
The Objective Sum Constraint

Jean-Charles Régin1 and Thierry Petit2

jcregin@gmail.com; thierry.petit@mines-nantes.fr

1Université de Nice-Sophia Antipolis, I3S, CNRS.
2École des Mines de Nantes, LINA, CNRS.

Abstract. Constraint toolkits generally propose a sum constraint where a global
objective variable should be equal to a sum of local objective variables, on which
bound-consistency is achieved. To solve optimization problems this propagation
is poor. Therefore, ad-hoc techniques are designed for pruning the global objec-
tive variable by taking account of the interactions between constraints defined on
local objective variables. Each technique is specific to each (class of) practical
problem. In this paper, we propose a new global constraint which deals with this
issue in a generic way. We propose a sum constraint which exploits the propaga-
tion of a set of constraints defined on local objective variables.

1 Introduction

A lot of optimization problems aim to minimize (or maximize) the sum (or a scalar
product) of some variables. The variable equals to that sum is usually called the ob-
jective variable and denoted by obj, and the sum is called the objective constraint.
For convenience, we will call sub-objective variables the variables involved in the sum
while the other variables but obj will be called problem variables. The sub-objective
variables are denoted by sobji and the problem variables by xi.

Lower bounds of the objective variable are computed from the sum constraint by
considering minimum values of the sub-objective variables. Thus, we usually state that∑

sobji = obj where y denotes the minimum value in the domain of the variable y.
The minimum value of the sub-objective variables are computed from the constraints
(different from the objective constraint) which involve them.

This model has three main drawbacks:

– The filtering algorithm associated with the objective constraint is weak although it
should deserve more attention because it is often the most important one.

– The fact that some problem variables may occur in several constraints, each involv-
ing a different sub-objective variable, is ignored.

– The fact that some sub-objective variables may be involved in several constraints
(different from the objective constraint) is ignored while it is important [3, 4].

This paper tries to remedy to these drawbacks. The main idea is to change the way
the sub-objective constraints are propagated. Consider, for instance, that we have the
following problem to solve: obj = sobj1 + sobj2 has to be minimized while respecting
the constraints sobj1 = 2x+y and sobj2 = z−x with x taking its value in [0, 10], y in
[0, 10] and z in [10, 20]. The classical filtering algorithm will lead to sobj1 = 2∗0+0 =



0 and sobj2 = 10 − 10 = 0, therefore obj = 0. However, if we look at problem from
the point of view of the variable x, this means that we need to find a value for x such
that sobj1+sobj2 is minimized with sobj1 = 2x+y and sobj2 = z−x. Clearly, x = 0
minimizes the value of sobj1 but not at all the value of sobj2 and x = 10 minimizes the
value of sobj2 but not the value of sobj1. If we try all values for x then we will discover
that x = 0 minimizes the value of sobj1 + sobj2 which is equal to y + z whereas any
other value v will lead to y + z + v. Thus, by applying a stronger form of consistency
we deduce that obj is greater than or equal to 10.

The main idea of this paper is to count for each problem variable involved in a con-
straint involving a sub-objective variable a lower bound of its contribution to the final
objective. We can easily figure out how we can use the result obtained from one problem
variable but it is unclear to see how the values obtained for all the problem variables can
be sum up. In this paper, we propose a generic answer to this question, inspired from
the PFC-MRDAC algorithm [2]: we select a problem variable x and compute a lower
bound of the sum of the sub-objective variables involved in a constraint with x. Then
we remove these sub-objective variables and we repeat the process for another variable.
At the end we can sum up the different lower bounds of the subsums because there are
disjoint, and we obtain a lower bound for the objective variable.

The paper is organized as follows. First, we propose a new lower bound of the
objective variable. Then, we introduce a new filtering algorithm. At last, we give some
related work and we conclude.

2 Objective Sum Constraint

Definition 1 Given
• obj an objective variable
• SO = {sobj1, ..., sobjp} a set of sub-objective variables,
• PX = {x1, ..., xq} a set of problem variables disjoint from SO,
• CSO be a set of constraints, each of them involving at least one sub-objective

variable.
The objective-sum constraint is equivalent to the constraint network defined by the
variables (obj ∪ SO ∪ PX) and the constraints CSO and the objective constraint
obj =

∑
sobji∈SO

sobji

We will consider that we are provided with minsobj((x, a), sobji, C), a function
returning the minimum value of sobji compatible with (x, a) on the constraint C. It
returns the minimum value of sobji consistent with C if x is not involved in C. This
function can be implemented using the filtering algorithm of C and it does not have to
be exact (a lower bound can be used).

