraints on the number of proper trees, where a proper tree is a tree
involving at least two nodes.

Combining the original problem with precedence or with incomparability
constraints lead to an NP-Hard problem, therefore the authors gave a set of



necessary structural conditions combining the input graph with the graphs as-
sociated with these side constraints.

At last, two other variations of the tree constraint have been derived by
Beldiceanu et al. [21] under the generic term of undirected forest:

• the resource-forest constraint. In this version, a subset of vertices
are resource vertices and the constraint specifies that each tree in the forest
must contain at least one resource vertex. They describe an hybrid-consistency
algorithm that runs in O(m + n) time for the resource-forest constraint and so
improves the algorithm for the tree constraint.

• the proper-forest constraint. In this variant, there is no requirement
about the containment of resource vertices, but the forest must contain only
proper trees, i.e., trees that have at least two vertices each. They describe an
O(mn) hybrid-consistency algorithm.

Weighted Spanning Tree Constraint (wst)

The weighted spanning tree constraint (wst constraint) is a constraint de-
fined on the neighbour representation of a graph G each of whose edges has an
associated cost, and associated with a global cost K. This constraint states that
there exists in G a spanning tree whose cost is at most K. This constraint has
been introduced in a more general form by Dooms and Katriel [46]. Instead of
considering the weighted spanning tree problem, they introduced the "Not-Too-
Heavy Spanning Tree" constraint. This constraint is defined on undirected graph
G and a tree T and it specifies that T is a spanning tree of G whose total weight
is at most a given value I, where the edge weights are defined by a vector. The
wst constraint is a simplified form of this constraint.

Definition 31 A weighted spanning tree constraint is a constraint C de-
fined on X, the neighbour variable representation of a graph G, and associated
with cost a cost function on the edge of G, and an integer K such that
wst(X, cost,K) = { τ such that τ is a tuple on X(C)

and the graph defined by τ is a tree whose cost is ≤ K}

This kind of constraint does not often arise explicitly in real world appli-
cations, but it is used frequently as a lower bound of more complex problems
like Hamiltonian path or node covering problems. For instance the minimum
spanning tree is a well known bound of the travelling salesman problem.

It is straightforward to see that checking the consistency of this constraint
is equivalent to finding a minimum spanning tree and to check if its cost is
less than K. Moreover, arc consistency filtering algorithms are based on the
computation for every edge e of the cost of the minimum spanning tree subject
to the condition that the tree must contain e [46]. These two problems have been
studied for a long time. The search for a minimum spanning tree can be solved
by several methods (Kruskal, Prim ...). The second problem is close of another
problem called "Sensitivity Analysis of Minimum Spanning Trees" [143]. The



best algorithms solve this problem in linear time. Unfortunately they are quite
complex to understand and to implement (see [43] or [88] for instance).

Régin proposed a simpler and easy way to implement consistency checking
and AC filtering algorithms for the wst constraint [120]. This algorithm is based
on the creation of a new tree while running Kruskal’s algorithm for computing
an minimum spanning tree. Then, we find lowest common ancestors (LCA) in
this tree by using the equivalence between the LCA and the range minimum
query problem. A recent simple preprocessing leads to an O(1) algorithm to find
any LCA. The proposed algorithm is also fully incremental and try to avoid
traversing all the edges each time a modification occurs. Its complexity is the
same as the weighted spanning tree computation, that is linear plus the union-
find operations.

Some variations of the weighted spanning tree constraint have been proposed.
For instance, Dooms and Katriel [45] introduced the Minimum spanning tree

constraint, which is specified on two graph variables G and T and a vector W of
scalar variables. The constraint is satisfied if T is a minimum spanning tree of
G, where the edge weights are specified by the entries of W . They gave a bound
consistency algorithm for all the variables.

On the other hand, the robust spanning tree problem with interval data has
been addressed in [4]. This problem is defined as follows: given an undirected
graph with interval edge costs, find a tree whose cost is as close as possible of
that minimum spanning tree under any possible assignment of costs.

In conclusion of the Graph based Constraint section we would like to mention
some other works that have been carried out for some constraints like isomor-
phism , subgraph isomorphism or maximum clique. In fact, these algorithms are
more dedicated to the resolution of a complex problem than to the filtering of a
constraint corresponding to these problems. Hence, we do not detail them. Sor-
lin and Solnon have presented a filtering algorithm for the isomorphism problem
[140, 141]. Zampelli et al. considered the subgraph isomorphism constraint [157].
This work improves Régin’s algorithm [109]. At last, Régin defined a maximum
clique constraint [116].

3.11 Order based Constraints

Lexicographic Constraint (lexico)

The lexicographic ordering constraint X ≤lex Y over two ordered set of
variables X and Y holds if the word defined by the assignment of X is lexico-
graphically smaller than the word defined by the assignment of Y .

Definition 32 A lexicographic ordering constraint is a constraint C de-
fined on two sets of ordered variables X = {x1, ..., xn} and Y = {y1, ..., yn} such
that
lexico≤ (X,Y ) = {τ s.t. τ is a tuple on X ∪ Y s.t.

either ∀i ∈ [1..n] τ [i] ≤ τ [i+ n]}
or ∃j, 1 ≤ j ≤ n with τ [j] < τ [j + n] and ∀i ∈ [1..j] τ [i] = τ [i]}

It is sometimes denoted by X ≤lex Y .



