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Abstract. This paper considers the daily assignment of newborn infant
patients to nurses in a hospital. The objective is to balance the workload
of the nurses, while satisfying a variety of side constraints. Prior work
proposed a MIP model for this problem, which unfortunately did not
scale to large instances and only approximated the objective function,
since minimizing the variance cannot be expressed in a linear model.
This paper presents constraint programming (CP) models of increasing
complexity to solve large instances with hundreds of patients and nurses
in a few seconds using the COMET optimization system. The CP models
use the recent spread global constraint to minimize the variance, as well
as an exact decomposition technique.

1 Introduction

This paper considers the daily assignment of newborn infant patients to nurses in
a hospital described in [5]. In this problem, some infants require little attention,
while others need significant care. The amount of work required by the infant
during one shift is called the acuity. A nurse is in charge of a group of infants
and the total amount of acuity is the workload of the nurse during that shift.
For ensuring an optimal care quality and perceived fairness for the nurses, it is
essential to balance the workload. In addition, the problem features various side
constraints:

— A nurse can work in only one zone, but the patients are located in p different
zones.

— A nurse cannot be responsible of more than children infants.

— The total amount of acuity of a nurse cannot exceed acuity™*.

max

The balance objective and the various constraints make it very difficult to find
a good solution in a reasonable time. Since nurses only work in one zone, the
number of nurses assigned to each zone has already a huge impact on the quality
of the balancing. In [5], the problem was tackled using a MIP model, but the



results were not satisfactory. In this paper, we present a series of increasingly
sophisticated constraint programming models in order to reach the required
solution quality and scalability.

The rest of the paper is organized as follows. Section 2 presents the instances
proposed in [5] and Section 3 describes the MIP model and its limitations. Section
4 reviews the Spread constraint for load balancing and characterizes its pruning
(as implemented in COMET). Section 5 presents a first constraint programming
(CP) model that can solve two-zones instances. Section 6 presents a two-step
approach that first assigns the nurses in each zone and then assigns the infants
to nurses to balance the load optimally. Finally, Section 7 shows that the second
step can be decomposed by zones without losing the optimality guarantees. This
final model is instrumental in solving large instances with dozens of zones and
hundreds of patients.

2 Problem Instances

Reference [5] specifies a statistical model to generate instances very similar to
their real instances. This statistical model was also used to measure the robust-
ness of their solution technique with respect to the number of nurses, the number
of infants, and the number of zones. The model contains a single parameter: the
number of zones. The maximum acuity per nurse is fixed to acuity™®* = 105
and the maximum number of infants per nurse is fixed to children™** = 3. The
instance generator fixes the number of nurses, the number of infants, the acuity,
and the zone of each infant. The different steps to generate an instance are as
follows:

— The number of patients in a zone is specified by a Poisson random variable
with mean 3.8 and offset by 10.

— The acuity Y of a patient is obtained by first generating a number X ~
Binomial(n = 8,p = 0.23) and then choosing the number Y ~ Unif(10 -
(X+1),10-(X+1)49).

— The total number of nurses is obtained by solving a First Fit Decreasing
(FFD) procedure in each zone. More precisely, the total number is the num-
ber of nurses found in each zone by the FFD procedure. The FFD procedure
starts by ranking the patients in decreasing acuity. Then, the patient with
the highest acuity is assigned to the first nurse. The next patients are as-
signed successively to the first nurse that can accommodate them without
violating the maximum acuity and the number of patient constraints.

3 The MIP Model

We now review the main variables of the MIP model from [5]. We also describe
the limitations of the MIP model and suggest why a CP approach may address
them. Due to space reasons, we do not reproduce the entire MIP model but
readers can consult [5] for more details. The technical details presented here are
sufficient for our purposes. The MIP model contains four families of variables:
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Fig. 1. Comparison of Two Solutions on a 6 Nurses, 14 Infants, and 2 zones Problem.
Solution on the left is obtained by minimizing the range-sum criterion. Solution on the
right is obtained by minimizing the variance.

