
1

Modeling Problems in
Constraint Programming

Jean-Charles REGIN
ILOG, Sophia Antipolis

regin@ilog.fr

2

Plan

❏ Principles of Constraint Programming
❏ A rostering problem
❏ Modeling in CP: Principles
❏ A difficult problem
❏ A Network Design problem
❏ Modeling Over-constrained problems
❏ Discussion
❏ Conclusion

3

3 problems

❏ 3 problems will be detailed:
❍ A rostering problem (G. Pesant). This is a real world

problem. The problem is easy to solve in CP because all
the needed constraints are available. The presentation will
be constructive, that is the problem is modeled and
described at the same time

❍ A part of a real world problem. Mainly a didactic problem
which is difficult to solve in CP.

❍ A real world problem will be presented: a network design.
First the whole problem will be described and then a CP
solution will be proposed

4

Plan

❏ Principles of Constraint Programming
❏ A rostering problem
❏ Modeling in CP: Principles
❏ A difficult problem
❏ A Network Design problem
❏ Modeling Over-constrained problems
❏ Discussion
❏ Conclusion

5

Constraint programming

❏ Identify sub-problems that are easy (called constraints)

6

Constraint programming

❏ Identify sub-problems that are easy (called constraints)
❏ 1) Use specific algorithm for solving these sub-problems and for

performing domain-reduction
❏ 2) Instantiate a variable. Go to 1) and backtrack if necessary

7

Constraint programming

❏ Identify sub-problems that are easy (called constraints)
❏ 1) Use specific algorithm for solving these sub-problems and for

performing domain-reduction
❏ 2) Instantiate a variable. Go to 1) and backtrack if necessary
❏ Local point of view on sub-problems. “Global” point of view by

propagation of domain reductions

8

Constraint Programming

❏ 3 notions:
- constraint network: variables, domains, constraints
+ filtering (domain reduction)
- propagation
- search procedure (assignments + backtrack)

9

Problem = conjunction of sub-
problems

❏ In CP a problem can be viewed as a conjunction of
sub-problems that we are able to solve

❏ A sub-problem can be trivial: x < y or complex:
search for a feasible flow

❏ A sub-problem = a constraint

10

Constraints

❏ Predefined constraints: arithmetic (x < y, x = y +z, |x-y| > k, alldiff,
cardinality, sequence …

❏ Constraints given in extension by the list of allowed (or forbidden)
combinations of values

❏ user-defined constraints: any algorithm can be encapsulated
❏ Logical combination of constraints using OR, AND, NOT, XOR

operators. Sometimes called meta-constraints

11

Filtering

❏ We are able to solve a sub-problem: a method is
available

❏ CP uses this method to remove values from domain
that do not belong to a solution of this sub-problem:
filtering

❏ E.g: x < y and D(x)=[10,20], D(y)=[5,15]
=> D(x)=[10,14], D(y)=[11,15]

12

Filtering

❏ A filtering algorithm is associated with each
constraint (sub-problem).

❏ Can be simple (x < y) or complex (alldiff)

13

Arc consistency

❏ All the values which do not belong to any solution of
the constraint are deleted.

❏ Example: Alldiff({x,y,z}) with
D(x)=D(y)={0,1}, D(z)={0,1,2}
the two variables x and y take the values 0 and 1,
thus z cannot take these values.
FA by AC => 0 and 1 are removed from D(z)

14

Propagation

❏ Domain Reduction due to one constraint can lead to
new domain reduction of other variables

❏ When a domain is modified all the constraints
involving this variable are studied and so on ...

15

Why Propagation?

❏ A problem = conjunction of easy sub-problems.
❏ Sub-problems: local point of view. Propagation tries to

obtain a global point of view from independent local point
of view

❏ The conjunction is stronger that the union of independent
resolutions

16

Why Propagation?

❏ A problem = conjunction of easy sub-problems.
❏ Sub-problems: local point of view. Propagation tries to

obtain a global point of view from independent local point
of view

❏ The conjunction is stronger that the union of independent
resolution

❏ To help the propagation to have a global point of
view: use global constraints !

❏ Global constraint = conjunction of constraints

17

Search

❏ Backtrack algorithm with strategies:
try to successively assign variables with values. If a
dead-end occurs then backtrack and try another
value for the variable

❏ Strategy: define which variable and which value will
be chosen.

❏ After each domain reduction (i.e assignment) filtering
and propagation are triggered

18

Plan

❏ Principles of Constraint Programming
❏ A rostering problem
❏ Modeling in CP: Principles
❏ A difficult problem
❏ A Network Design problem
❏ Modeling Over-constrained problems
❏ Discussion
❏ Conclusion

19

Rostering (G. Pesant)

Mon Tue Wed Thu Fri Sat Sun

D
E
N

M. Green M. Red
Mrs. Blue M. Yellow

20

Rostering

Mon Tue Wed Thu Fri Sat Sun

D
E
N

M. Green M. Red
Mrs. Blue M. Yellow

Each works at most one shift per day

21

Rostering

Mon Tue Wed Thu Fri Sat Sun

D
E
N

M. Green M. Red
Mrs. Blue M. Yellow

xij ∈{g,b,r,y}

xiD ≠ xiE, xiD ≠ xiN, xiE ≠ xiN Mon ≤ i ≤ Sun

22

Rostering

Mon Tue Wed Thu Fri Sat Sun

D
E
N

enum Days = {mon,tue,wed,thu,fri,sat,sun}
enum Shifts = {D,E,N}
enum Workers = {green,white,red,yellow}
var Workers onDuty[Days,Shifts]
forall(i in Days)

forall(j,k in Shifts: j < k)
onDuty[i,j] ≠ onDuty[i,k]

M. Green M. Red
Mrs. Blue M. Yellow

23

Rostering

Mon Tue Wed Thu Fri Sat Sun

D
E
N

enum Days = {mon,tue,wed,thu,fri,sat,sun}
enum Shifts = {D,E,N}
enum Workers = {green,white,red,yellow}
var Workers onDuty[Days,Shifts]
forall(i in Days)

forall(j,k in Shifts: j < k)
onDuty[i,j] ≠ onDuty[i,k]

M. Green M. Red
Mrs. Blue M. Yellow

24

Mutual exclusion

❏ A set of variables must take on distinct values.
❏ forall(i in Days)

forall(j,k in Shifts: j < k)
onDuty[i,j] ≠ onDuty[i,k]

25

Mutual exclusion

❏ A set of variables must take on distinct values.
❏ forall(i in Days)

forall(j,k in Shifts: j < k)
onDuty[i,j] ≠ onDuty[i,k]

❏ Can be replaced by
forall(i in Days)

alldifferent(onDuty[i])

26

Cardinality

Mon Tue Wed Thu Fri Sat Sun

D
E
N

M. Green M. Red
Mrs. Blue M. Yellow

This is not a good solution

27

Cardinality

Mon Tue Wed Thu Fri Sat Sun

D
E
N

M. Green M. Red
Mrs. Blue M. Yellow

var 0..7 nbShifts[Workers]
distribute(nbShifts,Workers,onDuty)
forall(k in Workers)

nbShifts[k] ≥ 5

28

Cardinality

Mon Tue Wed Thu Fri Sat Sun

D
E
N

M. Green M. Red
Mrs. Blue M. Yellow

var 0..7 nbShifts[Workers]
distribute(nbShifts,Workers,onDuty)
forall(k in Workers)

nbShifts[k] ≥ 5

29

Dual Model

Mon Tue Wed Thu Fri Sat Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

enum Jobs = {D,E,N,-}
var Jobs job[Days,Workers]

implicitly, each works at most one shift per day.
But every job has to be performed and by only one
worker

30

Dual Model

-

N

E

D

Mon Tue Wed Thu Fri Sat Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

implicitly, each works at most one shift per day.
But every job is performed by only one worker
forall(i in Days)
 distribute([1,1,1,1],Jobs,job[i])

31

Dual Model: weights on jobs

-

N

E

D

Mon Tue Wed Thu Fri Sat Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

Jobs have weights: D=1.; E=0.8; N=0.5; -=0

float load[Jobs] = {1.0, 0.8, 0.5, 0.0}
job[i,k] ∈ {D,N} ↔ load[job[i,k]] ∈ {1.0, 0.5}

32

Dual Model: weights on jobs

-

N

E

D

Mon Tue Wed Thu Fri Sat Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

Jobs have weights: D=1.; E=0.8; N=0.5; -=0

float load[Jobs] = {1.0, 0.8, 0.5, 0.0}
forall(k in Workers)

sum(i in Days) load[job[i,k]] ≥ 3.0

33

Dual Model: weights on jobs

EE-EEEE

-DED-DN

NNNNNN-

D-D-D-D

Mon Tue Wed Thu Fri Sat Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

Jobs have weights: D=1.; E=0.8; N=0.5; -=0

float load[Jobs] = {1.0, 0.8, 0.5, 0.0}
forall(k in Workers)

sum(i in Days) load[job[i,k]] ≥ 3.0

34

Length of Runs

EE-EEEE

-DED-DN

NNNNNN-

D-D-D-D

Mon Tue Wed Thu Fri Sat Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

This is not nice, isn’t it?