A variation of this constraint is used to take into account the multidirec-
tionnality in GAC-Schema [29]. Then, it has been formally defined by Frisch et
al. [52] where a filtering algorithm is proposed. Carlsson and Beldiceanu showed
that this constraint can be represented by an automaton [35], therefore with the
reformulation of the automaton given in the section about formal based language
constraints we have an efficient AC filtering algorithm.

A nice reformulation has been proposed by Quimper [101]: we define a vari-
able N whose value is the first index for which we will have xi < yi. Then for
each i we define the ternary constraint satisfying:

• (N = i) ⇒ (xi < yi)
• (N < i) ⇒ (xi = yi)
• (N ≤ i) ⇒ (xi ≤ yi)

Note that if N > i then xi and yi are not constrained.
All the constraints share only one variable N then the bipartite constraint graph
has no cycle and from Corollary 1, establishing arc consistency for this reformu-
lation will establish arc consistency for the original constraint.

Sort Constraint (sort)

This constraint has been proposed by Bleuzen-Guernalec and Colmerauer
[32]: "A sortedness constraint expresses that an n−tuple (y1, ..., yn) is equal to
the n−tuple obtained by sorting in increasing order the terms of another n−tuple
(x1, ..., xn)".

Definition 33 A sort constraint is a constraint C defined on two sets of
variables X = {x1, ..., xn} and Y = {y1, ..., yn} such that
sort(X,Y ) = {τ s.t. τ is a tuple on X(C) and ∃f a permutation of [1..n] s.t.

∀i ∈ [1..n] τ [xf(i)] = τ [yi]}

The best filtering algorithm establishing bound consistency has been pro-
posed by Melhorn and Thiel [90]. Its running time is O(n) plus the time required
to sort the interval endpoints of the variables of X. If the interval endpoints are
from an integer range of size O(nk) for some constant k the algorithm runs in
linear time, because this sort becomes linear.

A sort constraint involving 3 sets of variables has also been proposed by
Zhou [158, 159]. The n added variables are used for making explicit a permu-
tation linking the variables of X and those of Y . Well known difficult job shop
scheduling problems have been solved thanks to this constraint.

3.12 Formal Language Based Constraints

Formal Language based Constraints are constraints defined from Automata or
from Grammars. Recently, they have been intensively studied. They attracted
a lot of researchers and this topic has certainly been the most active of the
community in the last five years. However, the results that have been obtained are



surprising because they tend to show that there is no need of specific algorithms
for these constraints.

These constraints appeared 10 years after the graph based constraints which
is also surprising because some computer scientists like kidding by saying that
in computer science everything can be viewed from a graph theory or from the
automaton theory.

Regular Language Based Constraints (regular)

The explicit use of an automaton for representing a constraint and for deriv-
ing a filtering algorithm from this representation has been proposed by Carlsson
and Beldiceanu [35, 34, 36, 15]. They aimed at finding a more efficient filtering
algorithm for the lexicographic constraint. They were not the first to use an au-
tomaton in CP: Vempaty [155] introduced the idea of representing the solution
set by a minimized deterministic finite automaton and Amilastre, in his Ph.D.
Thesis [3], generalized this approach to non-deterministic automata and intro-
duced heuristic to reduce their size. However, Carlsson and Beldiceanu were the
first to design a filtering algorithm based on automata.

A bit afterwards and independently, Pesant [95, 96] introduced in a nicely
written paper, the regular constraint which ensures that the sequence of val-
ues taken by variables belongs to a given regular language.

We propose to study this constraint and the different filtering algorithms
that have been associated with it.

First, we recall the definition of deterministic and non deterministic finite
automata. This part is mainly inspired from [96]

A Deterministic Finite Automaton (DFA) is defined by a 5-tuple (Q,Σ, δ, q0, F )
where

• Q is a finite set of states,
• Σ is an alphabet, that is a set of symbols,
• δ : Q×Σ → Q is a partial transition function7,
• q0 is an initial state,
• F ⊆ Q is the set of final (or accepting states).

Given an input string, the automaton starts in the initial state q0 and processes
the string one symbol at a time applying the transition function δ at each step
to modify the current state. The string is accepted if and only if the last state
reached belongs to the set of final states F . The language recognized by DFA’s
are precisely regular languages.

Thus, the definition of the regular membership constraint is immediate:

Definition 34 Let M = (Q,Σ, δ, q0, F ) be a deterministic finite automaton. A
regular language membership constraint is a constraint C associated with
7 A partial function δ(q, x) does not have to be defined for any combination of q ∈ Q

and x ∈ Σ; and if δ(q, x) is defined and equal to q′ then it does not exist another
symbol y such that δ(q, y) = q′.



M such that
regular(X,M) = { τ s.t. τ is a tuple on X(C) and the sequence of values of τ

belongs to the regular language recognized by M}
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Fig. 9. A Deterministic Finite Automaton for a common pattern in rostering [96].
Integers are state. All states are final.

We reproduce Example 2 given in [96]. In rostering problems, the assignment
of consecutive shifts must often follow certain patterns. Consider a sequence of
5 variables with D(x1) = {a, b, c, o}, D(x2) = {b, o}, D(x3) = {a, c, o}, D(x4) =
{a, b, o} and D(x5) = {a} subject to the following constraints: between a’s and
b’s, a’s and c’s or b’s and c’s, there should be at least one o. In addition the
sequences a, o, c, b, o, a and c, o, b are forbidden. This problem can be represented
by a finite automaton (See Figure 9). Unfortunately, there is no explanation or
help about the construction of the automata in any of the papers published on
this topic.

