
1

Modeling Problems in 
Constraint Programming

 

Jean-Charles REGIN
ILOG, Sophia Antipolis

regin@ilog.fr



2

Plan

❏ Principles of Constraint Programming
❏ A rostering problem 
❏ Modeling in CP: Principles
❏ A difficult problem
❏ A Network Design problem
❏ Modeling Over-constrained problems
❏ Discussion
❏ Conclusion



3

3 problems

❏ 3 problems will be detailed:
❍ A rostering problem (G. Pesant). This is a real world 

problem. The problem is easy to solve in CP because all 
the needed constraints are available. The presentation will 
be constructive, that is the problem is modeled and 
described at the same time

❍ A part of a real world problem. Mainly a didactic problem 
which is difficult to solve in CP.  

❍ A real world problem will be presented: a network design. 
First the whole problem will be described and then a CP 
solution will be proposed
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Constraint programming

❏ Identify sub-problems that are easy (called constraints)
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Constraint programming

❏ Identify sub-problems that are easy (called constraints)
❏ 1) Use specific algorithm for solving these sub-problems and for 

performing domain-reduction
❏ 2) Instantiate a variable. Go to 1) and backtrack if necessary
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Constraint programming

❏ Identify sub-problems that are easy (called constraints)
❏ 1) Use specific algorithm for solving these sub-problems and for 

performing domain-reduction
❏ 2) Instantiate a variable. Go to 1) and backtrack if necessary
❏ Local point of view on sub-problems. “Global” point of view by 

propagation of domain reductions 
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Constraint Programming

❏ 3 notions:
- constraint network: variables, domains, constraints 
+ filtering (domain reduction)
- propagation
- search procedure (assignments + backtrack)
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Problem = conjunction of sub-
problems

❏ In CP a problem can be viewed as a conjunction of 
sub-problems that we are able to solve

❏ A sub-problem can be trivial: x < y or complex: 
search for a feasible flow

❏ A sub-problem = a constraint
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Constraints

❏ Predefined constraints: arithmetic (x < y, x = y +z, |x-y| > k, alldiff, 
cardinality, sequence …

❏ Constraints given in extension by the list of allowed (or forbidden) 
combinations of values

❏  user-defined constraints: any algorithm can be encapsulated
❏ Logical combination of constraints using OR, AND, NOT, XOR 

operators. Sometimes called meta-constraints
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Filtering

❏ We are able to solve a sub-problem: a method is 
available

❏ CP uses this method to remove values from domain 
that do not belong to a solution of this sub-problem: 
filtering

❏ E.g: x < y and D(x)=[10,20], D(y)=[5,15]
=> D(x)=[10,14], D(y)=[11,15]
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Filtering

❏ A filtering algorithm is associated with each 
constraint (sub-problem).

❏ Can be simple (x < y) or complex (alldiff)
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Arc consistency

❏ All the values which do not belong to any solution of 
the constraint are deleted.

❏ Example: Alldiff({x,y,z}) with 
D(x)=D(y)={0,1}, D(z)={0,1,2}
the two variables x and y take the values 0 and 1, 
thus z cannot take these values.
FA by AC => 0 and 1 are removed from D(z)
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Propagation

❏ Domain Reduction due to one constraint can lead to 
new domain reduction of other variables

❏ When a domain is modified all the constraints 
involving this variable are studied and so on ... 
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Why Propagation?

❏ A problem = conjunction of easy sub-problems. 
❏ Sub-problems: local point of view. Propagation tries to 

obtain a global point of view from independent local point 
of view

❏ The conjunction is stronger that the union of independent 
resolutions
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Why Propagation?

❏ A problem = conjunction of easy sub-problems. 
❏ Sub-problems: local point of view. Propagation tries to 

obtain a global point of view from independent local point 
of view

❏ The conjunction is stronger that the union of independent 
resolution

❏ To help the propagation to have a global point of 
view: use global constraints !

❏ Global constraint = conjunction of constraints
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Search

❏ Backtrack algorithm with strategies:
try to successively assign variables with values. If a 
dead-end occurs then backtrack and try another 
value for the variable

❏ Strategy:  define which variable and which value will 
be chosen.

❏ After each domain reduction (i.e assignment) filtering 
and propagation are triggered
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Rostering (G. Pesant)

Mon  Tue  Wed  Thu   Fri     Sat     Sun

D
E
N

M. Green M. Red
Mrs. Blue M. Yellow
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Rostering 

Mon  Tue  Wed  Thu   Fri     Sat     Sun

D
E
N

M. Green M. Red
Mrs. Blue M. Yellow

Each works at most one shift per day
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Rostering

Mon  Tue  Wed  Thu   Fri     Sat     Sun

D
E
N

M. Green M. Red
Mrs. Blue M. Yellow

xij ∈{g,b,r,y}

xiD ≠ xiE, xiD ≠ xiN, xiE ≠ xiN     Mon ≤ i ≤ Sun
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Rostering

Mon  Tue  Wed  Thu   Fri     Sat     Sun

D
E
N

enum Days = {mon,tue,wed,thu,fri,sat,sun}
enum Shifts = {D,E,N}
enum Workers = {green,white,red,yellow}
var Workers onDuty[Days,Shifts]
forall( i in Days )

forall( j,k in Shifts: j < k )
onDuty[i,j] ≠ onDuty[i,k]

M. Green M. Red
Mrs. Blue M. Yellow
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Rostering

Mon  Tue  Wed  Thu   Fri     Sat     Sun

D
E
N

enum Days = {mon,tue,wed,thu,fri,sat,sun}
enum Shifts = {D,E,N}
enum Workers = {green,white,red,yellow}
var Workers onDuty[Days,Shifts]
forall( i in Days )

forall( j,k in Shifts: j < k )
onDuty[i,j] ≠ onDuty[i,k]

M. Green M. Red
Mrs. Blue M. Yellow
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Mutual exclusion

❏ A set of variables must take on distinct values.
❏ forall( i in Days )

forall( j,k in Shifts: j < k )
onDuty[i,j] ≠ onDuty[i,k]
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Mutual exclusion

❏ A set of variables must take on distinct values.
❏ forall( i in Days )

forall( j,k in Shifts: j < k )
onDuty[i,j] ≠ onDuty[i,k]

❏ Can be replaced by
forall( i in Days )

alldifferent(onDuty[i])
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Cardinality 

Mon  Tue  Wed  Thu   Fri     Sat     Sun

D
E
N

M. Green M. Red
Mrs. Blue M. Yellow

This is not a good solution
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Cardinality 

Mon  Tue  Wed  Thu   Fri     Sat     Sun

D
E
N

M. Green M. Red
Mrs. Blue M. Yellow

var 0..7 nbShifts[Workers]
distribute(nbShifts,Workers,onDuty)
forall( k in Workers )

nbShifts[k] ≥ 5
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Cardinality 

Mon  Tue  Wed  Thu   Fri     Sat     Sun

D
E
N

M. Green M. Red
Mrs. Blue M. Yellow

var 0..7 nbShifts[Workers]
distribute(nbShifts,Workers,onDuty)
forall( k in Workers )

nbShifts[k] ≥ 5
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Dual Model

Mon  Tue  Wed  Thu   Fri     Sat     Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

enum Jobs = {D,E,N,-}
var Jobs job[Days,Workers]

implicitly, each works at most one shift per day. 
But every job has to be performed and by only one 
worker
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Dual Model

-

N

E

D

Mon  Tue  Wed  Thu   Fri     Sat     Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

implicitly, each works at most one shift per day. 
But every job is performed by only one worker 
forall( i in Days )
     distribute([1,1,1,1],Jobs,job[i])
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Dual Model: weights on jobs

-

N

E

D

Mon  Tue  Wed  Thu   Fri     Sat     Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

Jobs have weights: D=1.; E=0.8; N=0.5; -=0

float load[Jobs] = {1.0, 0.8, 0.5, 0.0}
job[i,k] ∈ {D,N} ↔ load[job[i,k]] ∈ {1.0, 0.5}
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Dual Model: weights on jobs

-

N

E

D

Mon  Tue  Wed  Thu   Fri     Sat     Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

Jobs have weights: D=1.; E=0.8; N=0.5; -=0

float load[Jobs] = {1.0, 0.8, 0.5, 0.0}
forall( k in Workers )

sum( i in Days ) load[job[i,k]] ≥ 3.0
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Dual Model: weights on jobs