35

Length of Runs

EE-EEEE

-DED-DN

NNNNNN-

D-D-D-D

Mon Tue Wed Thu Fri Sat Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

New constraint: length of runs defined by a
range, i.e. between a min and a max value

36

Length of Runs

EE-EEEE

-DED-DN

NNNNNN-

D-D-D-D

Mon Tue Wed Thu Fri Sat Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

int min[Jobs] = {2,1,1,1}
int max[Jobs] = {4,4,4,7}
forall(k in Workers)

stretch(min,max,job[⋆,k])

37

Length of Runs

EE-EEEE

--DDD--

NNN-NNN

DDEN-DD

Mon Tue Wed Thu Fri Sat Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

int min[Jobs] = {2,1,1,1}
int max[Jobs] = {4,4,4,7}
forall(k in Workers)

stretch(min,max,job[⋆,k])

38

Pattern Constraint

EE-EEEE

--DDD--

NNN-NNN

DDEN-DD

Mon Tue Wed Thu Fri Sat Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

No change of shift type without a rest period
Forward rotation (D... E... N... D...)

39

Pattern Constraint

EE-EEEE

--DDD--

NNN-NNN

DDEN-DD

Mon Tue Wed Thu Fri Sat Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

No change of shift type without a rest period
Forward rotation (D... E... N... D...)
forall(k in Workers)

regular(A,job[⋆,k])

40

Pattern Constraint

--DDD--

DD-NNNN

NNN-EEE

EEEE-DD

Mon Tue Wed Thu Fri Sat Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

No change of shift type without a rest period
Forward rotation (D... E... N... D...)
forall(k in Workers)

regular(A,job[⋆,k])

41

Real life rostering

◦ S M T W T F S S M T W T F S S M T W T F S S M T W T F S
23796 - - - - D D N N - - D - - - - D - D D - D D - - - - - -
603042 D D D D E - - - D D D D - D D D D D E - - - D D D D - D
12310 D D - - - - - - - - - - - D D D - - - - - - - - - - - D
511811 D D D - D D - - D D - - - D D D D - D D - - D D - - - D
60324 - - D D D - D D - D D D - - - - - D D - D D D - D D D -
603095 E - - E E E - - - - - - E E E - - E E E - - - - E - - E
603230 - D D D D - D D D D - D D - - D D D D - D D D - D D D -
510723 D D D - - D - - D D D - - D D D D - - D - - D D D - - D
511104 - R R R R R - - R R R R R - - - - E E - E E - - E E E -
34108 - D D D D - D D D D - - - - - R R R R R D D - - D - - -
11866 - D - D D D E E - - D - - - - D - D D D E E - D - - - -
35022 - R R R R R D D - - - - - - - - - - D - D D D - D D D -
512287 E E E - D D E E - - - - - E E E E - D - E E - - E - - E
56507 D D - D D D - - D - - - - D D D - D D D - - D - - - - D
512281 - E - D D - D D E - - - - - - E - D D - D D E - - - - -
511066 - D D - - - D D - - - - D - - - - - - - D D - - D D D -
600955 D D - D D - - - - - - - - D D D - D D - - - - - - - - D
602576 D D - D D D - - - - - - - D D D - D D D - - - - - - - D
600315 - - T T - - T T - T - T T - - - T - - T T T - - T T T -
511865 - - - - - - T T - T T T T - - - - - - - - - R R R R R T

42

Real life rostering

◦ S M T W T F S S M T W T F S S M T W T F S S M T W T F S
603287 - - - - - - E E - - E E E - - - - - - - E E - - E E E -
603138 - - E E E E E E - E E E E - - - E E E E E E - E E E E -
510595 - D D D - - D D R R R R R - - R R R R R D D - - D D D -
53033 - R R R R R D D D D - - - D D D D N N N - - D D D - - D
602712 D D D N N N - - D D D - - D D D D N N N - - D D D - - D
601933 D D - D D D - - D D D D - D D D D D N N - - D D D - - D
603134 D D D N N N - - D D D - - D D D D N N N - - D D D - - D
511938 - - - - D D D D - - D D D - - - - D D - D D D - D D - -
601659 N N N - N N - - N N - - - N N N - N N N - - N N - - - N
62273 N N - - N N - - N - N - - N N N - N N N - - N - - - - N
601630 - D D D D - D D - - - D D - - D D D - - D D - - D D D -
601983 N N - N N - - - - - - - - N N N N N - - - - - - - - - N
511545 - N N - - - D D - - - N N - - - - - - D N N - - N N N -
603157 D - D D D E - - D D D - D D D - D D D - - - D D D E E E
603361 - D D D E - D D D E - D D - - D D D E - D D D - D D D -
602759 - - - - - - D D - D D D - - - - - - - - D D - - D D D -
73999 D D D - D - - - - - - - - - - R R R R R - - R R R R R -
601949 - D - - - - D D - - - - D - - - - - - - D D - - D D - -
511668 D E - - - - - D E - - - - - D E - - - - - D E - - - - -
7096 - R R R R R - - R R R R R - D D - D D - D D D - D D D -
602373 - D D D D D - - D D D D D - - D D D D D - - D D D D D -

43

Plan

❏ Principles of Constraint Programming
❏ A rostering problem
❏ Modeling in CP: Principles
❏ A difficult problem
❏ A Network Design problem
❏ Modeling Over-constrained problems
❏ Discussion
❏ Conclusion

44

Modeling: principles

❏ What a good model is?
❏ Symmetries
❏ Implicit constraints
❏ Global constraints
❏ Relevant and redundant constraints
❏ Back propagation
❏ Dominance rules

45

Good Model?

❏ A good model is a model that leads to an efficient
resolution of a given problem

46

Good Model?

❏ A good model is a model that leads to an efficient
resolution of a given problem

❏ Deals with several notions:

Symmetries
Implicit constraints
Global constraints

Relevant and redundant constraints
Back propagation
Dominance rules

47

Symmetries

❏ Tutorial on this topic at CP’04
❏ The complexity of a problem can often be reduced by detecting

intrinsic symmetries
❏ When two or more variables have identical characteristics, it is

pointless to differentiate them artificially:
❍ The initial domains of these variables are identical
❍ These variables are subject to the same constraints
❍ The variables can be permuted without changing the statement of

the problem
❏ Usually symmetries are removed by introducing an order

between variables

48

Implicit constraints

❏ See work of B. Smith
❏ An implicit constraint makes explicit a property that

satisfies any solution implicitly.
❏ D(x1)=D(x2)=D(x3)=D(x4)={a,b,c,d}
❏ Constraints: b,c and d have to be taken at least 1

49

Implicit constraints

❏ See work of B. Smith
❏ An implicit constraint makes explicit a property that

satisfies any solution implicitly.
❏ D(x1)=D(x2)=D(x3)=D(x4)={a,b,c,d}
❏ Constraints: b,c and d have to be taken at least 1
❏ Filtering algorithm: if b is not assigned and if there is

only one variable x that contains b in its domain then
x=b

50

Implicit constraints

❏ See work of B. Smith
❏ An implicit constraint makes explicit a property that

satisfies any solution implicitly.
❏ D(x1)=D(x2)=D(x3)=D(x4)={a,b,c,d}
❏ Constraints: b,c and d have to be taken at least 1
❏ Filtering algorithm: if b is not assigned and if there is

only one variable x that contains b in its domain then
x=b

❏ Problem: if x1=a and x2=a then nothing is deduced

51

Implicit constraints

❏ See work of B. Smith
❏ An implicit constraint makes explicit a property that satisfies

any solution implicitly.
❏ D(x1)=D(x2)=D(x3)=D(x4)={a,b,c,d}
❏ Constraints: b,c and d have to be taken at least 1
❏ Filtering algorithm: if b is not assigned and if there is only one

variable x that contains b in its domain then x=b
❏ Problem: if x1=a and x2=a then nothing is deduced
❏ Implicit constraints: a can be taken at most 1

b,c,d can be taken at most 2
❏ From the simultaneous presence of some constraints

implicit constraints can be deduced

52

Global constraints

❏ A global constraint is a conjunction of constraints.
This conjunction often takes into account implicit
constraint deduced from the simultaneous presence
of the other constraints