1. X;; = 1 if infant ¢ is assigned to nurse j and 0 otherwise;
2. Zji, = 1 if nurse j is assigned zone k£ and 0 otherwise;

3. Y max is the maximum acuity of a nurse in zone k;

4. Y min is the minimum acuity of a nurse in zone k.

All these variables are linked with linear constraints to enforce the constraints
of the problem. The objective function implements what we call the range-sum
criterion and consists of minimizing the sum of the acuity ranges of the p zones,

ie.,
P

Z(Yk,max - Yk,min)~

k=1
The MIP model has a fundamental limitation: The objective function may pro-
duce poorly balanced workloads. It tends to equalize the workload inside the
zones but may produce huge differences among the workload of different zones.
This is illustrated in Figure 1. The workloads are depicted in the top-right cor-
ner of each COMET visualization. The left solution is obtained by minimizing the
range-sum criterion and the right solution by minimizing the variance (Ly norm
in the next section). The range-sum objective is minimal on the left because the
workloads inside each of the two zones are identical. Unfortunately, nurses in
the first zone work twice as much as those in the second zone. The right solu-
tion is obtained by minimizing the variance and is significantly more appealing.



This illustrates clearly that “the high level objective that all nurses should be as-
signed an equal amount of patient acuity” [5] is not properly captured with the
range-sum criterion.

It is not immediately obvious how to remedy these problems. The variance
is non-linear and is not easily modelled in a MIP approach. In addition, a CP
approach may exploit the combinatorial structure in the bin-packing and the
side-constraints, while the MIP relaxation is generally bad for bin-packing like
problems. Finally, there are important symmetries that are not removed in their
model: For a given solution, the nurses are completely interchangeable. We now
review load balancing constraints before turning to the CP models.

4 Load Balancing Constraints

Balancing constraints arise in many real-world applications, most often to ex-
press the need of a fair distribution of items or work. For instance, Simonis
[15] suggested a global constraint to balance the shift distribution among nurses
and Pesant [7] proposed the use of balancing constraints for a fair allocation of
individual schedules.

Two global constraints and their propagators are available in constraint pro-
gramming for optimizing load balancing: spread [6,11], which constrains the
variance and the mean of a set of variables, and deviation [12,13], which con-
strains the mean absolute deviation and the mean of a set of variables. We also
say that spread and deviation respectively constrain the Ly and L; norms of
a set of variables Xj..X,, with respect to their mean (s =) X;), Le.,

— Ll: Zze[ln] |X’L — S/n|,
— Loy: Zie[l..n] (Xi —s/n)*.

These criteria are not equivalent: Minimizing L, or Ly does not lead to the same
solutions and it is not always obvious which one to choose. In fact, this is an old
and recurrent debate (see for instance [3]). For this application, we use spread
because the Lo criteria is more sensitive to outliers, which we consider significant
in this application.

We use the following definitions and notations to describe the semantics of
the spread constraints and propagators.

i€[l..n]

Definition 1. Let X be a finite-domain (discrete) variable. The domain of X
is a set of ordered values that can be assigned to X and is denoted by Dom(X).
The minimum (resp. mazimum) value of the domain is denoted by X™1 =
min(Dom(X)) (resp. X™** = max(Dom(X)). An integer interval with integer
bounds a and b is denoted [a..b] C Z, while a rational interval is denoted [a,b] C
Q. An assignment on the variables X = [ X1, Xa, ..., X,] is denoted by the tuple
x and the i-th entry of this tuple by x[i]. The extended rational interval domain
of Xi is ID(X;) = [X™0, X2] and its integer interval domain is I5(X;) =
[ngnin . Xz_max]'

We now define the spread constraint with a fixed mean.



Definition 2. Given finite domain variables X = (X1, Xo, ..., X,)), an integer
value s and a finite domain variable A, spread(X, s, A) holds if and only if

Z Xi=s and A>n- Z | X; — s/n|%

i€[1..n] 1€[1..n]
Observe also
ne 3 Xi—s/nfP=n- Y X2 s (1)
i€[l..n] 1€[1..n]

Since s is an integer, this quantity is integer, which is why it is more convenient
to work with n - 37,y X7 — s? than with 35, [Xi — s/n[%.