Then, Pesant proposed a consistency checking and a filtering algorithm based
on an idea similar as the one proposed by Trick for the knapsack constraint
[146]. A specific directed graph is built and the nodes that do no belong to some
paths are deleted and this lead to domain reductions. For a constraint C, we will
denote by LD(C) this digraph. It is built as follows:

The digraph contains several layers. Each layer contains a different node for
each state of the automaton. More precisely, if {q0, q1, ..., qs} are the states then
the layer i contains the nodes {qi0, qi1, ..., qis}. If n variables are involved in the
constraint then there are n + 1 layers. There are arcs only between nodes of
consecutive layers. The arcs between layer i and layer i + 1 correspond to the
variable xi. An arc from node qij to node qi+1

k is admissible for inclusion only
if there exists some v ∈ D(xi) such that δ(qj , v) = qk. The arc is labelled with
the value v allowing the transition between two states. In the first layer the only
node with outgoing arcs is q10 since q0 is the only initial state. Figure 10 shows
the layered digraph associated with previous example.
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Fig. 10. The initial layered digraph associated with a deterministic finite automaton
for a common pattern in rostering [96]. Li represents the nodes of the layer. For con-
venience, a node qij , that is the node of the state qj in the layer i is represented by the
index j.

The computation of the consistency of the constraint C and the establishment
of arc consistency correspond to path property in the layered digraph LD(C).
Pesant proved that

• The constraint is consistent if and only if there exists a path from q10 to a
node of the layer n+ 1

• A value (xi, a) is consistent with C if and only if there is a path q10 to a
node of the layer n+ 1 which contain an arc from a node of layer i to a node of
layer i+ 1 labelled by a.

The implementation of these properties can be done simply by removing all
the nodes of LD(C) which are not contained in any path from q10 to a node of
the layer n+ 1. The deletion of these nodes leads to the removal of arcs and so
may lead to the disappearance of arcs labelled by a given value. In this case,
this means that a value is no longer consistent with the constraint and can be
deleted from its domain. Figure 11 is an example of such a deletion process for
the previous example. For instance, nodes (L5, 3) and (L5, 6) have no successor
then they will be deleted. Thus, node (L4, 6) will be removed and also node
(L3, 3). Then, there is no longer any dotted edge for x2 which means that value
(x2, b) is deleted.

Pesant proved that the identification of inconsistent values can be performed
by 2 breadth first searches : one in the digraph starting from the node corre-
sponding to the initial state and one in the transpose digraph starting from
nodes corresponding to final states. Each node without any outgoing arc or any
incoming arc is deleted. Thus, if n is the number of variables involved in C, d
the number of symbols and s be the number of states then the consistency and
the arc consistency of C can be established in O(nds) [96]. Pesant also proposed
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Fig. 11. The "after pruning" layered digraph associated with a deterministic finite
automaton for a common pattern in rostering [96]. Li represents the nodes of the layer.
For convenience, a node qij , that is the node of the state qj in the layer i is represented
by the index j.

an incremental versions of the filtering algorithm by maintaining the layered
digraph and by considering the deletion of the value of a variable.

At the same time8, Beldiceanu et al. proposed a nice reformulation of the
problem [15, 12]. The main idea is to reformulate the automaton into transition
constraints. A transition constraint is a constraint corresponding to the transi-
tion function. It involves 3 variables, two having as values the states and one
having as value the symbols. In other words, the allowed combinations of values
of a transition constraint is the set of triples (qi, v, qj) such that δ(qi, v) = qj .
We will denote by T (δ, x, y, z) such a constraint defined on the variable x, y and
z. Then, instead of defining explicitly the graph like with Pesant’s algorithm,
only n + 1 transition constraints are defined. All the transition constraints are
defined from the same set of tuples. Each transition constraint is defined on 2
state variables that is variables whose domain is the set of possible states and one
x variable containing symbols. The first transition constraint is T (δ,Q1, x1, Q2)
where Q1 contains only the initial state, that is the state q0, x1 is the first vari-
able and Q2 is the variable representing the state that can be reached from q0 by
using the transition δ involving a symbol of x1. The second transition constraint
is T (δ,Q2, x2, Q3) and so on until T (δ,Qn, xn, Qn+1) which is the last one and
where Qn+1 contains only the final state of the automaton.

The transition constraint can be easily built from an automaton: each arc of
the automaton corresponds to a tuple of the constraint. More precisely, if there
is an arc (i.e a transition) from the state 3 to the state 6 with the symbol o
then the triplet (3, o, 6) is an allowed combination of the transition constraint
and conversely. The following table contains all the triplets of the transition con-

8 This is really at the same time because the two papers were presented during the
same session at the same conference: CP’04.



straint corresponding to the automata of the previous example :

(1, o, 1) (1, a, 2) (1, b, 3) (1, c, 4) (2, a, 2)
(2, o, 5) (3, b, 3) (3, o, 6) (4, o, 7) (4, c, 4)
(5, o, 5) (5, a, 2) (5, b, 3) (6, o, 6) (6, b, 3)
(6, c, 4) (7, o, 7) (7, c, 4) (7, a, 2)

Thus, the reformulation replaces the regular constraints by the constraints
T1 = T (δ,Q1, x1, Q2), T2 = T (δ,Q2, x2, Q3), T3 = T (δ,Q3, x3, Q4)

T4 = T (δ,Q4, x4, Q5), T5 = T (δ,Q5, x5, Q6)
with Q1 = 1.