EE-EEEE

-DED-DN

NNNNNN-

D-D-D-D

Mon  Tue  Wed  Thu   Fri     Sat     Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

Jobs have weights: D=1.; E=0.8; N=0.5; -=0

float load[Jobs] = {1.0, 0.8, 0.5, 0.0}
forall( k in Workers )

sum( i in Days ) load[job[i,k]] ≥ 3.0
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Length of Runs

EE-EEEE

-DED-DN

NNNNNN-

D-D-D-D

Mon  Tue  Wed  Thu   Fri     Sat     Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

This is not nice, isn’t it?
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Length of Runs

EE-EEEE

-DED-DN

NNNNNN-

D-D-D-D

Mon  Tue  Wed  Thu   Fri     Sat     Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

New constraint: length of runs defined by a 
range, i.e. between a min and a max value
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Length of Runs

EE-EEEE

-DED-DN

NNNNNN-

D-D-D-D

Mon  Tue  Wed  Thu   Fri     Sat     Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

int min[Jobs] = {2,1,1,1}
int max[Jobs] = {4,4,4,7}
forall( k in Workers )

stretch(min,max,job[⋆,k])



37

Length of Runs

EE-EEEE

--DDD--

NNN-NNN

DDEN-DD

Mon  Tue  Wed  Thu   Fri     Sat     Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

int min[Jobs] = {2,1,1,1}
int max[Jobs] = {4,4,4,7}
forall( k in Workers )

stretch(min,max,job[⋆,k])
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Pattern Constraint

EE-EEEE

--DDD--

NNN-NNN

DDEN-DD

Mon  Tue  Wed  Thu   Fri     Sat     Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

No change of shift type without a rest period
Forward rotation (D... E... N... D...)
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Pattern Constraint

EE-EEEE

--DDD--

NNN-NNN

DDEN-DD

Mon  Tue  Wed  Thu   Fri     Sat     Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

No change of shift type without a rest period
Forward rotation (D... E... N... D...)
forall( k in Workers )

regular(A,job[⋆,k])
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Pattern Constraint

--DDD--

DD-NNNN

NNN-EEE

EEEE-DD

Mon  Tue  Wed  Thu   Fri     Sat     Sun

M. Green
Mrs. Blue
M. Red
M. Yellow

No change of shift type without a rest period
Forward rotation (D... E... N... D...)
forall( k in Workers )

regular(A,job[⋆,k])
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Real life rostering

◦      S M T W T F S S M T W T F S S M T W T F S S M T W T F S
23796  - - - - D D N N - - D - - - - D - D D - D D - - - - - -
603042 D D D D E - - - D D D D - D D D D D E - - - D D D D - D
12310  D D - - - - - - - - - - - D D D - - - - - - - - - - - D
511811 D D D - D D - - D D - - - D D D D - D D - - D D - - - D
60324  - - D D D - D D - D D D - - - - - D D - D D D - D D D -
603095 E - - E E E - - - - - - E E E - - E E E - - - - E - - E
603230 - D D D D - D D D D - D D - - D D D D - D D D - D D D -
510723 D D D - - D - - D D D - - D D D D - - D - - D D D - - D
511104 - R R R R R - - R R R R R - - - - E E - E E - - E E E -
34108  - D D D D - D D D D - - - - - R R R R R D D - - D - - -
11866  - D - D D D E E - - D - - - - D - D D D E E - D - - - -
35022  - R R R R R D D - - - - - - - - - - D - D D D - D D D -
512287 E E E - D D E E - - - - - E E E E - D - E E - - E - - E
56507  D D - D D D - - D - - - - D D D - D D D - - D - - - - D
512281 - E - D D - D D E - - - - - - E - D D - D D E - - - - -
511066 - D D - - - D D - - - - D - - - - - - - D D - - D D D -
600955 D D - D D - - - - - - - - D D D - D D - - - - - - - - D
602576 D D - D D D - - - - - - - D D D - D D D - - - - - - - D
600315 - - T T - - T T - T - T T - - - T - - T T T - - T T T -
511865 - - - - - - T T - T T T T - - - - - - - - - R R R R R T
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Real life rostering

◦      S M T W T F S S M T W T F S S M T W T F S S M T W T F S
603287 - - - - - - E E - - E E E - - - - - - - E E - - E E E -
603138 - - E E E E E E - E E E E - - - E E E E E E - E E E E -
510595 - D D D - - D D R R R R R - - R R R R R D D - - D D D -
53033  - R R R R R D D D D - - - D D D D N N N - - D D D - - D
602712 D D D N N N - - D D D - - D D D D N N N - - D D D - - D
601933 D D - D D D - - D D D D - D D D D D N N - - D D D - - D
603134 D D D N N N - - D D D - - D D D D N N N - - D D D - - D
511938 - - - - D D D D - - D D D - - - - D D - D D D - D D - -
601659 N N N - N N - - N N - - - N N N - N N N - - N N - - - N
62273  N N - - N N - - N - N - - N N N - N N N - - N - - - - N
601630 - D D D D - D D - - - D D - - D D D - - D D - - D D D -
601983 N N - N N - - - - - - - - N N N N N - - - - - - - - - N
511545 - N N - - - D D - - - N N - - - - - - D N N - - N N N -
603157 D - D D D E - - D D D - D D D - D D D - - - D D D E E E
603361 - D D D E - D D D E - D D - - D D D E - D D D - D D D -
602759 - - - - - - D D - D D D - - - - - - - - D D - - D D D -
73999  D D D - D - - - - - - - - - - R R R R R - - R R R R R -
601949 - D - - - - D D - - - - D - - - - - - - D D - - D D - -
511668 D E - - - - - D E - - - - - D E - - - - - D E - - - - -
7096   - R R R R R - - R R R R R - D D - D D - D D D - D D D -
602373 - D D D D D - - D D D D D - - D D D D D - - D D D D D -
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Modeling: principles

❏ What a good model is?
❏ Symmetries
❏ Implicit constraints
❏ Global constraints
❏ Relevant and redundant constraints
❏ Back propagation
❏ Dominance rules
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Good Model?

❏ A good model is a model that leads to an efficient 
resolution of a given problem
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Good Model?

❏ A good model is a model that leads to an efficient 
resolution of a given problem

❏ Deals with several notions:

Symmetries
Implicit constraints
Global constraints

Relevant and redundant constraints
Back propagation
Dominance rules
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Symmetries

❏ Tutorial on this topic at CP’04
❏ The complexity of a problem can often be reduced by detecting 

intrinsic symmetries
❏ When two or more variables have identical characteristics, it is 

pointless to differentiate them artificially:
❍ The initial domains of these variables are identical
❍ These variables are subject to the same constraints
❍ The variables can be permuted without changing the statement of 

the problem
❏ Usually symmetries are removed by introducing an order 

between variables
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Implicit constraints

❏ See work of B. Smith
❏ An implicit constraint makes explicit a property that 

satisfies any solution implicitly.
❏ D(x1)=D(x2)=D(x3)=D(x4)={a,b,c,d}
❏ Constraints: b,c and d have to be taken at least 1
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Implicit constraints

❏ See work of B. Smith
❏ An implicit constraint makes explicit a property that 

satisfies any solution implicitly.
❏ D(x1)=D(x2)=D(x3)=D(x4)={a,b,c,d}
❏ Constraints: b,c and d have to be taken at least 1
❏ Filtering algorithm: if b is not assigned and if there is 

only one variable x that contains b in its domain then 
x=b
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Implicit constraints

❏ See work of B. Smith
❏ An implicit constraint makes explicit a property that 

satisfies any solution implicitly.
❏ D(x1)=D(x2)=D(x3)=D(x4)={a,b,c,d}
❏ Constraints: b,c and d have to be taken at least 1
❏ Filtering algorithm: if b is not assigned and if there is 

only one variable x that contains b in its domain then 
x=b

❏ Problem: if x1=a and x2=a then nothing is deduced
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Implicit constraints

❏ See work of B. Smith
❏ An implicit constraint makes explicit a property that satisfies 

any solution implicitly.
❏ D(x1)=D(x2)=D(x3)=D(x4)={a,b,c,d}
❏ Constraints: b,c and d have to be taken at least 1
❏ Filtering algorithm: if b is not assigned and if there is only one 

variable x that contains b in its domain then x=b
❏ Problem: if x1=a and x2=a then nothing is deduced
❏ Implicit constraints: a can be taken at most 1

b,c,d can be taken at most 2
❏ From the simultaneous presence of some constraints 

implicit constraints can be deduced
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Global constraints