❏ This is the case for the previous example with the
global cardinality constraint

❏ Use the strongest filtering algorithm as you can at
the beginning

❏ It is rare to be able to solve a problem with weak FA
and not to be able to solve it with strong FA

53

Global constraint: Alldiff results

❏ Color the graph with cliques:
c0 = {0, 1, 2, 3, 4}
c1 = {0, 5, 6, 7, 8}
c2 = {1, 5, 9, 10, 11}
c3 = {2, 6, 9, 12, 13}
c4 = {3, 7, 10, 12, 14}
c5 = {4, 8, 11, 13, 14}

❏ clique size:27 Global: #fails: 0 cpu time: 1.212 s
Local: #fails: 1 cpu time: 0.171 s

clique size:31 Global: #fails: 4 cpu time: 2.263 s
Local: #fails: 65 cpu time: 0.37 s

clique size:51 Global: #fails: 501 cpu time: 25.947 s
Local: #fails: 24512 cpu time: 66.485 s

clique size:61 Global: #fails: 5 cpu time: 58.223 s
Local: ?????????????

54

Relevant Constraints

❏ At first glance it seems that adding a constraint
which removes some symmetries, or which is an
implicit or a global constraint improves the current
model. This is FALSE

❏ Because:
❍ The new filtering algorithm can delete no value, because

everything is already deduced by the combination of
constraints

❍ The new filtering algorithm can remove some values and
impacts the variable-value strategy (more backtracks can
be needed to reach the first solution)

55

Relevant constraints

❏ A constraint is relevant w.r.t. a model if the
introduction of this constraint:

❍ Is needed by the definition of the problem
❍ Or if it permits to remove some symmetries, or it is an

implied or a global constraint, and the introduction of this
constraint improves the search for the solution in term of
performance

❏ A constraint is redundant w.r.t. a model if the
constraint is not relevant w.r.t. the model.

56

Back propagation

❏ Consider an optimization problem with an objective
variable obj.

❏ The back propagation is the consequences of the
modifications of the variable obj

❏ Example:
∑x = obj.
Back propagation = modification of the x variable
when obj is modified

57

Back propagation

❏ Try to improve the back propagation, because when
a solution with a cost c is found the constraint obj < c
is added and a new solution is sought.

❏ It is important to use constraints involving cost
variable. For instance : gcc with cost

58

Dominance rules

❏ A dominance rule is a rule that eliminates some
solutions that are not optimal, or some optimal
solutions but not all

❏ This is a kind of symmetry breaking in regards to the
optimality

❏ An example is given in the resolution of the next
problem

59

A bad model?

❏ Golomb ruler (see CSP lib):
“A Golomb ruler may be defined as a set of n
integers 0=x1 < x2 < … < xn s.t. the n(n-1)/2
differences (xj - xi) are distinct. Goal minimize xn.”

❏ with CP difficult for n > 13.
❏ x1,…,xn = variables; (xi-xj)= variables. Alldiff

involving all the variables.

60

Alldiff

|x1-x2|

|x1-x3|

|x2-x3|

x1

x2

x3

1

2

3

4

5

6

7

Not a good solution
Bad incorporation
of constraint
|xi – xj| in alldiff

61

Plan

❏ Principles of Constraint Programming
❏ A rostering problem
❏ Modeling in CP: Principles
❏ A difficult problem
❏ A Network Design problem
❏ Modeling Over-constrained problems
❏ Discussion
❏ Conclusion

62

Even Round Robin

- 1- 6+ 4- 2+ 7- 5+ 38

+ 2+ 1- 5+ 3- 8+ 6- 47

- 3+ 8- 1- 4+ 2- 7+ 56

+ 4- 2+ 7+ 1- 3+ 8- 65

- 5+ 3- 8+ 6- 1- 2+ 74

+ 6- 4+ 2- 7+ 5+ 1- 83

- 7+ 5- 3+ 8- 6+ 4- 12

+ 8- 7+ 6- 5+ 4- 3+ 21 The schedule is given
You have to find the
place where the
games are played

+ home game
- away game

63

Even Round Robin

- 1- 6+ 4- 2+ 7- 5+ 38

+ 2+ 1- 5+ 3- 8+ 6- 47

- 3+ 8- 1- 4+ 2- 7+ 56

+ 4- 2+ 7+ 1- 3+ 8- 65

- 5+ 3- 8+ 6- 1- 2+ 74

+ 6- 4+ 2- 7+ 5+ 1- 83

- 7+ 5- 3+ 8- 6+ 4- 12

+ 8- 7+ 6- 5+ 4- 3+ 21
A break for a team
is two consecutive
home games or two
consecutive away
games

Home break

Away break

Goal: minimize the number of breaks

64

Model: Variables

- 1- 6+ 4- 2+ 7- 5+ 38

+ 2+ 1- 5+ 3- 8+ 6- 47

- 3+ 8- 1- 4+ 2- 7+ 56

+ 4- 2+ 7+ 1- 3+ 8- 65

- 5+ 3- 8+ 6- 1- 2+ 74

+ 6- 4+ 2- 7+ 5+ 1- 83

- 7+ 5- 3+ 8- 6+ 4- 12

+ 8- 7+ 6- 5+ 4- 3+ 21

place variables:
for each team i and for each period j:
a 0-1 variable Pij is defined

break variables:
for each team and for each pair of
consecutive period:
a 0-1 variable Bij is defined.
Bij=1 means that the team i has a
break for the games played at period
J and j+1

65

Model: Objective

- 1- 6+ 4- 2+ 7- 5+ 38

+ 2+ 1- 5+ 3- 8+ 6- 47

- 3+ 8- 1- 4+ 2- 7+ 56

+ 4- 2+ 7+ 1- 3+ 8- 65

- 5+ 3- 8+ 6- 1- 2+ 74

+ 6- 4+ 2- 7+ 5+ 1- 83

- 7+ 5- 3+ 8- 6+ 4- 12

+ 8- 7+ 6- 5+ 4- 3+ 21 Objective Variable:

#B is the variable that counts the
total number of breaks for the
schedule

66

Model: Constraints

- 1- 6+ 4- 2+ 7- 5+ 38

+ 2+ 1- 5+ 3- 8+ 6- 47

- 3+ 8- 1- 4+ 2- 7+ 56

+ 4- 2+ 7+ 1- 3+ 8- 65

- 5+ 3- 8+ 6- 1- 2+ 74

+ 6- 4+ 2- 7+ 5+ 1- 83

- 7+ 5- 3+ 8- 6+ 4- 12

+ 8- 7+ 6- 5+ 4- 3+ 21 place-opponent constraint:
i plays k at home at period j
is equivalent to
k plays i away at period j

break constraint:
if a team i plays for two consecutive
periods j and j+1 at home or away
then Bij=1 and conversly.

#B=∑i∑j Bij (i=1..n, j=1..n-2)

67

First test

?730.70time (s)

?352,7013,89916#bk

121086#teams

68

First test

?730.70time (s)

?352,7013,89916#bk

121086#teams

The goal is 20

We have to work!

69

Symmetry?

- 1- 6+ 4- 2+ 7- 5+ 38

+ 2+ 1- 5+ 3- 8+ 6- 47

- 3+ 8- 1- 4+ 2- 7+ 56

+ 4- 2+ 7+ 1- 3+ 8- 65

- 5+ 3- 8+ 6- 1- 2+ 74

+ 6- 4+ 2- 7+ 5+ 1- 83

- 7+ 5- 3+ 8- 6+ 4- 12

+ 8- 7+ 6- 5+ 4- 3+ 21

Problem:
Difficult to identify one

70

Study of the problem

❏ There is no schedule with less than n-2 breaks
❏ Proof: consider 2 teams a, b

Assume a has no break
Assume b has no break: this means that a and b
“alternate” (a is + - + - + - … and b is - + - + - + …)
because a plays b at a moment.
Now consider any other team c, then c has
necessarily a break because c cannot alternate
simultaneously with a and with b

71

N-2 as lower bound

❏ If the minimal value is close to n-2 then it is more
interesting to try successively the values from n-2
w.r.t. an increasing order than finding a first solution
and then trying to reduce the objective value

72

Relevant constraints

❏ For each two consecutive
periods the number of away
break (- -) is equal to the
number of home breaks (+ +)

❏ Proof: for each period the
number of + is equal to the
number of -. We cannot have
an odd number of non breaks.