The strong result of the paper of Beldiceanu et al. [12] is that the estab-
lishment of arc consistency for the reformulated problem is equivalent to the
establishment of the arc consistency for the regular constraint because the
reformulated problem satisfies Corollary 1 of Preliminaries Section.

The establishment of arc consistency for a constraint of arity r with t allowed
tuples and the maintenance of this arc consistency can be performed in O(rt)
(See Proposition 1 of table constraint Section). Thus, for n transition con-
straints of arity 3, we can establish arc consistency in O(n|δ|). This equivalent
to O(nds) with d symbols and s states, because by definition of a deterministic
finite automaton when the symbol and the state are given for δ then there is
only one result, so O(|δ|) = O(ds). The overall time complexity is exactly the
same as the Pesant’s algorithm.

In addition, Quimper et al. [104, 105] showed that in practice this method
performs very well and better for some instances than the Pesant’s approach.
Furthermore, having a direct access to the transition constraints or to the state
variables may be useful to model some others constraints easily: either by chang-
ing the tuples of the transition constraints or by defining new constraints involv-
ing the state variables. For instance, the constraint Max(N, {x1, ..., xn}) which
ensures that N is the maximum value taken by x1 to xn may be implemented by
a set of ternary constraint Qi+1 = max(xi+Qi) [105]. Hence, the reformulation
seems to be definitely an interesting approach.

However, this approach also shows clearly the limit of such a model : each
variable representing the symbols is involved in only one constraint and each
state variable is involved in at most 2 constraints. Therefore, it will be difficult
to express some more complex constraints notably constraints involving several
variables in any order.

In order to improve the expressiveness of the regular constraint Beldiceanu
et al. [15, 12] proposed two improvements : the use of Non deterministic finite
automata instead of DFA and the addition of counters. We will detail the first
aspect and not the second because it leads to a more complex reformulation and
the conditions for establishing arc consistency are also more complex. We en-
courage the reader to look at the paper of Beldiceanu et al. for more information.



Non deterministic Finite Automaton (NFA) differs from DFA only by the
definition of δ the transition function. In a DFA, δ is a function which returns a
state from a state and a symbol whereas in a NFA δ returns a set of states from
a state and a symbol. NFA have the same power as DFA, in the sense that they
recognize only regular languages, but they can do so with exponentially fewer
states than a DFA.

The reformulation used to model a DFA can also be used to model an NFA.
The transition constraints are changed in order to take into account the δ func-
tion of an NFA. This does not cause any particular problem because the table
constraints does not make any assumption on the properties of the tuples it con-
tains. However, the number of tuples of each constraint is increased from ds to
ds2 because for a given state and a given symbol we can have several states in an
NFA. The total time complexity for establishing arc consistency is in O(nds2),
that is a factor of s more than for a DFA. Since the number of states for an
NFA may have exponentially fewer states than an equivalent DFA this can be
worthwhile.

Context-free language based Constraints(grammar)

Sellmann noticed that we can see any assignment of variables x1, ..xn as
a word D(x1)...D(xn) whose letters are the values assigned to the variables.
Therefore, it is convenient to use formal languages to describe certain features
that we would like our solution to exhibit. Since languages are recognized by
grammars, he defined the grammar Constraint.

First we recall the formal definition of a grammar. A grammar is a set of
rules for forming strings in a formal language. These rules that make up the
grammar describe how to form strings from the language’s alphabet that are
valid according to the language’s syntax.

Definition 35 A grammar is a tuple (N,Σ, P, S) where
• N is a finite set of non-terminal symbols,
• Σ a finite set of terminal symbols (the alphabet),
• S a start symbol,
• P a set of production rules such that P ⊆ (N ∪Σ)∗N(N ∪ σ)∗ × (N ∪ σ)∗

We define by LG the language given by G

We recall that ∗ is the Kleene star operator : if V is a set of symbols then
V ∗ is the set of all string over symbols in V including the empty set ϵ.

Definition 36 Let G = (N,Σ, P, S) be a grammar. A grammar constraint
is a constraint C associated with G defined by
grammar(X,G) = { τ s.t. τ is a tuple on X(C)

and the sequence of values of τ is word of LG}

Formal language theory is very rich and propose some categorization of lan-
guages. For instance, we have already seen regular languages recognized by DFAs



and NFAs. Left regular grammars also generate exactly all regular languages.
Hence, there is a direct one-to-one correspondence between the rules of a left
regular grammar and those of a non-deterministic finite state automaton, such
that the grammar generates exactly the language the automaton accepts.

Definition 37 A regular grammar is a formal grammar (N,Σ, P, S) where the
rules of P are of the following forms

• A → a, where A is a non-terminal in N and a is a terminal in Σ
• A → ϵ, where A is in N and ϵ is the empty string.

and either
• A → Ba, where A and B are in N and a is in Σ. In this case the grammar

is a left regular grammar
or of the form

• A → aB, where A and B are in N and a is in Σ. In this case the grammar
is a right regular grammar.

An example of a right regular grammar G with N = {S,A}, Σ = {a, b, c}, P
consists of the following rules:
S → aS
S → bA
A → ϵ
A → cA
and S is the start symbol. This grammar describes the same language as the
regular expression a ∗ bc∗ (See Wikipedia).