❏ A global constraint is a conjunction of constraints. 
This conjunction often takes into account implicit 
constraint deduced from the simultaneous presence 
of the other constraints

❏ This is the case for the previous example with the 
global cardinality constraint

❏ Use the strongest filtering algorithm as you can at 
the beginning

❏ It is rare to be able to solve a problem with weak FA 
and not to be able to solve it with strong FA 
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Global constraint: Alldiff results

❏ Color the graph with cliques:
c0 = {0, 1, 2, 3, 4} 
c1 = {0, 5, 6, 7, 8}
c2 = {1, 5, 9, 10, 11}
c3 = {2, 6, 9, 12, 13} 
c4 = {3, 7, 10, 12, 14} 
c5 = {4, 8, 11, 13, 14} 

❏ clique size:27  Global: #fails: 0   cpu time: 1.212 s
Local:   #fails: 1   cpu time: 0.171 s

clique size:31    Global: #fails: 4   cpu time: 2.263 s
Local:   #fails: 65 cpu time: 0.37 s

clique size:51    Global: #fails: 501     cpu time: 25.947 s
Local:   #fails: 24512   cpu time: 66.485 s

clique size:61    Global: #fails: 5       cpu time: 58.223 s
Local: ?????????????
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Relevant Constraints

❏ At first glance it seems that adding a constraint 
which removes some symmetries, or which is an 
implicit or a global constraint improves the current 
model. This is FALSE

❏ Because:
❍ The new filtering algorithm can delete no value, because 

everything is already deduced by the combination of 
constraints

❍ The new filtering algorithm can remove some values and 
impacts the variable-value strategy (more backtracks can 
be needed to reach the first solution) 
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Relevant constraints

❏ A constraint is relevant w.r.t. a model if the 
introduction of this constraint:

❍ Is needed by the definition of the problem
❍ Or if it permits to remove some symmetries, or it is an 

implied or a global constraint, and the introduction of this 
constraint improves the search for the solution in term of 
performance

❏ A constraint is redundant w.r.t. a model if the 
constraint is not relevant w.r.t. the model.
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Back propagation

❏ Consider an optimization problem with an objective 
variable obj.

❏ The back propagation is the consequences of the 
modifications of the variable obj

❏ Example:
∑x = obj. 
Back propagation = modification of the x variable 
when obj is modified
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Back propagation

❏ Try to improve the back propagation, because when 
a solution with a cost c is found the constraint obj < c 
is added and a new solution is sought.  

❏ It is important to use constraints involving cost 
variable. For instance : gcc with cost
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Dominance rules

❏ A dominance rule is a rule that eliminates some 
solutions that are not optimal, or some optimal 
solutions but not all

❏ This is a kind of symmetry breaking in regards to the 
optimality

❏ An example is given in the resolution of the next 
problem
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A bad model?

❏ Golomb ruler (see CSP lib):
“A Golomb ruler may be defined as a set of n 
integers 0=x1 < x2 < … < xn s.t. the n(n-1)/2 
differences (xj - xi) are distinct. Goal minimize xn.”

❏ with CP difficult for n > 13.
❏ x1,…,xn = variables; (xi-xj)= variables. Alldiff 

involving all the variables.
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Alldiff

|x1-x2|

|x1-x3|

|x2-x3|

x1

x2

x3

1

2

3

4

5

6

7

Not a good solution
Bad incorporation
of constraint
|xi – xj| in alldiff
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Even Round Robin

- 1- 6+ 4- 2+ 7- 5+ 38

+ 2+ 1- 5+ 3- 8+ 6- 47

- 3+ 8- 1- 4+ 2- 7+ 56

+ 4- 2+ 7+ 1- 3+ 8- 65

- 5+ 3- 8+ 6- 1- 2+ 74

+ 6- 4+ 2- 7+ 5+ 1- 83

- 7+ 5- 3+ 8- 6+ 4- 12

+ 8- 7+ 6- 5+ 4- 3+ 21 The schedule is given 
You have to find the 
place where the 
games are played

+ home game
- away game
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Even Round Robin

- 1- 6+ 4- 2+ 7- 5+ 38

+ 2+ 1- 5+ 3- 8+ 6- 47

- 3+ 8- 1- 4+ 2- 7+ 56

+ 4- 2+ 7+ 1- 3+ 8- 65

- 5+ 3- 8+ 6- 1- 2+ 74

+ 6- 4+ 2- 7+ 5+ 1- 83

- 7+ 5- 3+ 8- 6+ 4- 12

+ 8- 7+ 6- 5+ 4- 3+ 21
A break for a team 
is two consecutive 
home games or two 
consecutive away 
games

Home break

Away break

Goal: minimize the number of breaks



64

Model: Variables

- 1- 6+ 4- 2+ 7- 5+ 38

+ 2+ 1- 5+ 3- 8+ 6- 47

- 3+ 8- 1- 4+ 2- 7+ 56

+ 4- 2+ 7+ 1- 3+ 8- 65

- 5+ 3- 8+ 6- 1- 2+ 74

+ 6- 4+ 2- 7+ 5+ 1- 83

- 7+ 5- 3+ 8- 6+ 4- 12

+ 8- 7+ 6- 5+ 4- 3+ 21

place variables: 
for each team i and for each period j: 
a 0-1 variable Pij is defined

break variables:
for each team and for each pair of
consecutive period:
a 0-1 variable Bij is defined.
Bij=1 means that the team i has a 
break for the games played at period
J and j+1 
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Model: Objective

- 1- 6+ 4- 2+ 7- 5+ 38

+ 2+ 1- 5+ 3- 8+ 6- 47

- 3+ 8- 1- 4+ 2- 7+ 56

+ 4- 2+ 7+ 1- 3+ 8- 65

- 5+ 3- 8+ 6- 1- 2+ 74

+ 6- 4+ 2- 7+ 5+ 1- 83

- 7+ 5- 3+ 8- 6+ 4- 12

+ 8- 7+ 6- 5+ 4- 3+ 21 Objective Variable:

#B is the variable that counts the
total number of breaks for the 
schedule



66

Model: Constraints

- 1- 6+ 4- 2+ 7- 5+ 38

+ 2+ 1- 5+ 3- 8+ 6- 47

- 3+ 8- 1- 4+ 2- 7+ 56

+ 4- 2+ 7+ 1- 3+ 8- 65

- 5+ 3- 8+ 6- 1- 2+ 74

+ 6- 4+ 2- 7+ 5+ 1- 83

- 7+ 5- 3+ 8- 6+ 4- 12

+ 8- 7+ 6- 5+ 4- 3+ 21 place-opponent constraint:
i plays k at home at period j  
is equivalent to
k plays i away at period j

break constraint:
if a team i plays for two consecutive 
periods j and j+1 at home or away 
then Bij=1 and conversly.

#B=∑i∑j Bij      (i=1..n, j=1..n-2)
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First test

?730.70time (s)

?352,7013,89916#bk

121086#teams
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First test

?730.70time (s)

?352,7013,89916#bk

121086#teams

The goal is 20

We have to work!
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Symmetry?

- 1- 6+ 4- 2+ 7- 5+ 38

+ 2+ 1- 5+ 3- 8+ 6- 47

- 3+ 8- 1- 4+ 2- 7+ 56

+ 4- 2+ 7+ 1- 3+ 8- 65

- 5+ 3- 8+ 6- 1- 2+ 74

+ 6- 4+ 2- 7+ 5+ 1- 83

- 7+ 5- 3+ 8- 6+ 4- 12

+ 8- 7+ 6- 5+ 4- 3+ 21

Problem:
Difficult to identify one
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Study of the problem

❏ There is no schedule with less than n-2 breaks
❏ Proof: consider 2 teams a, b

Assume a has no break
Assume b has no break: this means that a and b 
“alternate” (a is + - + - + - … and b is - + - + - + …)
because a plays b at a moment.
Now consider any other team c, then c has 
necessarily a break because c cannot alternate 
simultaneously with a and with b
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N-2 as lower bound

❏ If the minimal value is close to n-2 then it is more 
interesting to try successively the values from n-2 
w.r.t. an increasing order than finding a first solution 
and then trying to reduce the objective value
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Relevant constraints

❏ For each two consecutive 
periods the number of away 
break (- -) is equal to the 
number of home breaks (+ +)

❏ Proof: for each period the 
number of + is equal to the 
number of -. We cannot have 
an odd number of non breaks.