❏ Corollary: #B is even --

+-

++

-+

73

Second test

?730.70time (s)

?352,7013,89916#bk

121086#teams

?20.80.20time (s)

?101,8449705#bk

121086#teams

74

Relevant constraints

❏ Suppose that for a team we have
+ . -
and exactly one break is required
then we can deduce: + . - + - + -

❏ Property: #Bi(j,k): number of break for team i
between period j and k

j a period, k a period with k = j + q
Pij=Pik ⇔ #Bi(j,k) has the parity of q

75

Third test

??20.80.2time (s)

??101,844970#bk

1412108#teams

?55.34.00.1time (s)

?135,12911,542226#bk

1412108#teams

76

Relevant constraint

❏ As proved at the beginning: there are at most two
teams with no break

77

Fourth test

?55.34.00.1time (s)

?135,12911,542226#bk

1412108#teams

904.41.370.40.1time (s)

1,716,5132,43584641#bk

1412108#teams

78

Variable-value strategy

❏ Strategy:
1) The #Bi variables with domain-min
2) The place variables for the first period
3) the break variables by trying first value 1
4) the place variables

79

Fifth test

904.41.370.40.1time (s)

1,716,5132,43584641#bk

1412108#teams

397.11.180.40.1time (s)

711,4082,20984641#bk

1412108#teams

80

Dominance rules

+ y- ij

- x+ ji

y- ij

x+ ji

- y- ij

- x+ ji

- y- ij

+ x+ ji

+ y- ij

+ x+ jibreak break

break

break

81

Dominance rules

+ y- ij

- x+ ji

- y- ij

- x+ ji

- y- ij

+ x+ ji

+ y- ij

+ x+ jibreak break

break

break

DR: If i < j then break on i is forbidden for the two first period

82

Dominance rules

+ y- ij

- x+ ji

- y- ij

- x+ ji

- y+ ij

+ x- ji

+ y+ ij

+ x- jibreak break

break

break

DR: If i < j then break on i is forbidden for the two first period

This is possible. If there is a break then if we swap the location
the number of break is never increased

break

83

Dominance rules

❏ The dominance rule can be defined for the first two
column and for the last two columns

❏ It is also possible to define dominance rules for the
middle, but this is quite complex.

84

Final result

❏ 16 teams in 5s
❏ 18 teams in 20s
❏ 20 teams in 200s

85

Plan

❏ Principles of Constraint Programming
❏ A rostering problem
❏ Modeling in CP: Principles
❏ A difficult problem
❏ A Network Design problem
❏ Modeling Over-constrained problems
❏ Discussion
❏ Conclusion

86

The ROCOCO Project

❏ France Telecom R&D ISE
❍ Problem and benchmark definition
❍ Algorithm validation

❏ Research laboratories: INRIA Numopt, LRI Orsay,
PRiSM Versailles, Evry, …

❍ Lower bounds: Lagrangean relaxation, column
generation, cuts

❍ Optimization techniques: genetic algorithms
❏ ILOG

❍ Optimization techniques: constraint programming,
mixed integer programming, column generation

87

The Problem (1)

❏ Routing of Communications
❍ Mono-routing: each demand from a point p to a point q

must follow a unique path
❏ Dimensioning of Links

❍ The capacity of each link must exceed the sums of the
demands going through the link

❏ Additional Constraints
❍ Depend on the customer for whom the network is

designed

88

The Problem (2)
Data:

• Customer traffic
demands

• Possible links,
capacities and
costs

S1 S2

S3

S4

S1
S2

S3

S4

Result:
❍ Minimal cost

network able
to
simultaneousl
y respond to
all the
demands

❍ Route for
each demand

27Kb/s

115Kb/s

Rented capacity
256Kb/s

89

The Problem (3)

❏ Cost minimization principle
❍ Traffic demands share link capacities

S1 S2

S3

512Kb/s
128Kb/s

115Kb/s

256Kb/s

90

The Problem (4)

Demands share links

❍ ∑ demandsi→j ≤ capacityi→j

❍ Technological constraints256K
b/s

64K
b/s

64K
b/s

64K
b/s

64K
b/s

128K
b/s

128K
b/s

64K
b/s

64K
b/s

128K
b/s

91

The Problem (5)

❏ Side constraints
❍ Quality of service
❍ Reuse of existing equipment (limit on the number of ports,

maximal traffic at a node)

❍ Commercial and legal constraints
❍ Possible future network evolution
❍ Network management (e.g., traffic concentration)

64K
b/s

64K
b/s

64K
b/s

64K
b/s

92

Data

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Price

2,4kbit/s 4,8kbit/s 9,6kbit/s 19,2kbit/s 64kbit/s 128kbit/s 256kbit/s 1920kbit/s1984kbit/s 2048kbit/s

Capacity

11km
50km
400km

93

Optional Constraints

❏ Security: some commodities to be secured cannot go through unsecured nodes
and links

❏ No line multiplication: at most one line per arc.
❏ Symmetric routing: demands from node p to node q and demands from node q

to node p are routed on symmetric paths.
❏ Number of bounds (hops): the number of arcs of the path used to route a

given demand is limited.
❏ Number of ports: the number of links entering into or leaving from a node is

limited.

❏ Maximal traffic: the total traffic managed by a given node is limited.

64K
b/s

64K
b/s

64K
b/s

64K
b/s

94

Numerical Characteristics

95

Mixed Integer Programming

96

Constraint Programming

❏ Routing variables: paths (D set variables)
❍ A set of arcs joining the origin to the destination of the

demand
❍ Basic functions : impose or forbid an arc (or a node)

❏ Dimensioning variables: chosen capacity levels (M
enumerated variables)

❏ Specific constraints and constraint propagation
algorithms

97

Constraint Programming

Decision: forbidden node

Nodes and arcs forbidden
by propagation

Decision: forbidden node

Nodes and arcs imposed
by propagation

98

Path representation in CP

❏ “Classical” model:
Graph represented by the nodes:
One variable per node
Value = possible neighboor

❏ Path from s to t: alldiff on nodes.

99

Path representation in CP

s a

b c

d e

f t

D(s)={a,b}, D(a)={s,b,c,d}, D(b)={s,a,c}, D(c)={a,b}
D(d)={a,e,f}, D(e)={d,t}, D(f)={d,t}, D(t)={s}

100

Path representation in CP

s a

b c

d e

f t

D(s)={a,b}, D(a)={s,b,c,d}, D(b)={s,a,c}, D(c)={a,b}
D(d)={a,e,f}, D(e)={d,t}, D(f)={d,t}, D(t)={s}

101

Path representation in CP

s a

b c

d e

f t

Problem if some variables do not belong to the path:
What is the value assigned to these variables?

102

Path representation in CP

s a

b c

d e

f t

A dummy value is added to each domain: BAD IDEA
D(s)={a}, D(a)={c}, D(c)={b}, D(b)={dummyb},
D(d)={e}, D(e)={t}, D(f)={dummyf}, D(t)={s}

103

Path representation in CP

s a

b c

d e

f t

Loops are allowed (var links to itself): GOOD IDEA
D(s)={a}, D(a)={c}, D(c)={b}, D(b)={b},
not possible: b has been already taken by c

104

Path representation in CP

❏ “Classical” model:
- One var per node
- Alldiff constraint: cost for the matching: O(m) per
modification

105

Rococo in CP

❏ Manipulate only graph abstractions
❍ Nodes
❍ Valued links
❍ Shortest paths …

ILOG Solver

Rococo Program

Optimized graph API

106

New model:

❏ General point of view: we search for a subgraph.
Two entities:
- Digraph class
- DigraphVar class

❏ A DigraphVar is a subgraph of a digraph w.r.t.
properties, for instance: path.
It is defined from a Digraph

❏

107

New model:

❏ General point of view: we search for a subgraph.
Two entities:
- Digraph class
- DigraphVar class

❏ A DigraphVar is a subgraph of a digraph w.r.t.
properties, for instance: path.
It is defined from a Digraph

❏ API similar to setvar API

108

Digraph

❏ class IlcDigraph {
IlcDigraph(IlcInt nbNodes,IlcIntArray from,IlcIntArray to);
IlcInt getNbNodes()const;
IlcInt getNbArcs()const;
IlcInt getNbOutgoingArcs(const IlcInt node) const;
IlcInt getNbIncomingArcs(const IlcInt node) const;
IlcInt getEmanatingNode(const IlcInt arc)const;
IlcInt getTerminatingNode(const IlcInt arc)const;
IlcInt getFirstOutgoingArc(const IlcInt node)const;
IlcInt getNextOutgoingArc(const IlcInt node, const IlcInt arc)const;
IlcInt getFirstIncomingArc(const IlcInt node)const;
IlcInt getNextIncomingArc(const IlcInt node, const IlcInt arc)const;