It is possible to automatically build a finite automaton from a regular gram-
mar. Let G = (N,Σ, P, S) be a left regular grammar, then the automaton
A = (Q,Σ, δ, q0, F ) equivalent to G is defined as follows :

• Q = N ∪ {qt} where qt is a new terminal state.
• q0 = S
• The rules of P define δ and F :

• if Pi = A → aB then δ(A, a) = B
• if Pi = A → a then δ(A, a) = qt
• if Pi = A → ϵ then A ∈ F

Similar rules can be defined if the grammar is right regular.
Such a transformation means that we can use the filtering algorithms (or the
reformulations) designed for the DFA or the NFA to establish arc consistency for
regular grammars. So for regular grammars we already have interesting filtering
algorithms.

However, grammars are more general than automata and there exist more
complex and more powerful grammars. Sellmann proposed to investigate con-
straints based on grammars higher up in the Chomsky hierarchy [136, 67].

We recall the Chomsky’s hierarchy. We reproduce here the presentation of
[136]:

Definition 38 Let α and β be string of symbols and non-terminal; and G =
(N,Σ, P, S) be a grammar.



• If for all productions (α → β) ∈ P we have β is at least as long as α then
the grammar is context sensitive also named Type-1 grammar;

• P ⊆ N × (N ∪ Σ)∗ then the grammar is context-free also named Type-2
grammar;

• P ⊆ N × (Σ∗N ∪ Σ)∗ then the grammar is regular also named Type-3
grammar.

Note that a context-free grammar is a grammar in which all the production
rules are of the form V → w, where V is a non terminal symbol and w a string
of terminal and/or non-terminal. The "context-free" notion comes from the fact
that a non-terminal V can always be replaced by w, without considering its
context.

Unfortunately, it is PSPACE Complete to decide if a Type-1 grammar rec-
ognizes a given word. Since the Type-3 are equivalent to automaton for which
filtering algorithms exist, Sellmann proposed to consider the context-free gram-
mar.

The consistency algorithm and the filtering algorithm establishing arc con-
sistency designed by Sellmann are mainly based on the Cocke-Younger-Kasami
(CYK) algorithm that determines whether a string can be generated by a given
context-free grammar and, if so, how it can be generated. The algorithm employs
bottom-up parsing and dynamic programming.

The standard version of CYK operates on context-free grammars given in
Chomsky normal form (CNF). Thus, Sellmann proposed to work with grammar
under this form. The complexity of the algorithms are asymptotically the same
as the CYK complexity that is O(n3|P |). Kadioglu and Sellmann improved the
behaviour and the incremental aspect of the algorithm [66].

In parallel to the work of Sellmann and at the same time9 Quimper and
Walsh [104–107] proposed also a grammar constraint dedicated to context-free
grammars and associated with two filtering algorithms : the first one based on
CYK and the second one based on another parser written by Earley [47]. The
algorithm based on the CYK parser is different from Sellmann’s algorithm but
has the same complexity. The second algorithm is original and has the same time
complexity as the others : O(n3|P |).

On the other hand, Katsirelos et al. [72] showed that it is possible to reformu-
late the grammar constraint into a regular constraint. The transformation is
currently quite complex but it is promising.

These algorithms are complex and we will not detail them in this chapter.
In conclusion about the formal language constraints, we note that it seems

not so easy to define constraints via automata or grammars. The future will
show whether it is really the case or not.

9 Once again it was exactly at the same time, because the two papers were presented
at the same conference : CP’06



4 Filtering Algorithm Design

There are several ways to design a filtering algorithm associated with a con-
straint. However, for global constraints we can identify different and important
types of filtering algorithms:

– Filtering algorithms based on a generic algorithm: as the ones em-
bedded in generic constraints, table constraints, regular constraints,
grammar constraints... In this case, there is no new algorithm to write
provided that an algorithm checking the consistency of the constraint is
given or the list of allowed combinations is computed (table constraint) or
an automaton is designed (regular constraint ) or a grammar is defined
(grammar constraint).

– Filtering algorithms based on model reformulation. There are several
possibilities :
• either from the simultaneous presence of constraints the filtering algorithm

consists of adding some new constraints,
• or a reformulation of the constraint is made, like for the regular con-

straint, the subset-sum...
• or a the constraint is remodelled as a flow like for the sequence con-

straint, or by as set of cardinality constraints like for the card-matrix
constraint.

– Filtering algorithms based on existing algorithms, like the ones based
on dynamic programming (subset-sum) or flow (gcc).

– Filtering algorithms based on ad-hoc algorithms.

For the two first cases, there is no real new algorithm that is written.
We propose to discuss in more detail the constraint addition idea, the reuse

of existing properties and the design of ad-hoc algorithms.
For convenience, we introduce the notion of pertinent filtering algorithm for

a global constraint:

Definition 39 A filtering algorithm associated with C = ∧{C1, C2, .., Cn} is
pertinent if it can remove more values than the propagation mechanism called
on the network (∪C∈CX(C),DX(C), {C1, C2, .., Cn}).

4.1 Algorithms Based on Constraints Addition

A simple way to obtain a pertinent filtering algorithm is to deduce from the
simultaneous presence of constraints, some new constraints. In this case, the
global constraint is replaced by a set of constraints that is a superset of the one
defining the global constraint. That is, no new filtering algorithm is designed.

For instance, consider a set of 5 variables: X = {x1, x2, x3, x4, x5} with do-
mains containing the integer values from 0 to 4; and four constraints
atleast(X, 1, 1), atleast(X, 1, 2), atleast(X, 1, 3), and atleast(X, 1, 4)
which mean that each value of {1, 2, 3, 4} has to be taken at least one time by a
variable of X in every solution.