❏ Corollary: #B is even --

+-

++

-+
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Second test

?730.70time (s)

?352,7013,89916#bk

121086#teams

?20.80.20time (s)

?101,8449705#bk

121086#teams
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Relevant constraints

❏ Suppose that for a team we have
+ . - . . . .
and exactly one break is required
then we can deduce: + . - + - + -

❏ Property: #Bi(j,k): number of break for team i 
between period j and k 

j a period, k a period with k = j + q
Pij=Pik ⇔ #Bi(j,k) has the parity of q
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Third test

??20.80.2time (s)

??101,844970#bk

1412108#teams

?55.34.00.1time (s)

?135,12911,542226#bk

1412108#teams
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Relevant constraint

❏ As proved at the beginning: there are at most two 
teams with no break
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Fourth test

?55.34.00.1time (s)

?135,12911,542226#bk

1412108#teams

904.41.370.40.1time (s)

1,716,5132,43584641#bk

1412108#teams
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Variable-value strategy

❏ Strategy:
1) The #Bi variables with domain-min
2) The place variables for the first period
3) the break variables by trying first value 1
4) the place variables
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Fifth test

904.41.370.40.1time (s)

1,716,5132,43584641#bk

1412108#teams

397.11.180.40.1time (s)

711,4082,20984641#bk

1412108#teams
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Dominance rules

+ y- ij

- x+ ji

y- ij

x+ ji

- y- ij

- x+ ji

- y- ij

+ x+ ji

+ y- ij

+ x+ jibreak break

break

break
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Dominance rules

+ y- ij

- x+ ji

- y- ij

- x+ ji

- y- ij

+ x+ ji

+ y- ij

+ x+ jibreak break

break

break

DR: If i < j then break on i is forbidden for the two first period 
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Dominance rules

+ y- ij

- x+ ji

- y- ij

- x+ ji

- y+ ij

+ x- ji

+ y+ ij

+ x- jibreak break

break

break

DR: If i < j then break on i is forbidden for the two first period 

This is possible. If there is a break then if we swap the location 
the number of break is never increased 

break
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Dominance rules

❏ The dominance rule can be defined for the first two 
column and for the last two columns

❏ It is also possible to define dominance rules for the 
middle, but this is quite complex.
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Final result

❏ 16 teams in 5s
❏ 18 teams in 20s
❏ 20 teams in 200s
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Plan

❏ Principles of Constraint Programming
❏ A rostering problem 
❏ Modeling in CP: Principles
❏ A difficult problem
❏ A Network Design problem
❏ Modeling Over-constrained problems
❏ Discussion
❏ Conclusion
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The ROCOCO Project 

❏ France Telecom R&D ISE
❍ Problem and benchmark definition
❍ Algorithm validation

❏ Research laboratories: INRIA Numopt, LRI Orsay, 
PRiSM Versailles, Evry, …

❍ Lower bounds: Lagrangean relaxation, column 
generation, cuts

❍ Optimization techniques: genetic algorithms
❏ ILOG

❍ Optimization techniques: constraint programming, 
mixed integer programming, column generation
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The Problem (1)

❏ Routing of Communications
❍ Mono-routing: each demand from a point p to a point q 

must follow a unique path
❏ Dimensioning of Links

❍ The capacity of each link must exceed the sums of the 
demands going through the link

❏ Additional Constraints
❍ Depend on the customer for whom the network is 

designed
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The Problem (2)
Data:

• Customer traffic 
demands

• Possible links, 
capacities and 
costs

S1 S2

S3

S4

S1
S2

S3

S4

Result:
❍ Minimal cost 

network able 
to 
simultaneousl
y respond to 
all the 
demands

❍ Route for 
each demand

27Kb/s

115Kb/s

Rented capacity 
256Kb/s
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The Problem (3)

❏ Cost minimization principle
❍ Traffic demands share link capacities

S1 S2

S3

512Kb/s
128Kb/s

115Kb/s

256Kb/s
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The Problem (4)

Demands share links

❍ ∑ demandsi→j ≤ capacityi→j

❍ Technological constraints256K
b/s

64K
b/s

64K
b/s

64K
b/s

64K
b/s

128K
b/s

128K
b/s

64K
b/s

64K
b/s

128K
b/s
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The Problem (5)

❏ Side constraints
❍ Quality of service
❍ Reuse of existing equipment (limit on the number of ports, 

maximal traffic at a node)

❍ Commercial and legal constraints
❍ Possible future network evolution
❍ Network management (e.g., traffic concentration)

64K
b/s

64K
b/s

64K
b/s

64K
b/s
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Data

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Price

2,4kbit/s 4,8kbit/s 9,6kbit/s 19,2kbit/s 64kbit/s 128kbit/s 256kbit/s 1920kbit/s1984kbit/s 2048kbit/s

Capacity

11km
50km
400km
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Optional Constraints

❏ Security: some commodities to be secured cannot go through unsecured nodes 
and links

❏ No line multiplication: at most one line per arc.
❏ Symmetric routing: demands from node p to node q and demands from node q 

to node p are routed on symmetric paths.
❏ Number of bounds (hops): the number of arcs of the path used to route a 

given demand is limited.
❏ Number of ports: the number of links entering into or leaving from a node is 

limited.

❏ Maximal traffic: the total traffic managed by a given node is limited.

64K
b/s

64K
b/s

64K
b/s

64K
b/s
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Numerical Characteristics 
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Mixed Integer Programming 
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Constraint Programming 

❏ Routing variables: paths (D set variables)
❍ A set of arcs joining the origin to the destination of the 

demand
❍ Basic functions : impose or forbid an arc (or a node)

❏ Dimensioning variables: chosen capacity levels (M 
enumerated variables)

❏ Specific constraints and constraint propagation 
algorithms
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Constraint Programming

Decision: forbidden node

Nodes and arcs forbidden
by propagation

Decision: forbidden node

Nodes and arcs imposed
by propagation
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Path representation in CP

❏ “Classical” model:
Graph represented by the nodes:
One variable per node
Value = possible neighboor

❏ Path from s to t: alldiff on nodes.
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Path representation in CP

s a

b c

d e

f t

D(s)={a,b}, D(a)={s,b,c,d}, D(b)={s,a,c}, D(c)={a,b}
D(d)={a,e,f}, D(e)={d,t}, D(f)={d,t}, D(t)={s}
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Path representation in CP

s a

b c

d e

f t

D(s)={a,b}, D(a)={s,b,c,d}, D(b)={s,a,c}, D(c)={a,b}
D(d)={a,e,f}, D(e)={d,t}, D(f)={d,t}, D(t)={s}
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Path representation in CP

s a

b c

d e

f t

Problem if some variables do not belong to the path:
What is the value assigned to these variables?
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Path representation in CP

s a

b c

d e

f t

A dummy value is added to each domain: BAD IDEA
D(s)={a}, D(a)={c}, D(c)={b}, D(b)={dummyb},
D(d)={e}, D(e)={t}, D(f)={dummyf}, D(t)={s}
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Path representation in CP

s a

b c

d e

f t

Loops are allowed (var links to itself): GOOD IDEA
D(s)={a}, D(a)={c}, D(c)={b}, D(b)={b},
not possible: b has been already taken by c
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Path representation in CP

❏ “Classical” model:
- One var per node
- Alldiff constraint: cost for the matching: O(m) per 
modification
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Rococo in CP 

❏ Manipulate only graph abstractions
❍ Nodes
❍ Valued links
❍ Shortest paths …

ILOG Solver

Rococo Program

Optimized graph API
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New model:

❏ General point of view: we search for a subgraph. 
Two entities:
- Digraph class 
- DigraphVar class

❏ A DigraphVar is a subgraph of a digraph w.r.t. 
properties, for instance: path.
It is defined from a Digraph

❏
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New model:

❏ General point of view: we search for a subgraph. 
Two entities:
- Digraph class 
- DigraphVar class

❏ A DigraphVar is a subgraph of a digraph w.r.t. 
properties, for instance: path.
It is defined from a Digraph

❏ API similar to setvar API 
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Digraph