109

Digraph Variable

❏ Class DigraphVar{
IlcDigraphVar(IlcManager m, IlcDigraph g);
IlcIntSetVar getNodesVar()const; IlcIntSetVar getArcsVar()const;
IlcIntSetVar getSourcesVar()const; IlcIntSetVar getSinksVar()const;
IlcBool isBound()const;
IlcBool isAPath()const;
// accessors
IlcBool isArcRequired(IlcInt arc)const;
IlcBool isArcPossible(IlcInt arc)const;
IlcBool isNodeRequired(IlcInt node)const;
IlcBool isNodePossible(IlcInt node)const;
IlcBool isSourceRequired(IlcInt node)const;
IlcBool isSourcePossible(IlcInt node)const;
IlcBool isSinkRequired(IlcInt node)const;

IlcBool isSinkPossible(IlcInt node)const;

110

Digraph Variable

❏ Class DigraphVar {
// modificators
void removeAllOutgoingArcs(IlcInt node)const;
void removeAllIncomingArcs(IlcInt node)const;
void removeAllOutgoingArcsButArc(IlcInt node, IlcInt arc)const;
void removeAllIncomingArcsButArc(IlcInt node, IlcInt arc)const;
void removeArcPossible(IlcInt arc)const;
void addArcRequired(IlcInt arc)const;
void removeNodePossible(IlcInt node)const;
void addNodeRequired(IlcInt node)const;
void removeSinkPossible(IlcInt node)const;
void addSinkRequired(IlcInt node)const;
void removeSourcePossible(IlcInt node)const;
void addSourceRequired(IlcInt node)const;

111

Digraph Variable

❏ Class DigrapVar{
// for iterations
IlcInt getFirstOutgoingArc(IlcInt node)const;
IlcInt getNextOutgoingArc(IlcInt node, IlcInt arc)const;
IlcInt getFirstIncomingArc(IlcInt node)const;
IlcInt getNextIncomingArc(IlcInt node, IlcInt arc)const;

IlcDigraph getDigraph()const;
IlcInt getNbIncomingArcs(IlcInt node)const;
IlcInt getNbOutgoingArcs(IlcInt node)const;

112

Digraph Variable

❏ Class DigraphVar{
// graph functions
IlcInt getFirstArcPossibleOnShortestPath(IlcIntDistanceFunctionI* d,

const IlcInt source,
const IlcInt sink,
IlcInt dem=1)const;

 IlcInt computeShortestPathDistance(IlcIntDistanceFunctionI* dist,
 const IlcInt source,

 const IlcInt sink,
 IlcInt dem=1)const;

IlcIntArray computeShortestPath(IlcIntDistanceFunctionI* dist,
 const IlcInt source,

 const IlcInt sink,
 IlcInt dem=1)const;

113

Distance Function

❏ class IlcIntDistanceFunctionI{
IlcIntDistanceFunctionI(IlcDigraph g,IlcInt maxCost);

 virtual IlcInt getCost(IlcDigraphVar var,
 IlcInt arc,
 IlcInt dem)=0;

};

114

Path Constraints

❏ IlcConstraint IlcSimplePath(IlcDigraphVar g,
 IlcInt source,
 IlcInt sink);

❏ IlcConstraint IlcShortestPath(IlcDigraphVar g,
 IlcInt source,

 IlcInt sink,
 IlcIntVar obj,

 IlcIntDistanceFunctionI* dist);

115

Element constraint

❏ enum IlcGraphProperty {
IlcNodeRequired=0L,
IlcSourceRequired=1,
IlcSinkRequired=2,
IlcEmanatingRequired=3,
IlcTerminatingRequired=4,

IlcTraversedRequired=5,
IlcArcRequired=20};

❏ IlcConstraint IlcGraphElement(IlcInt item,
 IlcDigraphVarArray gvs,

 IlcIntSetVar var,
 IlcGraphProperty pte);

116

Selectors

❏ class IlcDigraphSelectDigraphVarI {
IlcDigraphSelectDigraphVarI(){}
virtual IlcInt select(IlcDigraphVarArray vars)=0;

};

❏ class IlcDigraphSelectArcI {
IlcDigraphSelectArcI(){}
virtual IlcInt select(IlcDigraphVarArray vars, IlcInt index)=0;

};

117

Selectors (cont’d)

❏ class IlcDigraphSelectShortestPathArcI : IlcDigraphSelectArcI {
IlcDigraphSelectShortestPathArcI(IlcIntDistanceFunctionI* fn);
virtual IlcInt select(IlcDigraphVarArray vars, IlcInt index);
virtual IlcInt getSource(IlcDigraphVarArray vars,

 IlcInt index)=0;
virtual IlcInt getSink(IlcDigraphVarArray vars, IlcInt index)=0;
virtual IlcInt getDemand(IlcDigraphVarArray vars,

 IlcInt index)=0;
};

118

Goals

❏ IlcGoal IlcDigraphRequireArc(IlcManager m,
 IlcDigraphVar digraph,

 IlcInt arcIndex);

❏ IlcGoal IlcDigraphRemoveArc(IlcManager m,
 IlcDigraphVar digraph,
 IlcInt arcIndex);

❏ IlcGoal IlcDigraphAddArc(IlcManager m,
 IlcDigraphVarArray vars,

 IlcInt index,
 IlcDigraphSelectArcI* selectArc);

119

Goals (cont’d)

❏ IlcGoal IlcDigraphInstantiate(IlcManager m,
 IlcDigraphVarArray vars,

 IlcInt index,
 IlcDigraphSelectArcI* selectArc);

❏ IlcGoal IlcDigraphGenerate(IlcManager m,
 IlcDigraphVarArray vars,
 IlcDigraphSelectDigraphVarI* selectD,

 IlcDigraphSelectArcI* selectArc);

120

Why not PathVar?

❏ Path is a property of a graph. We prefer to express
properties by constraint

❏ In any cases, we need to be able to test if an object
is a path/tree/cycle …

121

Rococo in CP

❏ Advantages of digraph variables:
❍ Simple
❍ Open to many additional constraints
❍ Much more efficient than basic constraint programming

(combines constraint programming with optimization
algorithms on graphs)

122

Rococo in CP

❏ Search strategy: select the most important demand
and the path for which the additional (marginal) cost
for routing this demand is minimal

❍ Shortest path problem with constraints
❍ Successive constraints: impose the last arc, then the previous

arc, ..., and finally the first arc of the shortest path
❍ Each of these added constraints leads to creating a choice point:

upon backtracking, the imposed arc is forbidden and a new
shortest path, taking this interdiction into account, computed

123

Improvements of CP

❏ Direct constraint between variables representing the paths and
variables representing the traffic through each node

❏ Use of Parallel Solver
❍ A few lines of code

❏ Modification of the tree-search traversal strategy
❍ Branch more close to the root of the tree

124

Results
#pb CP deviation MIP deviation GC deviation
A04 0.00% 0.00% 0.00%
A05 0.00% 0.00% 0.00%
A06 0.00% 0.00% 0.00%
A07 0.01% 1.42% 0.60%
A08 0.69% 9.06% 5.11%
A09 1.25% 19.44% 12.85%
A10 1.57% fail fail
B10 10.62% 12.04% 13.40%
B11 19.20% 12.46% 11.70%
B12 13.49% 13.32% 9.62%
C10 1.84% 3.24% 2.72%
C11 5.90% 9.11% 17.83%
C12 16.20% fail 12.26%

125

Results

❏ France Telecom considers that CP gives the most
interesting result.

❏ CP approach has been optimized mainly for A
series.