An atleast(X,#time, val) constraint is a local constraint. If such a con-
straint is considered individually then the value val cannot be removed while
it belongs to more than one domain of a variable of X. A filtering algorithm
establishing arc consistency for this constraint consists of assigning a variable x
to val if and only if x is the only one variable whose domain contains val.

Thus, after the assignments x1 = 0, x2 = 0, and x3 = 0, no failure is
detected. The domains of x4 and x5, indeed, remain the same because every
value of {1, 2, 3, 4} belongs to these two domains. Yet, there is obviously no
solution including the previous assignments, because 4 values must be taken at
least once and at most twice.

For this example we can deduce another constraint by applying the following
property: if 4 values must be taken at least 1 time by 5 variables, then the other
values can be taken at most 5− 4 = 1, that is we have atmost(x, 1, 0).

This idea can be generalized for a gcc(X, l, u). Let card(ai) be a variable
associated with each value ai of D(X) which counts the number of domains of
X that contain ai. We have i ≤ card(ai) ≤ ui. Then, we can simply deduce
the constraint

∑
ai∈D(X) card(ai) = |X|; and each time the minimum or the

maximum value of card(ai) is modified, the values of li and ui are accordingly
modified and the gcc is modified.

This method is usually worthwhile because it is easy to implement. However,
the difficulty is to find the constraints that can be deduced from the simultaneous
presence of other constraints.

4.2 Filtering algorithms based on existing algorithms

The idea is to link the global constraints and some common properties of the
graph theory and then to automatically derive filtering algorithms from these
properties. It has mainly been proposed by Beldiceanu.

More precisely, the property that has to be satisfied by a global constraint
may sometimes be expressed by some properties in graph theory. This is clear
for some global constraints based on graph theory, like an assignment problem
(see the alldiff constraint for instance) or a tree constraint for which the
equivalent properties defining a tree are well known and simple (see chapter 3
in [26]): a tree is connected graph without cycle, or a tree is a connected graph
with n − 1 arcs etc... Of course, the goal is to reduce the number of properties
that are considered and try to factorize the results.

First, Beldiceanu proposed to describe global constraints in term of graph
properties [7], but the goal, at that time, was mainly to try to express the
constraints in given formalism and to organize the existing global constraints
(this will lead to the well known catalogue of global constraints [9]). In this
model a constraint is represented by a graph whose nodes correspond to variables
involved in the constraint and whose arcs correspond to primitives constraints.
At the beginning it is not known which of these primitives constraints will be



respected. For instance, an nvalue constraint imposes that a set of variables
take at most n different values. The graph representing this constraint will have
edges corresponding to binary constraint of equality, but we don’t know which
ones are going to be violated and which ones will be respected. At the end the
satisfied constraint have to respect some properties, for the nvalue constraint,
the number of connected components of the graph has to be equal to n. Thus,
this method identifies the solutions of a global constraint to the sub-graphs of a
unique initial digraph, which satisfies a set of properties defining the constraint.
Then, Hanak [60] tried to exploit this description in order to derive automatically
filtering algorithms. However, this is really from 2005 and 2006, that Beldiceanu
proposed to consider the most common properties and to derive from them
and from the initial digraph some boundaries about the possible sub-graphs
that are solutions [16]. These boundaries provide the necessary conditions to the
satisfiability of a lot of global constraints. Then, some filtering algorithms may be
automatically derived from these properties [23, 24, 14, 13]: a filtering algorithm
consists in the identification of the arcs of the initial digraph that belong (or not)
to the sub-graphs corresponding to the solutions of the constraints. Therefore, a
FA removes some edges that do not satisfy some properties on the digraph (for
instance on the absence of cycle) or imposes some edges to be in the digraph
in order to satisfy some other properties (for instance, if the graph must be
connected, any bridge will be imposed).

There is a relation between Beldiceanu’s work and the notion of Graph Vari-
able introduced during the Rococo project [80]. Graph variables have been pre-
sented in detail in [117]. Then, they have been more formalized in [44]. A graph
variable is a variable that will be instantiated to a sub-graph of an initial graph
while respecting some properties. The list of edges, the list of nodes, and the
neighbourhood of each node, can be viewed as set variables and the filtering al-
gorithm remove from the possible part of these sets or add to the required part
of these sets some elements in order to respect some constraints. In addition, it
is possible to define a condition for the existence of an arc (for instance, that an
equality constraint exists between the variables corresponding to its extremities),
therefore the two approaches are certainly close.

This method is quite interesting when the problem can be naturally expressed
as a graph problem. This can lead to elegant solutions for designing FAs. Unfor-
tunately, it is not obvious to represent some problems in graph theory (a sum or
a knapsack seem to be good examples) and this method did not bring any major
result. Maybe, the research has been too much focused on the factorization of
strong properties.

4.3 Dedicated Filtering Algorithms

The last method to design a pertinent filtering algorithm is to use the structure
of the constraint in order to define some properties identifying that some values
are not consistent with the global constraint.

The use of the structure of a constraint has four main advantages:
• the search for a support can be speeded up.



• some inconsistent values can be identified without explicitly checking for
every value whether it has a support or not.

• the call of the filtering algorithm, that is the needed to check the consis-
tency of some values, can be limited to some events that can be clearly identified.

• a better incrementality.

For instance, consider the constraint (x < y), then:
• the search for a support for a value a of D(x) is immediate because any

value b of D(y) such that b > a is a support, so a is consistent with the constraint
if a < max(D(y)).

• we can immediately state that max(D(x)) < max(D(y)) and
min(D(y)) > min(D(x)) which means that all values of D(x) greater than or
equal to max(D(y)) and all values of D(y) less than or equal to min(D(x)) can
be removed.