❏ class IlcDigraph {
IlcDigraph(IlcInt nbNodes,IlcIntArray from,IlcIntArray to);
IlcInt getNbNodes()const;
IlcInt getNbArcs()const;
IlcInt getNbOutgoingArcs(const IlcInt node) const;
IlcInt getNbIncomingArcs(const IlcInt node) const;
IlcInt getEmanatingNode(const IlcInt arc)const;
IlcInt getTerminatingNode(const IlcInt arc)const;
IlcInt getFirstOutgoingArc(const IlcInt node)const;
IlcInt getNextOutgoingArc(const IlcInt node, const IlcInt arc)const;
IlcInt getFirstIncomingArc(const IlcInt node)const;
IlcInt getNextIncomingArc(const IlcInt node, const IlcInt arc)const;
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Digraph Variable

❏ Class DigraphVar{
IlcDigraphVar(IlcManager m, IlcDigraph g);
IlcIntSetVar getNodesVar()const;  IlcIntSetVar getArcsVar()const;
IlcIntSetVar getSourcesVar()const;  IlcIntSetVar getSinksVar()const;
IlcBool isBound()const;
IlcBool isAPath()const; 
// accessors 
IlcBool isArcRequired(IlcInt arc)const;  
IlcBool isArcPossible(IlcInt arc)const;  
IlcBool isNodeRequired(IlcInt node)const;  
IlcBool isNodePossible(IlcInt node)const;  
IlcBool isSourceRequired(IlcInt node)const;  
IlcBool isSourcePossible(IlcInt node)const;  
IlcBool isSinkRequired(IlcInt node)const;  

IlcBool isSinkPossible(IlcInt node)const;  
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Digraph Variable

❏ Class DigraphVar {
// modificators 
void removeAllOutgoingArcs(IlcInt node)const;
void removeAllIncomingArcs(IlcInt node)const;
void removeAllOutgoingArcsButArc(IlcInt node, IlcInt arc)const;
void removeAllIncomingArcsButArc(IlcInt node, IlcInt arc)const;
void removeArcPossible(IlcInt arc)const;  
void addArcRequired(IlcInt arc)const;
void removeNodePossible(IlcInt node)const;
void addNodeRequired(IlcInt node)const;  
void removeSinkPossible(IlcInt node)const;  
void addSinkRequired(IlcInt node)const;
void removeSourcePossible(IlcInt node)const;
void addSourceRequired(IlcInt node)const;
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Digraph Variable

❏ Class DigrapVar{
// for iterations
IlcInt getFirstOutgoingArc(IlcInt node)const;
IlcInt getNextOutgoingArc(IlcInt node, IlcInt arc)const;
IlcInt getFirstIncomingArc(IlcInt node)const;
IlcInt getNextIncomingArc(IlcInt node, IlcInt arc)const;  

IlcDigraph getDigraph()const;
IlcInt getNbIncomingArcs(IlcInt node)const;
IlcInt getNbOutgoingArcs(IlcInt node)const;  
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Digraph Variable

❏ Class DigraphVar{
// graph functions
IlcInt getFirstArcPossibleOnShortestPath(IlcIntDistanceFunctionI* d, 

const IlcInt source, 
const IlcInt sink,
IlcInt dem=1)const;

 IlcInt computeShortestPathDistance(IlcIntDistanceFunctionI* dist,
            const IlcInt source,      

       const IlcInt sink,     
       IlcInt dem=1)const;  

IlcIntArray computeShortestPath(IlcIntDistanceFunctionI* dist,
       const IlcInt source,      

  const IlcInt sink,      
  IlcInt dem=1)const;
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Distance Function

❏ class IlcIntDistanceFunctionI{
IlcIntDistanceFunctionI(IlcDigraph g,IlcInt maxCost);

  virtual IlcInt getCost(IlcDigraphVar var, 
      IlcInt arc, 
      IlcInt dem)=0;

};
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Path Constraints

❏ IlcConstraint IlcSimplePath(IlcDigraphVar g, 
           IlcInt source, 
        IlcInt sink);

❏ IlcConstraint IlcShortestPath(IlcDigraphVar g,       
          IlcInt source,       

          IlcInt sink,       
          IlcIntVar obj,       

          IlcIntDistanceFunctionI* dist);
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Element constraint

❏ enum IlcGraphProperty {
IlcNodeRequired=0L,        
IlcSourceRequired=1,       
IlcSinkRequired=2,       
IlcEmanatingRequired=3,       
IlcTerminatingRequired=4,       

IlcTraversedRequired=5,       
IlcArcRequired=20};

❏ IlcConstraint IlcGraphElement(IlcInt item,
             IlcDigraphVarArray gvs,      

              IlcIntSetVar var,      
              IlcGraphProperty pte);
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Selectors

❏ class IlcDigraphSelectDigraphVarI {
IlcDigraphSelectDigraphVarI(){}
virtual IlcInt select(IlcDigraphVarArray vars)=0; 

};

❏ class IlcDigraphSelectArcI {
IlcDigraphSelectArcI(){}
virtual IlcInt select(IlcDigraphVarArray vars, IlcInt index)=0;

};
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Selectors (cont’d)

❏ class IlcDigraphSelectShortestPathArcI : IlcDigraphSelectArcI {
IlcDigraphSelectShortestPathArcI(IlcIntDistanceFunctionI* fn);
virtual IlcInt select(IlcDigraphVarArray vars, IlcInt index);
virtual IlcInt getSource(IlcDigraphVarArray vars, 

          IlcInt index)=0;
virtual IlcInt getSink(IlcDigraphVarArray vars, IlcInt index)=0;
virtual IlcInt getDemand(IlcDigraphVarArray vars, 

            IlcInt index)=0;
};
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Goals

❏ IlcGoal IlcDigraphRequireArc(IlcManager m,      
            IlcDigraphVar digraph, 

            IlcInt arcIndex);

❏ IlcGoal IlcDigraphRemoveArc(IlcManager m,     
             IlcDigraphVar digraph,     
             IlcInt arcIndex);

❏ IlcGoal IlcDigraphAddArc(IlcManager m,  
       IlcDigraphVarArray vars,

       IlcInt index,  
       IlcDigraphSelectArcI* selectArc);
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Goals (cont’d)

❏ IlcGoal IlcDigraphInstantiate(IlcManager m,       
          IlcDigraphVarArray vars,      

           IlcInt index,           
          IlcDigraphSelectArcI* selectArc);

❏ IlcGoal IlcDigraphGenerate(IlcManager m,    
        IlcDigraphVarArray vars,   
        IlcDigraphSelectDigraphVarI* selectD, 

        IlcDigraphSelectArcI* selectArc);
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Why not PathVar?

❏ Path is a property of a graph. We prefer to express 
properties by constraint

❏ In any cases, we need to be able to test if an object 
is a path/tree/cycle …
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Rococo in CP

❏ Advantages of digraph variables:
❍ Simple
❍ Open to many additional constraints
❍ Much more efficient than basic constraint programming 

(combines constraint programming with optimization 
algorithms on graphs)
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Rococo in CP

❏ Search strategy: select the most important demand 
and the path for which the additional (marginal) cost 
for routing this demand is minimal 

❍ Shortest path problem with constraints
❍ Successive constraints: impose the last arc, then the previous 

arc, ..., and finally the first arc of the shortest path
❍ Each of these added constraints leads to creating a choice point: 

upon backtracking, the imposed arc is forbidden and a new 
shortest path, taking this interdiction into account, computed
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Improvements of CP 

❏ Direct constraint between variables representing the paths and 
variables representing the traffic through each node

❏ Use of Parallel Solver
❍ A few lines of code

❏ Modification of the tree-search traversal strategy
❍ Branch more close to the root of the tree
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Results
#pb CP deviation MIP deviation GC deviation
A04 0.00%  0.00%  0.00%
A05 0.00% 0.00% 0.00%
A06 0.00%  0.00%  0.00%
A07 0.01% 1.42%  0.60%
A08 0.69%  9.06%  5.11%
A09 1.25% 19.44%  12.85%
A10 1.57% fail fail 
B10 10.62% 12.04% 13.40%
B11 19.20% 12.46%  11.70%
B12 13.49% 13.32%  9.62%
C10 1.84%  3.24%  2.72%
C11 5.90%  9.11%  17.83%
C12 16.20% fail 12.26%
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Results

❏ France Telecom considers that CP gives the most 
interesting result.