Ezample 1. Tuple x = (4,6,2,5) € spread([X;, Xo, X3,X4],s = 17, A = 40)
but x = (3,6,2,6) ¢ spread([ X1, Xa, X3, X4],s = 17, A = 40) because 4 - (3% +
62 + 22 4+ 62) — 172 = 51 > 50.

The filtering algorithm for spread achieves Z-bound-consistency.

Definition 3 (Q-bound-consistency and Z-bound-consistency). A con-
straint C(X1,...,Xy,) (n > 1) is Q-bound-consistent (resp. Z-bound-consistent)
with respect to domains Dom(X;) if for alli € {1,...,n} and each value v; €
{Xmin Xmaxy - there exist values v; € In(X;) (resp. v; € I5(X;)) for all
je{l,...,n} —{i} such that (v1,...,v,) € C.

The propagators described in [6,11] achieve Q-bound-consistency, which means
that they assume that the variables can be assigned rational numbers. The prop-

agators implemented in COMET implement the stronger Z-bound-consistency
by adapting the algorithms from [6,11]. In particular, to achieve Z-bound-

i —7Z
consistency, the propagators for spread compute AZ to filter A™" and X
and KZZ to ﬁlter Xgnax and Ximin:

AZ:mxin{n~ > &[] —s/n)? st Y x[i]=s (2)

i€[L..m] i€[L..n]
and Vi€ [1.n] : x[i] € I5(X;)}

X

?

= mfx{x[i] st. n- Z (z[§] — s/n)? < A™™ and (3)
jE€[l..n]

Z x[j] = s and Vj : z[j] € I5H(X;)}.

jE[1..n]

The filtering of A is implemented in O(n -log(n)) and that of X in O(n?) in the
COMET System [2, 10].

5 A Basic CP model.

We now present a CP model which addresses the issues raised for the MIP model.



The CP Model. Let m be the number of nurses, n the number of patients,
and a; be the acuity of patient i. The set of patients in zone k is denoted by
Py and [P1, ..., Pp| forms a partition of {1,...,n}. For each patient i, we use a
decision variable N; € [1..n] representing her/his nurse. The workload of nurse
J is represented by variable W; € [0..acuity™®*]. The objective and constraints
are modelled as follows.

— The objective, i.e., minimizing the L, norm, is expressed by a spread con-
straint over the workload variables [W7,..., W,,,], the total acuity, and the
acuity spread: spread ([W7y, ..., W,,,] ,totalAcuity,spreadAcuity). Note that
spreadAcuity is the variable to minimize.

— To express that nurses have a total acuity of atmost acuity™?®*, we link
the variables N;, W;, and the acuities with a global packing/multiknapsack
constraint [14]: multiknapsack([Ny, ..., Nu|, [a1, ..., an], [W1, ooy Win]).

— To model that a nurse takes care of at most children™?®* infants, we use a
global cardinality constraint [8]: cardinality(l, [Ny,..., Ny], children™ax).

— The constraint that a nurse can work in at most one zone is modelled by a
pairwise-disjoint constraint pairwiseDisjoint ([Z1, ..., Zp]), where Zj is an
array of variables containing the variables IN; associated with zone k.

max

The COMET Program The model in COMET is shown in Listing 1.1. Lines 1-3
declare the decision variables. Line 4 declares the arrays for the zones, which are
filled in lines 5-7. The objective function is in lines 8-9 and 11. Lines 12-14 de-
pict the constraints. The pairwiseDisjoint constraint introduces set-variables
representing the set of nurses working in each zone NS, = Uz’ePk N;. The set
NS} is maintained with a global constraint union0f. Then, the pairwise empty
intersections between the set variables are enforced with a global disjoint con-
straint. COMET uses a reformulation with channeling constraints and a global
cardinality constraint as explained in [9, 1].

