
A Θ(n) Bound-Consistency Algorithm
for the Increasing Sum Constraint

Thierry Petit1, Jean-Charles Régin2, and Nicolas Beldiceanu1

1TASC team (INRIA/CNRS), Mines de Nantes, France.
2 Université de Nice-Sophia Antipolis, I3S UMR 6070, CNRS, France.

{nicolas.beldiceanu,thierry.petit}@mines-nantes.fr, jcregin@gmail.com

Abstract. Given a sequence of variables X = 〈x0, x1, . . . , xn−1〉, we
consider the IncreasingSum constraint, which imposes ∀i ∈ [0, n − 2]
xi ≤ xi+1, and

∑
xi∈X

xi = s. We propose an Θ(n) bound-consistency
algorithm for IncreasingSum.

1 Introduction

Many problems involve sum constraints, for instance optimization problems. In
this paper we consider a specialization of the sum constraint enforcing that
an objective variable should be equal to a sum of a set of variables. Given
a sequence of variables X = 〈x0, x1, . . . , xn−1〉 and a variable s, we propose
an Θ(n) BC algorithm for the IncreasingSum constraint, which imposes that
∀i ∈ [0, n− 2], xi ≤ xi+1 ∧

∑

xi∈X xi = s. IncreasingSum is a special case of the
InequalitySum constraint [4], which represents a sum constraint with a graph
of binary inequalities.1

IncreasingSum is useful for breaking symmetries in some problems. For in-
stance, in bin packing problems some symmetries can be broken by ordering bins
according to their use. For each bin i we introduce a variable xi giving the sum
of the heights of the items assigned to i. We can explicitly state that the sum of
the xi’s is equal to the sum of the heights of all the items.

2 Sum Constraints in CP

This section discusses the time complexity for filtering sum constraints. Given
xi ∈ X , we denote by D(xi) the domain of xi, min(xi) its minimum value and
max (xi) its maximum value. We say that an assignment A(X) of values to a set
of integer variables in X is valid iff each value assigned to xi ∈ X , denoted by
A(xi), is such that A(xi) ∈ D(xi) (the domain of xi).

We first recall the usual definitions of GAC and BC.

1 BC can be achieved on InequalitySum in O(n · (m+ n · log(n))) time complexity,
where m is the number of binary inequalities (arcs of the graph) and n is the number
of variables.

Definition 1 (GAC, BC). Given a variable xi and a constraint C(X) such

that xi ∈ X, Value v ∈ D(xi)

– has a support on C(X) iff there exists a valid assignment A(X) satisfying

C with A(xi) = v.

– has a bounds-support on C(X) iff there exists an assignment A(X) sat-

isfying C with A(xi) = v and such that ∀xj ∈ X, xj 6= xi, we have

A(xj) ∈ [min(D(xj)),max (D(xj))].

C(X) is Generalized Arc-Consistent (GAC) iff ∀xi ∈ X, ∀v ∈ D(xi), v has a

support on C(X). C(X) is Bounds-Consistent (BC) iff ∀xi ∈ X, min(D(xi))
and max (D(xi)) have a bound-support on C(X).

Given a set X of integer variables and an integer k, we denote by
∑

= k the
problem consisting of determining whether there exists an assignment of values to
variables in X such that

∑

xi∈X xi = k, or not. This problem is NP-Complete [4,
p. 7]: The SubsetSum problem [2, p. 223], which is NP-Complete, is a particular
instance of the feasibility check of a constraint

∑

xi∈X xi = k.
When we consider an objective variable s instead of an integer k, performing

GAC on
∑

xi∈X xi = s is NP-Hard since one has to check the consistency of all
values in D(s), which corresponds to the

∑

= k problem.
Conversely, enforcing BC on

∑

xi∈X xi = s is in P as well as achieving BC
on

∑

xi∈X,ai∈N
ai · xi ≤ s [3].