❏ A lot of work could be done for the other series
❏ Result of Column Generation comes from a PhD

thesis (A. Chabrier) mainly dedicated to this problem

126

Pros and Cons of Different
Techniques (1)

❏ Constraint Programming:
+ Global constraints on paths
– The overall cost is a sum of many step functions (almost no propagation)

❏ Mixed Integer Programming:
+ Sum objective handled with a global view
– No good model for mono-routing (in the relaxation, the LP solver provides a

flow)
– Bad continuous relaxation of the step functions

❏ Column Generation:
+ Sum objective handled with a global view
+ A column is a path
– Bad continuous relaxation of the step functions

127

Pros and Cons of Different
Techniques (2)

❏ Security
± CP: Easy to model with logical constraints but no global propagation
– MIP, CG: Leads to lots of fractional values in the relaxation (e.g., routing a

demand on two paths, each made of half-secure and half-unsecured links)
❏ No line multiplication

+ CP, MIP, CG: Smaller problem
– MIP, CG: Impact on the continuous relaxation of the step functions

❏ Symmetric routing
+ CP, MIP, CG: Smaller problem

128

Pros and Cons of Different
Techniques (3)

❏ Number of bounds (hops)
+ CG: Much less potential paths and paths much easier to generate (especially when

the number of bounds is really small)
± CP: More propagation but with more complex algorithm
– MIP: Easy to model (sum of 0-1 variables representing the presence of each arc in a

path) but more fractional values in the relaxation

❏ Number of ports
± CP: Easy to model with logical constraints but no global propagation
– MIP, CG: Requires additional integer variables (with fractional values in the relaxation)

❏ Maximal traffic
+ MIP, CG: Linear constraints
– CP: Linear constraints with no global propagation

129

Plan

❏ Principles of Constraint Programming
❏ A rostering problem
❏ Modeling in CP: Principles
❏ A difficult problem
❏ A Network Design problem
❏ Modeling Over-constrained problems
❏ Discussion
❏ Conclusion

130

Over Constrained ProblemsOver Constrained Problems

❏ No solution satisfies all the constraints
❏ What can we do?
❏ Some constraints have to be relaxed

❍ Hard constraints: must be satisfied
❍ Soft constraints: can be relaxed

131

Over constrained problems: outline

❏ Two problems
❏ Soft constraint and Filtering algorithm
❏ Applications involving global constraints that can be

violated vs applications involving only local
constraints that can be violated

❏ Constraints on violations
❏ How to model an over-constrained problem?

❍ How to relax a constraint?
❍ How to model constraints on violations?

❏ Discussion

132

Over constrained problems: outline

❏ Two problems
❏ Soft constraint and Filtering algorithm
❏ Applications involving global constraints that can be

violated vs applications involving only local
constraints that can be violated

❏ Constraints on violations
❏ How to model an over-constrained problem?

❍ How to relax a constraint?
❍ How to model constraints on violations?

❏ Discussion

133

Car sequencing

❏ Problem : computes the sequencing order of cars
that will be built on an assembly line

❏ Many different types of cars can be built on an
assembly line.

❏ A car = a basic car + options (color, motor,
telephone, seats, …).

❏ A car = a configuration of options

134

Capacity of an option

❏ For practical reasons: a given option cannot be
installed on every vehicle on the line.

❏ Consequence of smoothing constraints: local limits
are imposed. Minimum granularity.

❏ Capacity of an option: ratio p/q, for any sequence
of q cars on the line, at most p of them can have the
option

❏ When p=1 called distance constraint

135

Car sequencing

❏ opt cap configurations
0 1 2 3 4 5

0 1/2 X X X
1 2/3 X X X
2 1/3 X X
3 2/5 X X X
4 1/5 X
#cars 1 1 2 2 2 2

136

Car sequencing

❏ opt cap configurations
0 1 2 3 4 5

0 1/2 X X X
1 2/3 X X X
2 1/3 X X
3 2/5 X X X
4 1/5 X
#cars 1 1 2 2 2 2

❏ Sequences 4,4 or 4,5 or 0,4 or 0,5 are forbidden

137

Car sequencing

❏ opt cap configurations
0 1 2 3 4 5

0 1/2 X X X
1 2/3 X X X
2 1/3 X X
3 2/5 X X X
4 1/5 X
#cars 1 1 2 2 2 2

❏ Sequences 2,2,1 or 2,3,0 are allowed
❏ Sequences 2,2,3 or 5,3,2 are forbidden

138

Scheduling applicationScheduling application
❍ Activities A1, A2, A3 require a unary resource R
❍ Temporal constraints

❏ The duration of each Ai is 5
❏ A1 and A2 start before 10
❏ A3 ends at 12

1210
Time

5
5

5

139

Over constrained problems: outline

❏ Two problems
❏ Soft constraint and Filtering algorithm
❏ Applications involving global constraints that can be

violated vs applications involving only local
constraints that can be violated

❏ Constraints on violations
❏ How to model an over-constrained problem?

❍ How to relax a constraint?
❍ How to model constraints on violations?

❏ Discussion

140

Soft constraint

❏ A soft constraint is a constraint that can be violated
❏ The violation can be associated with a cost that can

be:
❍ The same for any violation
❍ Depends on the violation

❏ Example: x < y, if x ≥ y we can have
❍ A fixed cost: cost = c
❍ A cost depending on the violation: cost = x –y or

cost = (x-y)2

141

Soft constraint and Filtering algorithm

❏ When the violation is accepted this means that we
accept that any combination of values satisfies
the constraint.

142

Soft constraint and Filtering algorithm

❏ When the violation is accepted this means that we
accept that any combination of values satisfies
the constraint.

❏ Roughly, the constraint become an universal
constraint associating a cost with any tuple, so we
loose the structure of the constraint

143

Soft constraint and Filtering algorithm

❏ When the violation is accepted this means that we
accept that any combination of values satisfies
the constraint.

❏ Roughly, the constraint become an universal
constraint associating a cost with any tuple, so we
loose the structure of the constraint

❏ Problem with filtering algorithm (FA):
❍ FA exploits the structure of the constraints
❍ FA are not efficient when everything is possible!

144

Soft constraint and Filtering algorithm

❏ When the violation is accepted this means that we
accept that any combination of values satisfies
the constraint.

❏ Roughly, the constraint become an universal
constraint associating a cost with any tuple, so we
loose the structure of the constraint

❏ Problem with filtering algorithm (FA):
❍ FA exploits the structure of the constraints
❍ FA are not efficient when everything is possible!

❏ Filtering for soft depends mainly on back
propagation. Problem with global constraints

145

Over constrained problems: outline

❏ Two problems
❏ Soft constraint and Filtering algorithm
❏ Applications involving global constraints that

can be violated vs applications involving only
local constraints that can be violated

❏ Constraints on violations
❏ How to model an over-constrained problem?

❍ How to relax a constraint?
❍ How to model constraints on violations?

❏ Discussion

146

Over Constrained Problem

Relaxation
• OC aspect in the
 propagation
• Use of soft constraints :
that is constraints + cost
• Global objective function
 on the cost associated
with constraints

⇒ 1 over-constrained
 problem is solved

Decomposition
• No Soft Constraint. Only
hard constraint
• A constraint which is
violated is replaced by a
relaxation of the constraint
• The relaxation is handled
 “by hand”

⇒ n satisfaction
 problems are solved

147

ApplicationsApplications

❏ Applications involving global constraints that can be
violated
❍ Each global constraint affects widely the problem
❍ Example: car-sequencing

Number of cars
(HARD)

Options of each
car (HARD)

Sequence
constraints

(SOFT) Hard

Soft

148

ApplicationsApplications

❏ Applications involving “global” soft constraints
⇒ Difficult to solve with a pure relaxation approach
⇒ Decomposition methods are more adapted

149

ApplicationsApplications

❏ Applications involving “global” soft constraints
⇒ Difficult to solve with a pure relaxation approach

❏ A global constraint = conjunction of constraint.
Violation of a global = violation of any constraint of
the conjunction

❏ The problem is not easy even with efficient global
constraints, so if the global constraints are removed
and replaced by a lot of constraints that can be
violated then we loose the strong filtering algorithms

150

ApplicationsApplications

❏ Applications involving “global” soft constraints

⇒ Decomposition methods are more adapted
❏ A succession of problems are considered. In each

problem the global constraint that are violated are
relaxed by hand:
❍ another global constraint replaces the previous one but it is

less constrained. For instance a p/q option will be replaced
by a p+1/q option. We will manage the relaxation

❍ There is no objective, this is the user that controls the list of
the problems that will be considered

151

ApplicationsApplications

❏ Application involving “Local” constraints that can be
violated
❍ Example: scheduling

Resources
(SOFT)

Time (SOFT)

Precedence / order
constraints

(HARD) Hard

Soft

152

ApplicationsApplications

❏ Application involving “Local” soft constraints
⇒ Decomposition methods can be used
⇒ Relaxation methods can be used

153

Applications involving global Applications involving global
constraints that can be violatedconstraints that can be violated

❏ Over constrained problems solved by a succession
of satisfiability problems. Each problem is managed
by the user.