The search is implemented in the using block in lines 16-24. The search dy-
namically breaks the value symmetries originating from the nurse interchange-
ability. The patient having the largest acuity is selected first in line 17. Then the
search tries to assign a nurse to this patient, starting first with those with the
smaller load (lines 19-22). The symmetry breaking is implemented by consider-
ing the already assigned nurses and at most one additional nurse without any
assigned patient (a similar technique was used for the steel mill slab problem in
[4]). Value mn is the maximal index of a nurse already assigned to a patient. The
tryall statement considers all the nurse indexes until mn+1 (nurse mn+1 having
currently no patient).

Ezperimental Results As a first experiment, we generated 10 instances with 2
zones, as was the case for the real instances studied in [5]. These instances have
about 10-15 nurses, 20-30 infants, and cannot be solved by the MIP model. All
the instances were solved optimally with our COMET model in less than 30 min-
utes (the time constraint specified in [5] by the hospital to find the assignment).
Table 1 depicts the experimental results. All results are using COMET 1.1 [2] on
2.4 GHz Intel Core Duo with 4GB running MacOS 10.5.6.
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Listing 1.1. Patient-Nurse Assignment Model

var<CP>{int} Npatients](cp,nurses);
var<CP>{int} Wnurses|(cp,1..MaxAcuity);
var<CP>{int} spreadAcuity(cp,0..System.get MAXINT());
var<CP>{int}[] Z[zones];
int k = 1;
forall(i in zones,j in 1..nbPatientsInZonel[i])
ZL]fj] = Nk-+-+};
minimize<cp>
spreadAcuity
subject to {
cp.post(spread(W,sum(p in patients) acuity[p],spreadAcuity));
cp.post(multiknapsack(N,acuity, W));
cp.post(cardinality (minNbPatients,N,maxNbPatients));
cp.post(pairwiseDisjoint(Z));
}
using {
forall(p in patients: !N[p].bound()) by (—acuity[p],N[p].getSize()) {
int mn = max(0,maxBound(N));
tryall<cp>(n in nurses: n <= mn + 1) by (W[n].getMin())
cp.label(N[p],n);
onFailure
cp.diff(N[p],n);

Table 1. Patients to Nurses Assignment Problem with 2 zones and minimization of
Ly with spread.

m n #fails time(s) avg workload sd. workload
11 28 511095 170.2 86.09 2.64
11 29 1126480 302.0 80.27 1.76
10 26 104931 24.7 76.50 2.29
12 30 259147 136.5 83.42 1.93
10 28 2990450 1138.5 91.80 6.84
10 26 779969 206.9 88.40 2.29
12 29 555243 198.2 80.08 2.72
10 27 931858 343.9 90.60 5.33
10 25 1616689 434.5 82.70 7.32

8 22 4160 1.2 87.50 3.12
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Fig. 2. Illustration of a solution of the relaxation solved to find the number of nurses
in each zone.

6 A Two-Step CP Model

The basic CP model can solve 2-zone instances but has great difficulty for 3 zones
or more. We now show how to simplify the resolution by a two-step approach
which first pre-computes the number of nurses assigned to each zone and then
assigns the patients to nurses. This simplifies the resolution by

1. removing one degree of flexibility which is the number of nurses in each zone.
2. removing the disjointness constraint since the set of nurses that can be as-
signed to each patient can be pre-computed.

A Relazation This first step is important because the decomposition may be
significantly sub-optimal if these numbers are not properly chosen. Indeed, the
number of nurses assigned to each zone has a crucial impact on the quality of
the balancing. However, after visualizing some optimal solutions, we observed
that the workloads of the nurses are extremely well balanced (almost the same)
inside the zones. This suggested solving a relaxation of the problem to discover
a good distribution of the nurses to the zones. The relaxation allows the acuity
of a child in a zone to be distributed among the nurses of that zone (continuous
relaxation of the acuity). Since the acuity of a child can be split, the relaxed
problem will have an optimal solution where the nurses of a zone have exactly
the same workload ’;‘,—:, i.e., the total acuity Ay = EiePk a; of zone k divided by
the number of nurses xj in zone k. This is schematically illustrated on Figure 2
for a two-zone relaxation problem and stated in Theorem 1.