In practice the constraint
∑

xi∈X xi = s is generally associated with some ad-
ditional constraints on variables in X . Next section presents a BC algorithm for
a sum with increasing variables. This constraint may occur in problems involving
sum constraints on symmetrical variables.

3 BC Linear Algorithm for Increasing Sum

Given a sequence of variables X = 〈x0, x1, . . . , xn−1〉 and a variable s,
this section presents an Θ(n) algorithm for enforcing BC on the constraint
IncreasingSum(X, s) = ∀i ∈ {0, 1, . . . n− 2}, xi ≤ xi+1 ∧

∑

xi∈X xi = s. Follow-
ing Definition 1, and since we consider an algorithm achieving BC, this section
ignores holes in the domains of variables.

Definition 2. Let xi ∈ X be a variable. D(xi) is ≤-consistent iff there exists two

assignments A(X) and A′(X) such that A(xi) = min(xi) and A′(xi) = max (xi)
and ∀j ∈ [0, n− 2], A(xj) ≤ A(xj+1) and A′(xj) ≤ A′(xj+1). X is ≤-consistent

iff ∀xi ∈ X, D(xi) is ≤-consistent.

W.l.o.g., from now we consider that X is ≤-consistent. In practice we
can ensure ≤-consistency of X in Θ(n) by traversing X so as to make for each
i ∈ [0, n−2] the bounds of the variables xi and xi+1 consistent with the constraint
xi ≤ xi+1. After making X ≤-consistent, it is easy to evaluate a lower bound
and an upper bound of the sum s.

Lemma 1. Given IncreasingSum(X, s), the intervals [min(s),
∑

xi∈X min(xi)[
and]

∑

xi∈X max (xi),max (s)] can be removed from D(s).

Proof.
∑

xi∈X min(xi) ≤
∑

xi∈X xi ≤
∑

xi∈X max(xi). ⊓⊔

Lemma 1 does not ensure that IncreasingSum is BC, since we can have
min(s) >

∑

xi∈X min(xi) and max (s) <
∑

xi∈X max (xi). In this case, bounds
of variables in X may not be consistent, and some additional pruning needs to
be performed. Next example highlights this claim.

Example 1. We consider IncreasingSum(X, s), D(s) = {28, 29} and the se-
quence X = 〈x0, x1, . . . , x5〉. We denote by sum the minimum value of the sum
of variables in X .

D(x0) = { 2, 3, 4, 5, 6 }, sum if x0 = 6 : 28 + 9 = 37
D(x1) = { 4, 5, 6, 7 }, sum if x1 = 7 : 28 + 9 = 37
D(x2) = { 4, 5, 6, 7 }, sum if x2 = 7 : 28 + 6 = 34
D(x3) = { 5, 6, 7 }, sum if x3 = 7 : 28 + 3 = 31
D(x4) = { 6, 7, 8, 9 }, sum if x4 = 9 : 28 + 5 = 33
D(x5) = { 7, 8, 9 }, sum if x5 = 9 : 28 + 2 = 30.

For all xi ∈ X , min(xi) is consistent since
∑

xi∈X min(xi) = 28 = min(s), and
max (xi) is not consistent. The increase in the sum corresponding to max (xi)
(the bold values) is computed by considering that values assigned to variables
having an index greater than i should be at least equal to max (xi). For instance,
if x0 = 6 then sum = 28+ 9 = 37 with 9 = 4+ 2 + 2 + 1+ 0 + 0, where 4 is the
increase with respect to x0, 2 the increase with respect to x1, and so on.

Conversely, once s has been updated thanks to Lemma 1, all values between
min(s) and max (s) are bound-consistent with IncreasingSum.

Property 1. Given IncreasingSum(X, s), if min(s) ≥
∑

xi∈X min(xi), max (s) ≤
∑

xi∈X max (xi) andmin(s) ≤ max (s) then ∀v ∈ D(s) there exists an assignment
A(X) such that

∑

xi∈X A(xi) = v.