• since the deletions of values of D(y) depends only on max(D(y)) and the
deletions of values of D(x) depends only on min(D(x)), the filtering algorithm
must be called only when max(D(y)) or min(D(x)) are modified. It is useless
to call it for the other modifications.

A good example of such filtering algorithm algorithm is given in [93]. We
propose here a simpler example for a well-known problem: the n-queens problem.

The n-queens problem involves placing n queens on a chess board in such
a way that none of them can capture any other using the conventional moves
allowed by a queen. In other words, the problem is to select n squares on a chess-
board so that any pair of selected squares is never aligned vertically, horizontally,
nor diagonally.

This problem is usually modeled by using one variable per queen; the value
of this variable represents the column in which the queen is set. If xi represents
the variable corresponding to queen i (that is the queen in row i) the constraints
can be stated in the following way. For every pair (i, j), with i ̸= j, xi ̸= xj

guarantees that the columns are distinct; and xi+ i ̸= xj + j and xi− i ̸= xj − j
together guarantee that the diagonals are distinct.
These relations are equivalent to defining an alldiff constraint on the variables
xi, an alldiff constraint on the variables xi + i, and an alldiff constraint on
the variables xi − i.

queen
i x x x

i+ 1

i+ 2 X

queen
i x x

i+ 1

i+ 2

i+ 3 X X

Fig. 12. Rules of the ad-hoc filtering algorithm for the n-queens problem.



We propose to use a specific constraint that is defined on xi and try to take
into account the simultaneous presence of three alldiff constraints. Consider
a queen q: if there are more than three values in its domain, this queen cannot
lead to the deletion of one value of another queen, because three directions are
constrained (the column and the two diagonals) and so at least one value of
queen q does not belong to one of these directions. Therefore, a first rule can be
stated:

• while a queen has more than three values in its domain, it is useless to
study the consequence of the deletion of one of its values, because nothing can
be deduced.
From a careful study of the problem we can deduce some other rules (see Figure
12):

• if a queen i has 3 values {a, b, c}, with a < b < c in its domain then the
value b of queens i− k and the value b of queen i+ k can be deleted if b = a+ k
and c = b+ k;

• if D(xi) = {a, b} with a < b, then the values a and b of queens i− (b− a)
and of queens i+ (b− a) can be deleted.

• if D(xi) = {a}, then the value a + j for all queens i + j, and the value
a− j for all queens i− j can be deleted.

Therefore, a careful study of a constraint can lead to efficient filtering algo-
rithms. This method is certainly the most promising way. However, it implies a
lot of work. In [30], it is proposed to try to use first the general arc consistency
algorithm in order to study if the development of a powerful filtering algorithm
could be worthwhile for the considered problem. Using the solver itself then
solves the consistency of the constraint.

5 Discussion

5.1 Incrementality and amortized complexity

Two points play an important part in the quality of a filtering algorithm: the
incrementality and the amortized complexity. These points are linked together.

The incremental behaviour of a filtering algorithm is quite important in CP,
because the algorithms are systematically called when a modification of a vari-
able involved in the constraint occurs. However, the algorithm should not be fo-
cus only on this aspect. Sometimes, the computation from scratch can be much
more quicker. This point has been emphasized for general filtering algorithms
based on the list of supported values of a value [31]. An adaptive algorithm
has been proposed which outperforms both the non-incremental version and the
purely incremental version. There are two possible ways to improve the incre-
mental behaviour of the algorithm:

• the previous computations are taken into account when a new computation
is made in order to avoid doing the same treatment twice. For instance, this is
the idea behind the last support in some general filtering algorithm algorithms.

• the filtering algorithm is not systematically called after each modification.
Some properties that cannot lead to any deletions are identified, and the filtering



algorithm is called only when these properties are not satisfied. For instance, this
is the case for the model we present to solve the n-queens problem.

When a filtering algorithm is incremental we can expect to compute its amor-
tized complexity. This is the complexity in regard to the number of deletions, or
for one branch of the tree-search. This is why the complexity can be analysed
after a certain number of modifications. The amortized complexity is often more
accurate for filtering algorithms. Moreover, it can lead to new interesting algo-
rithms that are not too systematic. For instance, there is a filtering algorithm
for the symmetric alldiff constraint that is based on this idea. The filtering algo-
rithm establishing arc consistency calls another algorithm A n times, therefore
its complexity is n×O(A). Another algorithm has been proposed in [113], which
can be described as follows: pick a variable then run A, and let k be the number
of deletions made by A. Then you can run A for k other variables. By proceeding
like that the complexity is O(A) per deletions. Of course, the algorithm does not
necessarily establish arc consistency but this may be a good compromise.

5.2 Incomplete Algorithms and Fixed-Point Property

Some global constraints correspond to NP-Complete problems. Hence, it is not
possible to check polynomially the consistency of the constraint to establish arc
consistency. Nevertheless, some filtering algorithms can be still proposed. This is
the case for a lot of constraints: the diff-n constraint, the sequence constraint,
the nvalue constraint, the knapsack constraint, the bin-packing constraint
and so on.