SOFT

HARD

Hard

Soft

154

Applications involving local Applications involving local
constraints that can be violatedconstraints that can be violated

❏ All the constraints are relaxed (that is we accept the
violation) then an optimization problem is solved.
The objective is to minimize the sum of the violation
costs

SOFT

HARD

Hard

Soft

155

Over constrained problems: outline

❏ Two problems
❏ Soft constraint and Filtering algorithm
❏ Applications involving global constraints that can be

violated vs applications involving only local
constraints that can be violated

❏ Constraints on violations
❏ How to model an over-constrained problem?

❍ How to relax a constraint?
❍ How to model constraints on violations?

❏ Discussion

156

Constraints on violationsConstraints on violations

❏ In real world problems, the goal is much more complex than
minimizing the number of constraint violations

⇒ Rules on violations
❍ Distinction between hard and soft constraints
❍ Priorities
❍ Control of distribution of violations in the constraint network : well

balancing of violation (homogeneity) is generally required
❍ Specific dependencies between constraints

157

Constraints on violations: PrioritiesConstraints on violations: Priorities

❏ All the constraints have not the same importance
❏ Goal: favor the satisfaction of the most important ones

 (C1: hard constraint)
 C2: crucial
 C3: important
 C4: low importance
 C5: preference

158

Well balancing of violations

❏ In many real-world applications, violations must generally be
homogeneously distributed in the constraint network

❏ More complex rules with respect to distribution of violations are
sometimes required

159

Well balancing of violationsWell balancing of violations

❏ Example
❏ worker W1: preferences = { C11, C12, C13, ... }
❏ worker W2: preferences = { C21, C22, C23, ... }
❏ worker W3: preferences = { C31, C32, C33, ... }

❏ A schedule such that some workers have all their preferences satisfied
and some other have no preference satisfied is not acceptable

❏ For each Wi:
❏ At least j constraints satisfied
❏ At least j constraints satisfied, and at least k constraint violated with

degree < m, etc.
❏ General idea: avoid to have hard work periods and then almost

nothing to do. True for people or for machine

160

Constraints on violations: Constraints on violations:
DependenciesDependencies

❏ Expressing specific dependencies is generally required
❏ Example

❏ « if C1 and C2 are violated then C3 must be satisfied »

161

Over constrained problems: outline

❏ Two problems
❏ Soft constraint and Filtering algorithm
❏ Applications involving global constraints that can be

violated vs applications involving only local
constraints that can be violated

❏ Constraints on violations
❏ How to model an over-constrained problem?

❍ How to relax a constraint?
❍ How to model constraints on violations?

❏ Discussion

162

How to model over-constrained
problems?

❏ How to relax a constraint?
❏ How to model usual constraints on violations

163

How to relax a constraint?

❏ Try to keep some structure in order to have efficient
filtering algorithm

❏ Use meta constraints

164

Meta Constraint

❏ si > 0 expresses that Ci is violated (distance to satisfaction)
❏ si = 0 expresses that Ci is satisfied
❏ D(si) is an integer domain
❏ Each “soft” constraint is replaced by the disjunction:

[(s = 0) ∧ C] ∨ [(s > 0) ∧ ¬C]

165

Meta ConstraintMeta Constraint

❏ Since valuations are expressed trough variables, constraints
on these variables can be added in order to express “global
rules” on violations

166

Max-SAT = Satisfiability Sum Max-SAT = Satisfiability Sum
ConstraintConstraint

❏ In the ssc, each constraint Ci is replaced by:

❏ A variable unsat is used to express the objective:

[(Ci ∧ (ui = 0)) ∨ (¬Ci ∧ (ui = 1))]

 ∑ ui
i=1

Ci

[unsat =]

167

Advantages of This ModelAdvantages of This Model

❏ Classical constraint optimization problem
● Direct integration into a solver
● Any search algorithm can be used, not only a Branch

and Bound based one.
❏ When a value is assigned to ui ∈ U, the filtering

algorithm associated with Ci (resp. ¬Ci) can be used
❏ No hypothesis is made on constraints (arity)

168

Advantages of This ModelAdvantages of This Model

❏ Integration of cost within the constraint
Costs as a variable:

● the costs of violations have a structure:
if (x ≤ y) is violated then cost = x - y
We can use this information.

❏ General definitions of cost of violations
❏ Global soft constraints
❏ Constraints on violations can be easily defined

169

Use of the structure of the violation:Use of the structure of the violation:
x x ≤≤ y y

❏ Structure
❍ If the constraint is satisfied then cost = 0
❍ If the constraint is violated then cost = x - y

❏ Filtering Algorithm:
❍ D(x) = [90000,100000], D(y) = [99990,200000]
❍ We deduce immediately max(cost)= max(x) - min(y) = 10

170

General definition of the cost of
violation

❏ Two different general costs:
❍ Variables based violation cost
❍ Primal Graph Based violation cost

❏ Some others see papers at CP-AI-OR’04
(Beldiceanu and Petit) and papers at workshop on
soft constraints at CP’04.

171

Variable based violation cost

❏ How many variables must be removed to satisfy the
constraint?

❏ Alldiff({x1,x2,x3,x4,x5})
(a,a,a,b,b) cost = 3
(a,a,a,a,b) cost = 3

172

Primal graph based partition cost

❏ For a global constraint corresponding to a
conjunction of constraints. Number of the constraints
in the conjunction that are violated

❏ Alldiff({x1,x2,x3,x4,x5})
(a,a,a,b,b) cost = triangle(a,a,a) + pair (b,b)

= 3 + 2 =5
(a,a,a,a,b) cost = quadrangle (a,a,a,a)

= 6

173

All Different constraintAll Different constraint

The same value assigned to 2 variables → 1 violation

The same value assigned to 3 variables → 3 violations

The same value assigned to 4 variables → 6 violations

n variables → n(n-1)/2 violations

174

Meta-constraints for Expressing Meta-constraints for Expressing
HomogeneityHomogeneity

❏ Example: time tabling problem
❏ n office workers express some preferences
❏ for each one at least j preferences should be satisfied

n cardinality constraints, one for each subset of state
variables Si corresponding to the set of preference constraints
of one worker Wi : « at least j times value 0 assigned to
variables in Si »

175

Meta-constraints for Expressing Meta-constraints for Expressing
DependenciesDependencies

❏ Example
❍ If C1 and C2 are violated then C3 must be satisfied

[((s1 > 0) ∧ (s2 > 0)) ⇒ (s3 = 0)]

176

Over constrained problems: outline

❏ Two problems
❏ Soft constraint and Filtering algorithm
❏ Applications involving global constraints that can be

violated vs applications involving only local
constraints that can be violated

❏ Constraints on violations
❏ How to model an over-constrained problem?

❍ How to relax a constraint?
❍ How to model constraints on violations?

❏ Discussion

177

Discussion

❏ Well balancing of violations can be difficult to
express.

❏ Real life example: Capacity constraints (smoothing
constraints are soft): p/q.

❍ Violation: (p’-p)2/q2, then minimization of the variance.
❍ Signification: consider 1/5 and ½,

❏ a violation of 1 is less important for 1/5 than for 1/2, so
q2 is considered

❏ two violations of 1 are less important than one
violation of 2, so (p’-p)2 is considered

❍ Difficult to model

178

Discussion

❏ A quite interesting approach has been proposed by
L. Perron and P. Shaw (see in their CP’04 paper) for
car sequencing

❏ 100 cars to schedule with a book order of 100 cars.
Accept to have dummy cars (perfect cars), that is
extend the book order -> 110 cars

❏ Then try to minimize the number of perfect cars
❏ Then replace perfect cars by real cars
❏ Seems very interesting because the model of the

initial problems is not change at all and we work only
with hard constraints

179

Meta constraints vs other models

❏ Valued CSP is not able to take into account the
structure of the violated constraints

❏ Valued CSP contains no back propagation because
the cost is not a variable

❏ Valued CSP are not able to manage constraints on
violation

❏ If we represent constraints on violations by
constraints we do not need to invent a new XXX Csp
for every constraint on violations

180

Plan

❏ Principles of Constraint Programming
❏ A rostering problem
❏ Modeling in CP: Principles
❏ A difficult problem
❏ A Network Design problem
❏ Modeling Over-constrained problems
❏ Discussion
❏ Conclusion

181

Hard problem

❏ Consider a problem P that you are unable to solve.
How can you improve the resolution?

182

Hard problem

❏ Consider a problem P that you are unable to solve.
How can you improve the resolution?