Proof. Let δ ≥ 0 such that v ∈ D(s) and v =
∑

xi∈X min(xi) + δ. If δ = 0
then the property holds. Assume the property is true for δ = k: there exists
an assignment A(X) with

∑

xi∈X A(xi) =
∑

xi∈X min(xi) + k. We prove that
it remains true for δ = k + 1, that is, v =

∑

xi∈X min(xi) + k + 1. First,
if v >

∑

xi∈X max (xi) the property holds (the condition is violated). Oth-
erwise, consider A(X). We have not ∀i ∈ [0, n − 1], A(xi) = max (xi) since
v ≤

∑

xi∈X max (xi). Therefore, consider the greatest index i ∈ [0, n − 1] such
that A(xi) < max (xi). All xj ∈ X such that j > i (if i = n−1 no such xj exists)
satisfy by definition A(xj) = max (xj). Variables in X are range variables, thus
A(xi) + 1 ∈ D(xi). X is ≤-consistent: if i < n − 1 then A(xi) + 1 ≤ A(xi+1).
Moreover, if i < n − 1, A(xi+1) = max (xi+1) by definition of i. In all cases,
(i < n− 1 or i = n− 1), assignment A′(X) such that A′(xi) = A(xi) + 1 is such
that

∑

xi∈X A′(xi) =
∑

xi∈X min(xi) + k + 1 = v. The Property holds. ⊓⊔

Once Property 1 is satisfied, we have to focus on bounds of variables in X .
We restrict ourself to the maximum values in domains. The case of minimum
values is symmetrical. We consider also that D(s) is not empty after applying
Lemma 1, which entails that no domain of a variable in X can become empty,
i.e., we have at least one feasible solution for IncreasingSum.

In Example 1, all maximum values of domains should be reduced. For all xi in
X , if we assign max(xi) to xi the overload on min(s) (bold values in Example 1)
is too big, i.e., max(s) is exceeded. To reduce the upper bound of a variable xi,
we search for the greatest value v in D(xi) which leads to a value of s less than
or equal to max(s).

Notation 1 Given a value v ∈ D(xj), we denote by bp(X, j, v) (break point)
the minimum value of the sum

∑

xi∈X xi of an assignment A(X) satisfying for

each i ∈ [0, n− 2] the constraint xi ≤ xi+1 and such that xj = v.

To compute this quantity we introduce the notion of last intersecting in-

dex, which allows to split
∑

xi∈X xi in three sub-sums that can be evaluated
independently.

Definition 3. Given IncreasingSum(X, s), let i ∈ [0, n− 1] be an integer. The

last intersecting index last i of variable xi is equal either to the greatest index in

[i+1, n−1] such that max (xi) > min(xlast i), or to i if no integer k in [i+1, n−1]
is such that max (xi) > min(xk).

Property 2. Given IncreasingSum(X, s), let i ∈ [0, n − 1] be an integer and
v ∈ D(xi), bp(X, i, v) =

∑

k∈[0,...,i−1]

min(xk)

+ bp(〈xi, . . . , xlasti〉, i, v) +

∑

k∈[lasti+1,...,n−1]

min(xk)

Proof. By Definition 3, any variable xk in {x0, . . . , xi−1} ∪ {xlasti+1, . . . , xn−1}
can be assigned to its minimum min(xk) within an assignment ofX where: (1) xi

is assigned to v, and (2) this assignment satisfies ∀k ∈ [0, n− 2], xk ≤ xk+1. ⊓⊔

From Property 2, we know that to check the feasibility of the upper bound of xi

we have to compute bp(〈xi, . . . , xlasti〉, i,max (xi)).

Property 3. Given IncreasingSum(X, s), let i ∈ [0, n − 1] and last i be the last
intersecting index of xi, bp(〈xi, . . . , xlasti〉, i,max (xi)) =

∑

k∈[i,lasti]
max (xi).