Theorem 1. An optimal solution of the relaxed problem must have the same
workload for all the nurses in a given zone.



Proof. Otherwhise, given m variables [Wy,..., W,,] with sum s = >/, W, the
Lo criterion can be improved on these variables if two of them can be made
closer (2 nurses of the same zone with a different workload). Let W; and W;
be the variables that can be made closer and assume without loss of generality
that W; > W;. The variables after modification are respectively W and Wj’
If W; and W; are made closer this means that W/ — W; < W; — W;. Since
the sum is fixed then W} + Wi = W; + W;. Thus W; — W/ = W] — W; and
so there exists 6 with M > § > 0 such that W, — W/ = ¢ = W]’ - W;.
That is W] = W; — § and W, = W; + 6. The starting sum of square deviations
with formula (1) is A = m - 37", (W;)? — s*. With W] and W it becomes

A =m (3 (We)? + (Wi = 0)? + (W) +0)?) — 8% = A—2md - (W; — W; = 9).

Since (W; — W; — 4§ > 0), we have A" < A. O
Given Theorem 1, the mathematical formulation of the relaxed problem is
2
P P
Ay A;
. Ak Aj 4
min Z T o Z - (4)
k=1 Jj=1
P
s.t. Z Tp=m (5)
k=1
Tk € Za_ (6)
The workload of all the nurses of zone k is ?—)’: and the average workload is
?:1 %. Hence the contribution to the Lo criterion for the zj; nurses of zone k

2
i (A NP A
is zp (mk L) -

Solving the Relazation In our CP model, we approximate this relaxation in
O(p-log(p)) time. First, we solve the continuous relaxation of the problem, i.e., we
drop the integrality constraint (6). The solution to this continuous optimization

problem is x;, = m- ﬁ, which corresponds to assigning the average workload
j=144
A, . .
?:1 L to every nurse. The continuous solution zp = m - pAi’“A can be
j=141

transformed greedily into an integer solution using the following steps:

— By developing the objective (4), it appears that it is equivalent to minimize
P (Ar)?

k:1 v ’ . . . . .
— The transformation into an integer solution starts by first rounding up the

number of nurses in every zone x = [m - %W. The effect is that the
=14

constraint (5) may be violated and the objecti(ze Iﬁight decrease.
— Then, the zp > 1 are considered to be decreased by one unit until the
constraint (5) is satisfied again. The index k of the next zj to be decreased
A2 A2

7T~ o h i.e., the variable that will increase the least its
AR

xp

is argming {
corresponding term in the equivalent objective Z£=1

Our experimental results show that this approximation is optimal on all the
instances the first CP model solved.
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Lower Bound on the Spread The pre-computation of the number of nurses as-
signed to each zone is also instrumental in computing a lower bound on the Lo
criterion. Inside a zone, the average load is pp = Ap/xy. Since the acuity of
patients are integers, we can strengthen the lower bound of the objective (4)
by enforcing the workloads of nurses of zone k to be either |py] or [pug]. This
is illustrated on Figure 3. Since the total workload of zone k& must remain Ay,
the distribution of the workload among |ux | and [p] are given respectively by
ap = Ap +xp - (1 — [pr]) and B = xx — ag. The lower bound on the spread
variable A” computed with formula (1) is thus

m -

p
k=

(- [] + Br - L )?) = O AR)™. (7)
k=1

1

The COMET Model The two-step CP model in COMET is given in Listing 1.2
and assumes that the x; are already computed. The model does not create the
N variables in line 2: These will be created at the same time as the zone arrays,
since their domains are now restricted to a subset of the nurses. Lines 6-12
create the zone arrays, line 10 constructing the array for zone ¢. Note that the
domains of these variables are defined in lines 9 and 11, using the number of
nurses assigned in the zones. Lines 13—15 assign the zone variables to the nurse
variables (the opposite of the first model, since the zone variables now have
restricted domains). The constraints are similar but there is no longer a need
for the pairwiseDisjoint constraint. The search in lines 23-34 is a little bit
more complicated as the patients are assigned one zone at a time. The dynamic
symmetry breaking scheme is the same but adapted to this by zone assignment.