When the problem is NP-Complete the filtering algorithm considers a relax-
ation, which is easier to solve. Currently, the filtering algorithms associated with
constraints are independent of the way the problem is defined. In other words,
we can guarantee that the propagation mechanism will reach a fixed-point10. In
order to guarantee such a property, the filtering algorithm is based either on
a set of properties that can be exactly computed (not approximated), or on a
relaxation of the domains of the variables (that is, the domains are considered as
ranges instead of as a set of enumerated values). Unfortunately some relaxation
of NP-Complete problem may depends on the way the constraints are stated and
this leads to loose the fixed-point property. This means that the set of values
deleted by propagation will depend on the ordering along with the constraints
are considered. This means that the debugging will be a much more difficult task
because fewer constraints can lead to more deleted values, and more constraints
can lead to fewer deleted values.

In the future, we will certainly need filtering algorithms with which the fixed-
point property of the propagation mechanism will be lost, because more domain-
reductions could be done with such algorithms. For instance, suppose that a
10 The concept of fixed-point means that the propagation mechanism is independent

of the order of the constraint definition, thus the same state (i.e same domains of
variables) is reached by all the possible implementations of the propagation mecha-
nism.



filtering algorithm is based on the removal of nodes in a graph that belong to
a clique of size greater than k. Removing all the values that do not satisfy this
property is an NP-Complete problem; therefore the filtering algorithms will not
be able to do it. However, some of these values can be removed, for instance by
searching for one clique for every node (if a clique of size ≥ k is found then the
node is deleted else it remains in the graph). The drawback of this approach
is that the result clearly depends on the node ordering. In addition it will be
difficult to guarantee that for a given node the graph will be traversed according
to the same ordering of nodes, because this problem is closed to the canonical
representation of a graph; and currently this problem is unclassified: we do not
know whether it is NP-Complete or not.

5.3 Identification of the Filtering

It is important to understand precisely the advantages and the drawbacks of some
filtering algorithms, notably when the underlined problem of the constraint is an
NP-Complete problem. In this case, we cannot establish arc consistency. Thus,
a relaxation of the problem is considered and then some rules leading to domain
reduction of the variables are defined. However, it is not really clear to figure
out the filtering performance even for the relaxed problem.

It could be much more convenient if each constraint was associated with
well defined filtering algorithms. For instance, if a constraint corresponds to an
NP-Complete problem then it could be interesting to show that the filtering
algorithm established for this constraint is in fact an AC filtering algorithm for
a specific relaxation of the constraint. It would help us a lot in the comparison
of filtering algorithms.

5.4 Closure

In general, a filtering algorithm removes some values that do not satisfy a prop-
erty. The question is “Should a filtering algorithm be closed with regard to this
property?”

Consider the values deleted by the filtering algorithm. Then, the consequences
of these new deletions can be:

• taken into account by the same call of the filtering algorithm;
• ignored by the same call of the filtering algorithm.

In the first case, there is no need to call the filtering algorithm again and in the
second case the filtering algorithm should be called again. When the filtering
algorithm is good, usually the first solution is chosen, but when the filtering al-
gorithm consists of calling another algorithm for every variable or every value, it
is possible that any deletion calls the previous computations into question. Then,
the risk is to have to check again and again the consistency of some values. It is
also possible that the filtering algorithm internally manages a mechanism which
simulates the propagation mechanism of the solver, and so this approach is re-
dundant.



In this case, it can be better to stop the filtering algorithm when some modifi-
cations occur in order to use the other filtering algorithms to further reduce the
domains of the variable and to limit the number of useless calls.

5.5 Power of a Filtering Algorithm

Arc consistency is a strong property, but establishing it costs in practice. Thus,
some researchers have proposed to use weaker properties in practice. That is,
to let the user to choose which type of filtering algorithm should be associated
with a constraint. In some commercial CP Solvers, like ILOG-CP, the user is
provided with such a possibility. Therefore it is certainly interesting to develop
some filtering algorithms establishing properties weaker than arc consistency.
However, arc consistency has some advantages that must not be ignored:

• Establishing arc consistency is much more robust. Sometimes, it is time
consuming, but it is often the only way to design a good model. During the
modelling phase, it is very useful to use strong filtering algorithms, even if,
sometimes, some weaker filtering algorithms can be used to improve the time
performance of the final model. It is rare to be able to solve some problems
in a reasonable amount of time with filtering algorithms establishing properties
weaker than arc consistency and not be able to solve these problems with a
filtering algorithm establishing arc consistency.

• There is room for improving the filtering algorithms. Most of the CP
solvers were designed before the introduction of global constraints in CP. We
could imagine that a solver especially designed to efficiently handle global con-
straints could lead to better performance. On the other hand, the behaviour of
filtering algorithms could also be improved in practice, notably by identifying
more quickly the cases where no deletion is possible.

• For binary CSPs, for a long time, Forward Checking algorithm (the fil-
tering algorithms are triggered only when some variables are instantiated) was
considered the most efficient one, but several studies showed that the systematic
call of filtering algorithms after every modification is worthwhile (for instance
see [28]). All industrial solver vendors aim to solve real world applications and
claim that the use of strong filtering algorithms is often essential.

Thus, we think that the studies about filtering algorithms establishing prop-
erties weaker than arc consistency should take into account the previous points
and mainly the second point. On the other hand, we think that it is really
worthwhile to work on techniques stronger than arc consistency, like singleton
arc consistency which consists of studying the consequences of the assignments
of every value to every variable.

6 Conclusion

Filtering algorithms are one of the main strengths of CP. In this chapter, we
have presented several useful global constraints with references to the filtering



algorithms associated with them. We have also detailed these filtering algorithms
for some constraints. In addition, we have tried to identify several ways to design
new filtering algorithms based on the existing work. At last, we have identified
some problems that deserve to be addressed in the future.
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