Proof. By Definition 3, last i is the greatest index, greater than i, such that
min(xlast i) < max (xi), or i if no such an index exists. All variables xk in
〈xi, . . . , xlasti〉 are such that min(xk) ≤ max(xi), thus assigning max (xi) to xi

implies assigning a value greater than or equal to max (xi) to any xk such that
k ∈ [i + 1, last i], in order to satisfy ∀l ∈ [i + 1, last i] the constraint xl−1 ≤ xl.
Since X is ≤-consistent, for each k ∈ [i, last i] max (xi) ∈ D(xk) and the mini-
mum increase due to xk compared with

∑

xk∈[i,lasti]
min(xk) if xi = max(xi) is

max (xi)−min(xk). ⊓⊔

From Property 3 we obtain a consistency check for the maximum value of xi.
We use the following notations:

– margin = max(s)−
∑

k∈[0,n−1] min(xk); we consider
∑

k∈[0,n−1] min(xk) be-
cause our goal is here to reduce upper bounds of domains of variables in X

according to max (s).
– ∆i =

∑

k∈[i,lasti]
(max (xi)−min(xk)); ∆i is the minimum increase with re-

spect to
∑

k∈[0,n−1] min(xk) under the hypothesis that xi is fixed to max (xi).

Lemma 2. Given IncreasingSum(X, s) and i ∈ [0, n− 1], if ∆i > margin then

max (xi) is not consistent.

Proof. Obvious from Property 3. ⊓⊔

We now present our BC algorithm. Algorithm 1 prunes the maximum val-
ues in domains of variables in a ≤-consistent sequence X , using an incre-
mental computation of ∆i, starting from the last variable xn−1 and consid-
ering at each step the valid last intersection index. When the condition of
Lemma 2 is satisfied, that is, ∆i > margin , Algorithm 1 calls the procedure
FilterMaxVar(xi, last i, ∆i,margin) to decrease max(xi). This procedure is
described later.

Algorithm 1: FilterMaxVars(X, s)

1 minsum := 0;
2 for i = 0 to n− 1 do minsum := minsum +min(xi);
3 margin := max(s)−minsum; i := n− 1; last i := i; ∆i := max (xi)−min(xi);
4 while i ≥ 0 do

5 if ∆i ≤ margin then

6 oldmax := max(xi);
7 i := i− 1 ;
8 if i ≥ 0 then

9 while (min(xlasti) ≥ max(xi)) ∧ (last i > i) do

10 ∆i := ∆i − (oldmax −min(xlasti));
11 last i := lasti − 1;

12 ∆i := ∆i +max (xi)−min(xi) − (last i − i) · (oldmax −max (xi));

13 else (last i, ∆i) := FilterMaxVar(xi, last i,∆i,margin);
14 if i > 0 ∧max (xi−1) > max (xi)) then max (xi−1) := max (xi);

Figure 1 illustrates with an example of the incremental update of ∆i (lines
9-12 of Algorithm 1) when ∆i < margin and i is decremented by one.

We now describe how the procedure FilterMaxVar(xi, last i, ∆i,margin)
can be implemented to obtain a time complexity linear in the number of variables
for Algorithm 1. We thus consider that the condition of Lemma 2 is satisfied,
that is, ∆i > margin . It is required to reduce max (xi).

last = 2

x 1 2 3x x x 0x 1 2 3x x x

5 5 5 5

2

3

4 4 4

5 5 5

6 6

5

2

3

4 4 4

6 6

i=2

(1) Line 10

(2) Line 12

i=1

i i
last = 3

0

Fig. 1: Execution of Algorithm 1 with margin = 4 and 4 variables such that D(x0) =
[2, 5], D(x1) = [4, 5], D(x2) = [4, 6], D(x3) = [5, 6]. On the left side, the current index is
i = 2, last2 = 3 and we have ∆2 = 3 (bolded values). Since ∆2 < margin no pruning is
performed and the algorithm moves to the next variable (i = 1). The right side shows
that: (1) ∆1 is first updated by removing the contributions computed with the previous
maximum value of xi (oldmax = max (x2)) at the variable indexed by the previous last
intersecting index last2 = 3 (line 10 of Algorithm 1), and then last i is decreased (line
11). (2) According to the new last1 = 2, ∆1 is increased by the contribution of x1,
while the exceed over max(x2) of variables indexed between i = 1 and last1 = 2 is
removed from ∆1 (line 12).