Table 2 reports the results obtained on the same 2-zones instances as for Table
1 using the pre-computation of the number of nurses assigned to each zone. The
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Listing 1.2. Two steps Patient-Nurse Assignment Model

Solver<CP> cp();
var<CP>{int} N[patients];
var<CP>{int} W[nurses](cp,1..MaxAcuity);
var<CP>{int} spreadAcuity(cp,0..System.get MAXINT());
var<CP>{int}[] Z[zones];
range nursesOfZone[zones;
int j=1;
forall(i in zones) {
nursesOfZonel[i] = j..j+x[i]—1;
Z[i] = new var<CP>{int}[1..nbPatientsInZoneli]](cp,nursesOfZoneli]);
j +=xlif;

int k = 1;
forall(i in zones,j in 1..x[i])
N[+ = Z[i[j);
minimize<cp>
spreadAcuity

subject to {
cp.post(spread(W sum(p in patients) acuity[p],spreadAcuity));
cp.post(multiknapsack(N,acuity, W));
cp.post(cardinality (minNbPatients,N,maxNbPatients));
}
using {
forall(i in zones){
forall(p in Z[i].rng(): !Z]i][p].bound()) by(—acuityByZoneli][p],Z[i][p].getSize()){
int shift = i==17 0 : nursesOfZone[i—1].getUp();
int mn = max(0,maxBound(Z[i]))+shift;
tryall<cp>(n in nursesOfZonel[i]: n <= mn + 1) by (W[n].getMin())
cp.label(Z[i][p],n);
onFailure
cp.dift(Z[i][p] n);




last column is the lower bound obtained with equation (7). A first observation is
that the computation times are greatly reduced. They do not exceed 10 seconds
with the new model, while they were over 1000 seconds for the most difficult
instances with the old one. The CP model finds the correct number of nurses in
the first step, since the standard deviation with previous model are exactly the
same (hence optimum) as the optimal values in Table 1. It is also interesting to
see that the lower bound is reasonably close to the optimum values which also
validates the approach.

Table 2. Patients to Nurses Assignment Problem with 2 zones with precomputation
of the number of nurses in each zone

m n #tails time(s) avg workload sd. workload Ib. sd.
11 28 25385 4.5 86.09 2.64 2.23
11 29 4916 1.4 80.27 1.76 0.62
10 26 458 0.1 76.50 2.29 2.29
12 30 17558 6.7 83.42 1.93 1.19
10 28 29865 4.8 91.80 6.84 6.81
10 26 3705 1.0 88.40 2.29 1.43
12 29 6115 1.2 80.08 2.72 0.64
10 27 1109 0.4 90.60 5.33 5.22
10 25 3299 0.6 82.70 7.32 6.71
8 22 127 0.0 87.50 3.12 3.04

Table 3. Patients to Nurses Assignment Problem with 3 zones with precomputation
of the number of nurses in each zone

sol m n #fails time(s) avg workload sd. workload Ib. sd.
1 15 42 19488 5.3 84.20 3.04 2.93
1 18 43 3619310 919.2 79.78 5.84 5.49
0 17 43 9023072 1800.0 81.41 4.75 3.45
1 17 42 483032 106.9 83.82 5.65 5.59
0 18 43 7124370 1800.0 81.00 7.11 4.94
1 14 38 590971 145.2 85.36 3.08 2.16
0 19 48 3786580 1800.0 87.42 3.18 2.30
1 16 44 3888210 839.8 84.88 6.70 6.39
0 19 49 5697272 1800.0 86.00 2.70 1.95
1 17 41 61250 17.3 82.18 3.40 3.07

Since the instances with 2 zones can now be solved easily, we tried to solve in-
stances with 3 zones. The results are presented on Table 3. Only 6 instances (out
of 10) could be solved optimally within 30 minutes with this two-step approach.
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Fig. 4. Solution of a 15-Zone Instance.