❏ By identifying hard sub-problems H of P

183

Hard problem

❏ Consider a problem P that you are unable to solve.
How can you improve the resolution?

❏ By identifying hard sub-problems H of P
❏ By improving the resolution of some sub-problems R

of P and by using filtering algorithm for R.

184

Problem

❏ How can we identify a sub-problem R for which we
can improve its resolution?

❏ How can we write a specific filtering algorithm for
this sub-problem R?

❏ This is time-consuming and not necessarily
worthwhile.

185

Improving the resolution of R

❏ R can be viewed as a global constraint:
An allowed tuple of this constraint is a solution of R
and conversely.

❏ Consistency of the constraint = R has a solution.

186

GAC-Schema: instantiation

❏ List of allowed tuples
❏ List of forbidden tuples
❏ Predicates
❏ Any OR algorithm
❏ Solver reentrace

187

GAC-Schema

❏ Idea:
tuple = solution of the constraint
support = valid tuple
- while the tuple is valid: do nothing

 - if the tuple is no longer valid, then search for a new support for
the values it contains

❏ a solution (support) can be computed by any OR
algorithm. A solution is needed not only the fact that
there is one.

188

GAC-Schema: complexity

❏ CC complexity to check consistency (seek in table, call to
OR algorithm): seek for a Support costs CC

❏ n variables, d values:
for each value: CC
for all values: O(ndCC)

❏ For any OR algorithm which is able to compute a
solution, Arc consistency can be achieved in O(ndCC).

189

AC for R

❏ All the possible solutions of R are computed once
and for all. They are saved in a database. GAC-
Schema + allowed is used

❏ Only the combinations of values that are not solution
are saved. GAC-Schema + forbidden

❏ Solutions are computed on the fly when we want to
know if a value belongs to a current solution of R.

190

Improvement of the resolution

❏ Cryptographic problem

x11 x12

x21

x31

x41

x14x13 ∑x1i=r1

∑xi1=c1

+ Alldiff(xij)

191

Improvement of the resolution

❏ Cryptographic problem

x11 x12

x21

x31

x41

x14x13 ∑x1i=r1

∑xi1=c1

+ Alldiff(xij)

What happens if we have the global constraint: (∑ xi + Alldiff(xi))?

192

Improvement of the resolution

❏ Model 1: Sum for each row and each column
+ Alldiff(xij)

❏ Model 2: (∑ xi + Alldiff(xi)) for each row and each column
+ Alldiff(xij)

 9,985 591 591 1.36 7.2 51
 2,373 127 127 0.3 1.7 18

4 0 0 0 0.5 8.5easiest
average
hardest

model1 model2 pred

#backtracks time

5 x 5

193

Improvement of the resolution

❏ Model 1: Sum for each row and each column
+ Alldiff(xij)

❏ Model 2: (∑ xi + Alldiff(xi)) for each row and each column
+ Alldiff(xij)

1,623,557 2,598 2,598 520 42 too long
75,548 281 281 26.2 6.7 too long

3 0 0 0.03 2.5 too longeasiest
average
hardest

model1 model2 pred

#backtracks time

6 x 6

194

Identification of the difficulty

❏ Golomb ruler (see CSP lib):
“A Golomb ruler may be defined as a set of n
integers 0=x1 < x2 < … < xn s.t. the n(n-1)/2
differences (xj - xi) are distinct. Goal minimize xn.”

❏ with CP difficult for n > 13.

195

Identification of the difficulty

❏ Model1: x1,…,xn = variables; (xi-xj)= variables.
Alldiff involving all the variables.

❏ Model2: diff1i = xi - x(i-1)
Model1 + global constraint:

Sum(diff1i)=xn and Alldiff(diff1i)
❏ Model3: diff2i= xi - x(i-2)

Model1 + global constraint:
 Sum(diff1i)=xn and Alldiff(diff1i U diff2i)

196

Identification of the difficulty

model1 22 0.3 297 0.4 213 0.4 1298 2.7 844 2.2 5326 19
model2 3 0.3 122 2.8 48 2.4 343 18.2 183 16.6 1967 161
model3 0 1.4 5 1.5 4 10.5 25 18.1 16 120 96 226

 #bk t #bk t #bk t #bk t #bk t #bk t

 xn=34 xn=33 xn=44 xn=43 xn=55 xn=54

n=8 n=9 n=10

197

Identification of the difficulty

model1 22 0.3 297 0.4 213 0.4 1298 2.7 844 2.2 5326 19
model2 3 0.3 122 2.8 48 2.4 343 18.2 183 16.6 1967 161
model3 0 1.4 5 1.5 4 10.5 25 18.1 16 120 96 226

 #bk t #bk t #bk t #bk t #bk t #bk t

 xn=34 xn=33 xn=44 xn=43 xn=55 xn=54

n=8 n=9 n=10

Gain: #bk/4

198

Identification of the difficulty

model1 22 0.3 297 0.4 213 0.4 1298 2.7 844 2.2 5326 19
model2 3 0.3 122 2.8 48 2.4 343 18.2 183 16.6 1967 161
model3 0 1.4 5 1.5 4 10.5 25 18.1 16 120 96 226

 #bk t #bk t #bk t #bk t #bk t #bk t

 xn=34 xn=33 xn=44 xn=43 xn=55 xn=54

n=8 n=9 n=10

Gain: problem almost solved!

Sum(diff1i)=xn and Alldiff(diff1i U diff2i): involves only n variables

199

Pre-resolution of some parts of the problem
GAC-Schema + allowed

❏ Configuration problem:
5 types of components: {glass, plastic, steel, wood, copper}
3 types of bins: {red, blue, green} whose capacity is red 5, blue 5, green 6
Constraints:
- red can contain glass, cooper, wood
- blue can contain glass, steel, cooper
- green can contain plastic, copper, wood
- wood require plastic; glass exclusive copper
- red contains at most 1 of wood
- green contains at most 2 of wood
For all the bins there is either no plastic or at least 2 plastic
Given an initial supply of 12 of glass, 10 of plastic, 8 of steel, 12 of wood and 8
of copper; what is the minimum total number of bins?

200

Pre-resolution of some parts of the problem
GAC-Schema + allowed

 #bk time
standard model 1,361,709 430
 GAC+allowed 12,659 9.7

201

GAC Schema + allowed

❏ It is important to be able to generate all solutions of
a problem

❏ There is almost no efficient algorithms that are
available

❏ Any idea is welcome

202

Conclusion

❏ The first model usually does not work
❏ Use global constraints as much as possible
❏ Try to identify difficult parts of the problems
❏ Try to find relevant constraints to help the solver
❏ Try to avoid linear model and try to think constraint

and filtering

203

Conclusion

❏ Be creative!
❏ Be imaginative!

204

Conclusion

❏ Be creative!
❏ Be imaginative!

Slides and papers are available at:

www.constraint-programming.com/people/regin

205

Some References
❏ Global constraints

❍ Alldiff constraint: J-C. Regin, AAAI-94
❍ Global Cardinality constraint: J-C. Regin, AAAI-96
❍ GAC-Schema: C. Bessiere and J-C. Regin, IJCAI-97
❍ Sequence: J-C. Regin and J-F. Puget, CP’97
❍ Sum with binary inequalities: J-C Regin and M. Rueher, CP’00
❍ Gcc with costs: J-C Regin, CP’99 (alldiff with cost, sum of alldiff var)
❍ Symmetric alldiff: J-C Regin, IJCAI-99
❍ AllMinDistance, J-C Regin, ILOG Solver
❍ Global constraint on set variables, J-C Regin, J-F Puget, D. Mailharro, ILOG Solver
❍ Cardinality Matrix Constraint, J-C Regin, C Gomes, CP’04

❏ Modelization and Problem resolution
❍ Subgraph Isomorphism, J-C Regin, PhD thesis, 1995
❍ Minimization of the number of breaks in Sport scheduling, J-C Regin, Dimacs 98
❍ GAC-Schema with computation on the fly: C. Bessiere and J-C Regin, CP’99
❍ Clique max in CP, J-C Regin, CP’03
❍ Network Design, C LePape, L Perron, J-C Regin, P. Shaw, CP’02

❏ Over-constrained problems:
❍ Meta constraints on violations, T. Petit, J-C Regin, C Bessiere, ICTAI 2000
❍ Original constraint based approach for solving over-constrained problems, J-C Regin, T. Petit, C.

Bessiere, J-F Puget, CP’00 and CP’01
❍ Soft global constraints: T. Petit, J-C Regin, C. Bessiere, CP’01