Our aim is then to update xi and update both last i and ∆i while preserving
the property that the time complexity of Algorithm 1 is linear in the number of
variables. The principle is the following.

Algorithm 2: FilterMaxVar(xi, last i,∆i,margin)

1 while ∆i > margin do

2 steps := min(⌈∆i−margin

lasti−i+1
⌉,max(xi)−min(xlasti));

3 D(xi) := D(xi)\]max(xi) − steps ,max (xi)] ;
4 ∆i := ∆i − (last i − i+ 1) · (steps) ;
5 while (min(xlasti) ≥ max (xi)) ∧ (last i > i) do last i := last i − 1;

6 return (last i,∆i);

If we assume that all variables 〈xi, xi+1, . . . , xlasti〉 will be assigned the same
value then the minimum number of horizontal slices to remove (each slice cor-
responding to a same value, that can potentially be assigned to each variable
in 〈xi, xi+1, . . . , xlasti〉) in order to absorb the exceed ∆i − margin is equal to
⌈∆i−margin

lasti−i+1 ⌉. Then, two cases are possible.

1. If ⌈∆i−margin
lasti−i+1 ⌉ is strictly less (strictly since one extra slice is reserved for

the common value assigned to xi, xi+1, . . . , xlasti , that is, the new maxi-
mum of xi) than the number of available slices between min(xlast i) and
max (xi), namely max (xi) − min(xlasti) + 1, then removing]max (xi) −
⌈∆i−margin

lasti−i+1 ⌉,max (xi)] gives the feasible upper bound of xi.

2. Otherwise, the quantity q = max (xi)−⌈∆i−margin

lasti−i+1 ⌉ is not necessarily a feasi-
ble upper bound of xi. In this case we decrease max (xi) down to min(xlasti),
that is, we consider the number of available slices consistent with the current
last i. Then we update last i and ∆i and we repeat the process.

Algorithm 2 implements these principles. It takes as arguments the variable
xi, the last intersecting index last i of xi, ∆i and margin . It prunes the max of
xi and returns the updated pair (last i, ∆i). Figure 2 depicts an example where
the pruning of xi requires more than one step.

4

x 1 2 3x x x 0x 1 2 3x x x0x 1 2 3x x x

3

5

2

3

4 4

6 6

1

5

7

4

5

6 6

7

1

2

1

2

(1) (2) (3)

4

5

6 6

7

1

2

1

2

0

Fig. 2: Execution of Algorithm 2 with i = 0, margin = 1, ∆i = 5, and last0 = 1.
D(x0) = [1, 5], D(x1) = [4, 5], D(x2) = [6, 6], D(x3) = [6, 7]. (1) ∆0 > margin so we
compute ⌈∆0−margin

1−0+1
⌉ = 2, which is not strictly less than max (x0)−min(x1) + 1 = 2,

so steps = max (x0) − min(x1) = 1 and several phases may be required to prune
x0. (2) D(x0) := D(x0)\]5 − 1,max (x0)] = [1, 4]. ∆0 = ∆0 − (1 − 0 + 1) ∗ 1 = 3.
(min(x1) ≥ max(x0)) ∧ (1 > 0) so last0 = 1− 1 = 0. (3) ∆0 > margin so we compute
⌈∆0−margin

0−0+1
⌉ = ⌈ 3−1

0−0+1
⌉ = 2, which is strictly less than max(x0) − min(x0) + 1 = 4.

D(x0) := D(x0)\]4− 2,max(x0)] = [1, 2], and we have ∆i = margin = 1.