❏ CP approach has been optimized mainly for A 
series. 

❏ A lot of work could be done for the other series
❏ Result of Column Generation comes from a PhD 

thesis (A. Chabrier) mainly dedicated to this problem
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Pros and Cons of Different 
Techniques (1)

❏ Constraint Programming:
+ Global constraints on paths
– The overall cost is a sum of many step functions (almost no propagation)

❏ Mixed Integer Programming:
+ Sum objective handled with a global view
– No good model for mono-routing (in the relaxation, the LP solver provides a 

flow)
– Bad continuous relaxation of the step functions

❏ Column Generation:
+ Sum objective handled with a global view
+ A column is a path
– Bad continuous relaxation of the step functions
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Pros and Cons of Different 
Techniques (2)

❏ Security
± CP: Easy to model with logical constraints but no global propagation
– MIP, CG: Leads to lots of fractional values in the relaxation (e.g., routing a 

demand on two paths, each made of half-secure and half-unsecured links)
❏ No line multiplication

+ CP, MIP, CG: Smaller problem
– MIP, CG: Impact on the continuous relaxation of the step functions

❏ Symmetric routing
+ CP, MIP, CG: Smaller problem
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Pros and Cons of Different 
Techniques (3)

❏ Number of bounds (hops)
+ CG: Much less potential paths and paths much easier to generate (especially when 

the number of bounds is really small)
± CP: More propagation but with more complex algorithm
– MIP: Easy to model (sum of 0-1 variables representing the presence of each arc in a 

path) but more fractional values in the relaxation

❏ Number of ports
± CP: Easy to model with logical constraints but no global propagation
– MIP, CG: Requires additional integer variables (with fractional values in the relaxation)

❏ Maximal traffic
+ MIP, CG: Linear constraints
– CP: Linear constraints with no global propagation
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Plan

❏ Principles of Constraint Programming
❏ A rostering problem 
❏ Modeling in CP: Principles
❏ A difficult problem
❏ A Network Design problem
❏ Modeling Over-constrained problems
❏ Discussion
❏ Conclusion
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Over Constrained ProblemsOver Constrained Problems

❏ No solution satisfies all the constraints
❏ What can we do?
❏ Some constraints have to be relaxed

❍ Hard constraints: must be satisfied
❍ Soft constraints: can be relaxed
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Over constrained problems: outline

❏ Two problems
❏ Soft constraint and Filtering algorithm
❏ Applications involving global constraints that can be 

violated vs applications involving only local 
constraints that can be violated

❏ Constraints on violations
❏ How to model an over-constrained problem?

❍ How to relax a constraint?
❍ How to model constraints on violations?

❏ Discussion
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Over constrained problems: outline

❏ Two problems
❏ Soft constraint and Filtering algorithm
❏ Applications involving global constraints that can be 

violated vs applications involving only local 
constraints that can be violated

❏ Constraints on violations
❏ How to model an over-constrained problem?

❍ How to relax a constraint?
❍ How to model constraints on violations?

❏ Discussion
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Car sequencing

❏ Problem : computes the sequencing order of cars 
that will be built on an assembly line

❏ Many different types of cars can be built on an 
assembly line. 

❏ A car = a basic car + options (color, motor, 
telephone, seats, …). 

❏ A car = a configuration of options



134

Capacity of an option

❏ For practical reasons: a given option cannot be 
installed on every vehicle on the line.

❏ Consequence of smoothing constraints: local limits 
are imposed. Minimum granularity.

❏ Capacity of an option: ratio p/q, for any sequence 
of q cars on the line, at most p of them can have the 
option 

❏ When p=1 called distance constraint
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Car sequencing

❏ opt  cap            configurations
0 1 2 3 4 5

0  1/2 X X X
1  2/3 X X X
2  1/3 X X
3  2/5 X X X
4  1/5 X
#cars 1 1 2 2 2 2
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Car sequencing

❏ opt  cap            configurations
0 1 2 3 4 5

0  1/2 X X X
1  2/3 X X X
2  1/3 X X
3  2/5 X X X
4  1/5 X
#cars 1 1 2 2 2 2

❏ Sequences  4,4 or 4,5 or 0,4 or 0,5 are forbidden
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Car sequencing

❏ opt  cap            configurations
0 1 2 3 4 5

0  1/2 X X X
1  2/3 X X X
2  1/3 X X
3  2/5 X X X
4  1/5 X
#cars 1 1 2 2 2 2

❏ Sequences  2,2,1 or 2,3,0 are allowed
❏ Sequences  2,2,3 or 5,3,2 are forbidden
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Scheduling applicationScheduling application
❍ Activities A1, A2, A3 require a unary resource R
❍ Temporal constraints

❏ The duration of each Ai is 5
❏ A1 and A2 start before 10
❏ A3 ends at 12

1210
Time

5
5

5
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Over constrained problems: outline

❏ Two problems
❏ Soft constraint and Filtering algorithm
❏ Applications involving global constraints that can be 

violated vs applications involving only local 
constraints that can be violated

❏ Constraints on violations
❏ How to model an over-constrained problem?

❍ How to relax a constraint?
❍ How to model constraints on violations?

❏ Discussion
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Soft constraint

❏ A soft constraint is a constraint that can be violated
❏ The violation can be associated with a cost that can 

be:
❍ The same for any violation
❍ Depends on the violation

❏ Example: x < y, if x ≥ y we can have
❍ A fixed cost: cost = c
❍ A cost depending on the violation: cost = x –y or 

cost = (x-y)2  
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Soft constraint and Filtering algorithm

❏ When the violation is accepted this means that we 
accept that any combination of values satisfies 
the constraint.
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Soft constraint and Filtering algorithm

❏ When the violation is accepted this means that we 
accept that any combination of values satisfies 
the constraint.

❏ Roughly, the constraint become an universal 
constraint associating a cost with any tuple, so we 
loose the structure of the constraint
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Soft constraint and Filtering algorithm

❏ When the violation is accepted this means that we 
accept that any combination of values satisfies 
the constraint.

❏ Roughly, the constraint become an universal 
constraint associating a cost with any tuple, so we 
loose the structure of the constraint

❏ Problem with filtering algorithm (FA): 
❍ FA exploits the structure of the constraints
❍ FA are not efficient when everything is possible! 
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Soft constraint and Filtering algorithm

❏ When the violation is accepted this means that we 
accept that any combination of values satisfies 
the constraint.

❏ Roughly, the constraint become an universal 
constraint associating a cost with any tuple, so we 
loose the structure of the constraint

❏ Problem with filtering algorithm (FA): 
❍ FA exploits the structure of the constraints
❍ FA are not efficient when everything is possible! 

❏ Filtering for soft depends mainly on back 
propagation. Problem with global constraints
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Over constrained problems: outline

❏ Two problems
❏ Soft constraint and Filtering algorithm
❏ Applications involving global constraints that 

can be violated vs applications involving only 
local constraints that can be violated

❏ Constraints on violations
❏ How to model an over-constrained problem?

❍ How to relax a constraint?
❍ How to model constraints on violations?

❏ Discussion
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Over Constrained Problem

Relaxation
• OC aspect in the 
  propagation
• Use of soft constraints : 
that is constraints + cost
• Global objective function  
  on the cost associated   
with constraints

⇒  1 over-constrained 
      problem is solved

Decomposition
• No Soft Constraint. Only 
hard constraint
• A constraint which is 
violated is replaced by a 
relaxation of the constraint 
• The relaxation is handled 
  “by hand”

⇒  n satisfaction 
      problems are solved
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ApplicationsApplications

❏ Applications involving global constraints that can be 
violated
❍ Each global constraint affects widely the problem
❍ Example: car-sequencing

Number of cars
(HARD)

Options of each 
car (HARD)

Sequence 
constraints

(SOFT) Hard

Soft
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ApplicationsApplications

❏ Applications involving “global” soft constraints
⇒ Difficult to solve with a pure relaxation approach 
⇒ Decomposition methods are more adapted
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ApplicationsApplications

❏ Applications involving “global” soft constraints
⇒ Difficult to solve with a pure relaxation approach 

❏ A global constraint = conjunction of constraint. 
Violation of a global = violation of any constraint of 
the conjunction

❏ The problem is not easy even with efficient global 
constraints, so if the global constraints are removed 
and replaced by a lot of constraints that can be 
violated then we loose the strong filtering algorithms 
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ApplicationsApplications

❏ Applications involving “global” soft constraints

⇒ Decomposition methods are more adapted
❏ A succession of problems are considered. In each 

problem the global constraint that are violated are 
relaxed by hand:
❍ another global constraint replaces the previous one but it is 

less constrained. For instance a p/q option will be replaced 
by a p+1/q option. We will manage the relaxation

❍ There is no objective, this is the user that controls the list of 
the problems that will be considered
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ApplicationsApplications

❏ Application involving “Local” constraints that can be 
violated
❍ Example: scheduling

Resources
(SOFT)

Time (SOFT)

Precedence / order
constraints

(HARD) Hard

Soft
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ApplicationsApplications

❏ Application involving “Local” soft constraints
⇒ Decomposition methods can be used
⇒ Relaxation methods can be used



153

Applications involving global Applications involving global 
constraints that can be violatedconstraints that can be violated

❏ Over constrained problems solved by a succession 
of satisfiability problems. Each problem is managed 
by the user.