7 A Two-Step CP Model with Decomposition

The previous approach can solve easily two-zone problems but has difficulties
to solve 3 zones problems and instances with more that 3 zones are intractable.
It thus seems natural to decompose the problem by zone and to balance the
workload of nurses inside each zone independently rather than balancing the
workload of all the nurses globally. Interestingly, this decomposition preserves
optimality, i.e., it reaches the same solution for the Lo criterion as the two-
step approach of Section 6 for a given pre-computation of the number of nurses
assigned in each zone. In other words, given the pre-computed number of nurses
in each zone, it is equivalent to minimize L, among all the nurses at once or to
minimize Ly separately inside each zone. We now prove this result formally.

Lemma 1. Minimizing n-Y ;" (yi — Ax/xx)? such that > ;% y; = Ay, is equiv-

3

alent to minimizing n -y .5 (yi — (Ag/zk + ¢))? such that > ;% yi = Ay.

Proof. The first objective can be reformulated from formula 1 as zy - > %, y? —
A%. The second one can be reformulated after some algebraic manipulations as
A xi+wg- Y ik, y?— Az, Since they differ only by a constant term, they produce
the same set of optimal solutions. a

Theorem 2. [t is equivalent to minimize Ly among all the nurses at once or to
minimize Lo separately inside each zone.

Proof. This follows directly from Lemma 1. If the minimization of Ly is per-
formed globally for all the nurses, the least square Lo criterion is computed with
respect to the global average load of all the nurses that is wrt Y »_, Aj/m. This
corresponds to choosing ¢ in Lemma 1 equal to the difference between the aver-

age load in zone k and the global average load: ¢ = > %_, Ag/m — A /zp. O

We solved again the 3-zone instances with the decomposition method. The results
are given on Table 4. One can observe that, as expected, the objectives are
the same for the instances that could be solved optimally in Table 3. For the
remaining ones, the algorithm produces strictly better solutions. The time is also
significantly smaller. Figure 4 shows a COMET visualization of a solution for a
15-zones instance with 81 nurses and 209 patients. This instance could be solved
in only 7 seconds and 10.938 fails.



Table 4. Patients to Nurses Assignment Problem with 3 zones with precomputation
of the number of nurses in each zone and decomposition by zone

m n #fails time(s) avg workload sd. workload 1b. sd.
15 42 203 0.1 84.20 3.04 2.93
18 43 608 0.1 79.78 5.84 5.49
17 43 8134 1.1 81.41 4.46 3.45
17 42 345 0.1 83.82 5.65 5.59
18 43 24994 3.2 81.00 5.77 4.94
14 38 151 0.0 85.36 3.08 2.16
19 48 3695 0.8 87.42 3.07 2.30
16 44 384 0.1 84.88 6.70 6.39
19 49 2056 0.4 86.00 2.49 1.95
17 41 776 0.2 82.18 3.40 3.07

8 Conclusion

This paper considered the daily assignment of newborn infant patients to nurses
in a hospital. The objective is to balance the workload of the nurses, while
satisfying a variety of side constraints. Prior work proposed a MIP model for this
problem which exhibits two limitations. It did not scale to large instances and its
objective function did not balance the workload properly. The paper presented
a direct CP model which balances the load appropriately and easily solve 2-
zone instances. To scale the CP approach, the paper showed how to decompose
the problem in two steps: an assignment of nurses to zones followed by the
assignment of nurses to patients. The first step is obtained from a relaxation
of the problem which could be solved quickly. The second step is solved by a
simplification of the direct model. This 2-step approach dramatically improved
the results on the 2-zone instances and could solve some 3-zone instances. The
paper then showed that the zone problems can be solved independently without
quality loss. This resulting CP model solves 3-zone problems almost instantly
and is highly scalable. For instance, a 15-zone problem with 81 nurses and 209
patients was solved in 7 seconds.

There are a number of interesting issues left to investigate. It would be in-
teresting to study the quality of the approximation performed in the first step.
Our experimental results indicate that it is optimal on all our tested intances
but a performance guarantee would be desirable. Alternatively, we could con-
sider solving this first step exactly, an algorithmic issue we need to investigate.
In addition, it would be interesting to study problems in which nurses have
qualifications which restrict their possible zone assignments.
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