With respect to time complexity, recall≤-consistency ofX can be achieved in
Θ(n) before runing Algorithm 1 by traversing the sequence and ensuring for each
i ∈ [0, n− 2] that bounds of variables are consistent with xi ≤ xi+1. Therefore,
the time complexity of for achieving BC is linear in the number of variables,
since the following proposition holds with respect to Algorithm 1.

Proposition 1. Time complexity of Algorithm 1 is Θ(n).

Proof. An invariant of both Algorithm 2 and Algorithm 1 is that during the
whole pruning of X , the index last i only decreases. Moreover, in Algorithm 2, if
steps = max (xi) −min(xlasti) + 1 then last i decreases, otherwise ∆i = margin

and the algorithm ends. Thus, the cumulative time spent in the loop of line 5 in
Algorithm 2 as well as the loop of lines 8-9 in Algorithm 1 is in n, the number
of variables in X . Therefore, time complexity of Algorithm 1 is O(n). Since to
reduce domains of all the variables in X we have at least to update each of them,
this time complexity is optimum. The proposition holds. ⊓⊔

Furthermore, if minimum values of domains of variables in X are pruned
after maximum values, there is no need to recompute those maximum values:
increasing the lower bound min(xi) of a variable xi leads to a diminution of
margin and exactly the same diminution in ∆i. Therefore, applying a second
time Algorithm 1 cannot lead to more pruning. The reasoning is symmetrical if
maximum values are filtered after minimum values. As a consequence, BC can be
achieved in three phases: the first one to ensure ≤-consistency of X and adjust
the bounds of s, the second one for maximum values in domains of variables in
X , and the third one for minimum values in in domains of variables in X .

4 Conclusion and Future Work

We presented a Θ(n) BC algorithm for IncreasingSum(X, s), where X =
〈x0, x1, . . . , xn〉 is a sequence of variables and s is a variable. This constraint can
be used in problems with variable symmetries involved in a sum. A Choco [1]
implementation is available.

IncreasingSum can be used to enforce BC on the following generalization:
∀i ∈ [0, n−2], xi ≤ xi+1+cst ∧

∑

xi∈X xi = s, where cst is a constant. Indeed, we
can add n additional variables X ′, one additional variable s′ and n+1 mapping
constraints: ∀i ∈ [0, n − 1], x′

i = xi + cst · i and s′ = s +
∑

i∈[1,n−1] i · k. Then

enforcing BC on IncreasingSum(X ′, s′) also enforces BC on variables in X and
s since we use only mapping (equality) constraints. Time complexity remains
Θ(n) because we add O(n) variables.

With respect to GAC on IncreasingSum, Property 1 is not true when vari-
ables in X may have some holes in their domains. For instance, consider a
sequence X of three variables with D(x0) = D(x1) = D(x2) = {1, 3} and
a variable s with domain D(s) = {3, 6, 9}. Values 3 and 9 in D(s) are con-
sistent with IncreasingSum(X, s) while value 6 in D(s) is not consistent with
IncreasingSum(X, s). From this remark, enforcing GAC may require a check in
O(dn) per value in s. A solution to IncreasingSum corresponds to a “sorted”
solution of the SubsetSum problem, which does not make that problem easier.

References

1. Choco: An open source Java CP library, documentation manual. http://www.emn.
fr/z-info/choco-solver/, 2011.

2. M. R. Garey and D. S. Johnson. Computers and intractability : A guide to the
theory of NP-completeness. W.H. Freeman and Company, ISBN 0-7167-1045-5,
1979.

3. W. Harvey and J. Schimpf. Bounds Consistency Techniques for Long Linear Con-
straints. In CP’02 Workshop on Techniques foR Implementing Constraint program-
ming Systems (TRICS), pages 39–46, 2002.

4. J.-C. Régin and Michel Rueher. Inequality-sum: a global constraint capturing the
objective function. RAIRO - Operations Research, 39:123–139, 2005.