SOFT

 
HARD

Hard

Soft



154

Applications involving local Applications involving local 
constraints that can be violatedconstraints that can be violated

❏ All the constraints are relaxed (that is we accept the 
violation) then an optimization problem is solved. 
The objective is to minimize the sum of the violation 
costs

SOFT

HARD

Hard

Soft
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Over constrained problems: outline

❏ Two problems
❏ Soft constraint and Filtering algorithm
❏ Applications involving global constraints that can be 

violated vs applications involving only local 
constraints that can be violated

❏ Constraints on violations
❏ How to model an over-constrained problem?

❍ How to relax a constraint?
❍ How to model constraints on violations?

❏ Discussion
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Constraints on violationsConstraints on violations

❏ In real world problems, the goal is much more complex than 
minimizing the number of constraint violations

⇒   Rules on violations
❍ Distinction between hard and soft constraints
❍ Priorities 
❍ Control of distribution of violations in the constraint network : well 

balancing of violation (homogeneity) is generally required
❍ Specific dependencies between constraints
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Constraints on violations: PrioritiesConstraints on violations: Priorities

❏ All the constraints have not the same importance
❏ Goal: favor the satisfaction of the most important ones

 ( C1: hard constraint )
 C2: crucial 
 C3: important
 C4: low importance
 C5: preference
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Well balancing of violations

❏ In many real-world applications, violations must generally be 
homogeneously distributed in the constraint network

❏ More complex rules with respect to distribution of violations are 
sometimes required
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Well balancing of violationsWell balancing of violations

❏ Example 
❏ worker W1: preferences = { C11, C12, C13, ... }
❏ worker W2: preferences = { C21, C22, C23, ... }
❏ worker W3: preferences = { C31, C32, C33, ... }

❏ A schedule such that some workers have all their preferences satisfied 
and some other have no preference satisfied is not acceptable

❏ For each Wi:
❏ At least j constraints satisfied
❏ At least j constraints satisfied, and at least  k constraint violated with 

degree < m, etc.
❏ General idea: avoid to have hard work periods and then almost 

nothing to do. True for people or for machine
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Constraints on violations: Constraints on violations: 
DependenciesDependencies

❏ Expressing specific dependencies is generally required
❏ Example

❏ « if C1 and C2 are violated then C3 must be satisfied »
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Over constrained problems: outline

❏ Two problems
❏ Soft constraint and Filtering algorithm
❏ Applications involving global constraints that can be 

violated vs applications involving only local 
constraints that can be violated

❏ Constraints on violations
❏ How to model an over-constrained problem?

❍ How to relax a constraint?
❍ How to model constraints on violations?

❏ Discussion
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How to model over-constrained 
problems?

❏ How to relax a constraint?
❏ How to model usual constraints on violations
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How to relax a constraint?

❏ Try to keep some structure in order to have efficient 
filtering algorithm

❏ Use meta constraints
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Meta Constraint

❏ si > 0 expresses that Ci is violated (distance to satisfaction)
❏ si = 0 expresses that Ci is satisfied 
❏ D(si) is an integer domain
❏ Each “soft” constraint is replaced by the disjunction:

[ (s = 0) ∧ C ]  ∨  [ (s > 0) ∧ ¬C ] 
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Meta ConstraintMeta Constraint

❏ Since valuations are expressed trough variables, constraints 
on these variables can be added in order to express “global 
rules” on violations
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Max-SAT = Satisfiability Sum Max-SAT = Satisfiability Sum 
ConstraintConstraint

❏ In the ssc, each constraint Ci is replaced by:

❏ A variable unsat is used to express the objective:

[ (Ci ∧ (ui = 0))  ∨ (¬Ci ∧ (ui = 1)) ]

 ∑ ui 
i=1

# Ci

[ unsat  = ]
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Advantages of This ModelAdvantages of This Model

❏ Classical constraint optimization problem
● Direct integration into a solver
● Any search algorithm can be used, not only a Branch 

and Bound based one. 
❏ When a value is assigned to ui ∈ U, the filtering 

algorithm associated with Ci (resp. ¬Ci) can be used
❏ No hypothesis is made on constraints (arity)
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Advantages of This ModelAdvantages of This Model

❏ Integration of cost within the constraint
Costs as a variable: 

● the costs of violations have a structure:
if (x ≤ y) is violated then cost = x - y
We can use this information.

❏ General definitions of cost of violations
❏ Global soft constraints
❏ Constraints on violations can be easily defined
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Use of the structure of the violation:Use of the structure of the violation:
x x ≤≤ y y

❏ Structure
❍ If the constraint is satisfied then cost = 0
❍ If the constraint is violated then cost = x - y

❏ Filtering Algorithm:
❍ D(x) = [90000,100000], D(y) = [99990,200000]
❍ We deduce immediately max(cost)= max(x) - min(y) = 10
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General definition of the cost of 
violation

❏ Two different general costs:
❍ Variables based violation cost
❍ Primal Graph Based violation cost

❏ Some others see papers at CP-AI-OR’04 
(Beldiceanu and Petit) and papers at workshop on 
soft constraints at CP’04.
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Variable based violation cost

❏ How many variables must be removed to satisfy the 
constraint?

❏ Alldiff({x1,x2,x3,x4,x5})
(a,a,a,b,b) cost = 3
(a,a,a,a,b) cost = 3
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Primal graph based partition cost

❏ For a global constraint corresponding to a 
conjunction of constraints. Number of the constraints 
in the conjunction that are violated

❏ Alldiff({x1,x2,x3,x4,x5})
(a,a,a,b,b) cost = triangle(a,a,a) + pair (b,b)

= 3 + 2 =5
(a,a,a,a,b) cost = quadrangle (a,a,a,a)

= 6
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All Different constraintAll Different constraint

The same value assigned to 2 variables  → 1 violation

The same value assigned to 3 variables → 3 violations

The same value assigned to 4 variables → 6 violations

n variables → n(n-1)/2 violations 
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Meta-constraints for Expressing Meta-constraints for Expressing 
HomogeneityHomogeneity

❏ Example: time tabling problem
❏ n office workers express some preferences
❏ for each one at least j preferences should be satisfied

n cardinality constraints, one for each subset of state 
variables Si corresponding to the set of preference constraints 
of one worker Wi : « at least j times value 0 assigned to 
variables in Si »
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Meta-constraints for Expressing Meta-constraints for Expressing 
DependenciesDependencies

❏ Example
❍ If C1 and C2 are violated then C3 must be satisfied

[(( s1 > 0 ) ∧ ( s2 > 0 )) ⇒ ( s3 = 0 )]
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Over constrained problems: outline

❏ Two problems
❏ Soft constraint and Filtering algorithm
❏ Applications involving global constraints that can be 

violated vs applications involving only local 
constraints that can be violated

❏ Constraints on violations
❏ How to model an over-constrained problem?

❍ How to relax a constraint?
❍ How to model constraints on violations?

❏ Discussion
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Discussion

❏ Well balancing of violations can be difficult to 
express.

❏ Real life example: Capacity constraints (smoothing 
constraints are soft): p/q. 

❍ Violation: (p’-p)2/q2, then minimization of the variance.
❍ Signification: consider 1/5 and ½, 

❏ a violation of 1 is less important for 1/5 than for 1/2, so 
q2  is considered

❏ two violations of 1 are less important than one 
violation of 2, so (p’-p)2 is considered

❍ Difficult to model
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Discussion

❏ A quite interesting approach has been proposed by 
L. Perron and P. Shaw (see in their CP’04 paper) for 
car sequencing

❏ 100 cars to schedule with a book order of 100 cars. 
Accept to have dummy cars (perfect cars), that is 
extend the book order -> 110 cars

❏ Then try to minimize the number of perfect cars
❏ Then replace perfect cars by real cars
❏ Seems very interesting because the model of the 

initial problems is not change at all and we work only 
with hard constraints
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Meta constraints vs other models

❏ Valued CSP is not able to take into account the 
structure of the violated constraints

❏ Valued CSP contains no back propagation because 
the cost is not a variable

❏ Valued CSP are not able to manage constraints on 
violation

❏ If we represent constraints on violations by 
constraints we do not need to invent a new XXX Csp 
for every constraint on violations
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Plan

❏ Principles of Constraint Programming
❏ A rostering problem 
❏ Modeling in CP: Principles
❏ A difficult problem
❏ A Network Design problem
❏ Modeling Over-constrained problems
❏ Discussion
❏ Conclusion
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Hard problem

❏ Consider a problem P that you are unable to solve. 
How can you improve the resolution?
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Hard problem

❏ Consider a problem P that you are unable to solve. 
How can you improve the resolution?

❏ By identifying hard sub-problems H of P
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Hard problem

❏ Consider a problem P that you are unable to solve. 
How can you improve the resolution?

❏ By identifying hard sub-problems H of P
❏ By improving the resolution of some sub-problems R 

of P and by using filtering algorithm for R.
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Problem

❏ How can we identify a sub-problem R for which we 
can improve its resolution?

❏ How can we write a specific filtering algorithm for 
this sub-problem R?

❏ This is time-consuming and not necessarily 
worthwhile.
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Improving the resolution of R

❏ R can be viewed as a global constraint:
An allowed  tuple of this constraint is a solution of R 
and conversely.

❏ Consistency of the constraint = R has a solution.
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GAC-Schema: instantiation

❏ List of allowed tuples
❏ List of forbidden tuples
❏ Predicates
❏ Any OR algorithm
❏ Solver reentrace
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GAC-Schema

❏ Idea: 
tuple = solution of the constraint
support = valid tuple
- while the tuple is valid: do nothing

       -  if the tuple is no longer valid, then search for a new support for 
the values it contains

❏ a solution (support) can be computed by any OR 
algorithm. A solution is needed not only the fact that 
there is one.
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GAC-Schema: complexity

❏ CC complexity to check consistency (seek in table, call to 
OR algorithm): seek for a Support costs CC

❏ n variables, d values:
for each value: CC
for all values: O(ndCC)

❏ For any OR algorithm which is able to compute a 
solution, Arc consistency can be achieved in O(ndCC). 
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AC for R

❏ All the possible solutions of R are computed once 
and for all. They are saved in a database. GAC-
Schema + allowed is used

❏ Only the combinations of values that are not solution 
are saved. GAC-Schema + forbidden

❏ Solutions are computed on the fly when we want to 
know if a value belongs to a current solution of R.
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Improvement of  the resolution

❏ Cryptographic problem

x11 x12

x21

x31

x41

x14x13 ∑x1i=r1

∑xi1=c1

+ Alldiff(xij)
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Improvement of  the resolution

❏ Cryptographic problem

x11 x12

x21

x31

x41

x14x13 ∑x1i=r1

∑xi1=c1

+ Alldiff(xij)

What happens if we have the global constraint:  (∑ xi + Alldiff(xi))?
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Improvement of  the resolution

❏ Model 1: Sum for each row and each column 
+ Alldiff(xij) 

❏ Model 2: (∑ xi + Alldiff(xi)) for each row and each column 
+ Alldiff(xij)

       9,985     591   591   1.36 7.2           51
  2,373    127    127     0.3 1.7           18

4        0        0        0 0.5          8.5easiest
average
hardest

model1 model2 pred

#backtracks time

5 x 5
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Improvement of  the resolution

❏ Model 1: Sum for each row and each column 
+ Alldiff(xij) 

❏ Model 2: (∑ xi + Alldiff(xi)) for each row and each column 
+ Alldiff(xij)

1,623,557 2,598 2,598   520  42  too long
75,548    281    281   26.2 6.7 too long

3        0        0   0.03 2.5 too longeasiest
average
hardest

model1 model2 pred

#backtracks time

6 x 6
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Identification of the difficulty

❏ Golomb ruler (see CSP lib):
“A Golomb ruler may be defined as a set of n 
integers 0=x1 < x2 < … < xn s.t. the n(n-1)/2 
differences (xj - xi) are distinct. Goal minimize xn.”

❏ with CP difficult for n > 13.  
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Identification of the difficulty

❏ Model1: x1,…,xn = variables; (xi-xj)= variables. 
Alldiff involving all the variables.

❏ Model2: diff1i = xi - x(i-1)
Model1 + global constraint: 

Sum(diff1i)=xn and Alldiff(diff1i)
❏ Model3: diff2i= xi - x(i-2)

Model1 + global constraint:
   Sum(diff1i)=xn and Alldiff(diff1i U diff2i) 



196

Identification of the difficulty

model1  22  0.3  297  0.4  213    0.4  1298    2.7  844    2.2  5326    19
model2    3  0.3  122  2.8    48    2.4    343  18.2  183  16.6  1967  161
model3    0  1.4      5  1.5      4  10.5      25  18.1    16   120      96  226

   #bk  t     #bk   t     #bk    t       #bk     t     #bk     t       #bk     t

       xn=34     xn=33    xn=44         xn=43      xn=55         xn=54

n=8                        n=9                            n=10
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Identification of the difficulty

model1  22  0.3  297  0.4  213    0.4  1298    2.7  844    2.2  5326    19
model2    3  0.3  122  2.8    48    2.4    343  18.2  183  16.6  1967  161
model3    0  1.4      5  1.5      4  10.5      25  18.1    16   120      96  226

   #bk  t     #bk   t     #bk    t       #bk     t     #bk     t       #bk     t

       xn=34     xn=33    xn=44         xn=43      xn=55         xn=54

n=8                        n=9                            n=10

Gain: #bk/4
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Identification of the difficulty

model1  22  0.3  297  0.4  213    0.4  1298    2.7  844    2.2  5326    19
model2    3  0.3  122  2.8    48    2.4    343  18.2  183  16.6  1967  161
model3    0  1.4      5  1.5      4  10.5      25  18.1    16   120      96  226

   #bk  t     #bk   t     #bk    t       #bk     t     #bk     t       #bk     t

       xn=34     xn=33    xn=44         xn=43      xn=55         xn=54

n=8                        n=9                            n=10

Gain: problem almost solved!

Sum(diff1i)=xn and Alldiff(diff1i U diff2i): involves only n variables
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Pre-resolution of some parts of the problem
GAC-Schema + allowed

❏ Configuration problem:
5 types of components: {glass, plastic, steel, wood, copper}
3 types of bins: {red, blue, green} whose capacity is red 5, blue 5, green 6
Constraints:
- red can contain glass, cooper, wood
- blue can contain glass, steel, cooper
- green can contain plastic, copper, wood
- wood require plastic; glass exclusive copper
- red contains at most 1 of wood
- green contains at most 2 of wood
For all the bins there is either no plastic or at least 2 plastic
Given an initial supply of 12 of glass, 10 of plastic, 8 of steel, 12 of wood and 8 
of copper; what is the minimum total number of bins?
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Pre-resolution of some parts of the problem
GAC-Schema + allowed

                            #bk            time
standard model   1,361,709   430
 GAC+allowed      12,659      9.7
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GAC Schema + allowed

❏ It is important to be able to generate all solutions of 
a problem

❏ There is almost no efficient algorithms that are 
available

❏ Any idea is welcome
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Conclusion

❏ The first model usually does not work
❏ Use global constraints as much as possible
❏ Try to identify difficult parts of the problems
❏ Try to find relevant constraints to help the solver
❏ Try to avoid linear model and try to think constraint 

and filtering 
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Conclusion

❏ Be creative!
❏ Be imaginative!
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Conclusion

❏ Be creative!
❏ Be imaginative!

Slides and papers are available at:

www.constraint-programming.com/people/regin
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