3 Lower bounds

3.1 Multiple constraints involving a sub-objective variable
Consider a variable x involved in several constraints with the same sub-objective vari-
able sobji and a value a of D(x). A lower bound of sobji from the point of view of the



variable x is the maximum value of minsobj((x, a), sobji, C) among all constraints
involving sobji:

Property 1 We define
• CSO(sobj), the set of constraints involving sobj.
• xsobji(x, a) = maxC∈CSO(sobji)(minsobj((x, a), sobji, C))
• xsobji(x) = mina∈D(x)(xsobji(x, a))

Then, sobji ≥ xsobji(x)

If we denote by minseparate(sobji) the minimum value of sobji consistent with each
constraint of CSO(sobji) taken separately then we have:

Property 2 xsobji(x) ≥ minseparate(sobji)

3.2 Multiple sub-objective constraints involving a variable

The computation of the minimum value of the objective variable is usually made by
independent computations of the minimum value of all the sub-objective variables. We
propose here to take into account simultaneously some other constraints, that is, estab-
lishing a stronger form of consistency.

Consider a variable x involved in a constraint C1 involving the sub-objective vari-
able sobji and in a constraint C2 involving the sub-objective variable sobjj . Consider-
ing the constraints separately means that the value of x consistent with the minimum
value of sobji on C1 may be different than the one consistent with sobjj on C2. So,
for the sum sobji + sobjj , we can compute a lower bound of the minimum value of
this sum by considering different values of x, which is clearly an underestimation be-
cause in any solution the value of x will be the same. Instead, for each value a of x, we
propose to compute a lower bound of sobji + sobjj . There is a value (x, a) for which
l = sobji + sobjj is minimum among all the values in the domain of x. Then, l is a
new lower bound of sobji + sobjj . Note that this value can never be less than the one
computed for each sub-objective variable separately. Hence, we have:

Property 3 Let S ⊆ SO be a set of sub-objective variables. We define:
• L(S, (x, a)) =

∑
sobji∈S

xsobji(x, a)

• sumobj(x, S) = mina∈D(x)(L(S(x, a))) Then,∑
sobji∈S

sobji ≥ sumobj(x, S)

Property 4 If S is equal to all the sub-objective variables involved in a constraint with
x we have:

sumobj(x, S) ≥
∑

sobji∈S

minseparate(sobji)

It is not relevant to consider sub-objective variables sobji such that there is no constraint
in CSO(sobji) involving x. Next section shows how SO can be partitioned so as to sum
up efficiently several lower-bounds computed thanks to Property 3, in order to obtain a
lower-bound of obj.



3.3 A new lower bound of the objective variable
Property 3 shows how we can improve the computation of some sums of sub-objective
variables. We will obtain a new lower bound of the objective if the addition of that
sub-sums is equal to the whole sum at the end. That is, if no sub-objective variable is
added twice. By partionning the set of sub-objective variables SO we avoid counting
twice the same variable. In addition we can apply for each part Property 3. Therefore,
we have the following proposition:

Proposition 1 Let SO be the set of sub-objective variables, andP(SO) = {S1, ..., Sk}
a partition of SO, and {x1, ..., xk} a set of variables. Then,

obj =
∑

sobji∈SO

sobji ≥
∑

Si∈P(SO)

sumobj(xi, Si)

The main issue is to determine how the partition is defined and which variable is associ-
ated with each set. In fact, these questions are strongly related. We can imagine several
techniques for computing this partition. For instance, here is a possible algorithm:

1. For each x ∈ PX define sobjvar(x), the set of sub-objective variables which are
involved in a constraint involving x

2. Define O equal to SO and lobj equals to 0
3. Select the variable x having the largest sobjvar(x) ∩O cardinality.
4. Compute sumobj(x, sobjvar(x) ∩O) and add the result to lobj
5. Remove sobjvar(x) from O
6. Repeat from step 3) until there is no more variable in O

At the end of this algorithm lobj is a new lower bound of obj.

4 Filtering algorithm

From the lower bound presented in Section 3 we can design a filtering algorithm whose
goal is to reduce the domain of some problem variables and not only the domains of the
objective or sub-objective variables. We will consider two types of problem variables:
those that are associated with a part of P(SO) and those that are not.

Consider a variable x and S be the part of P(SO) associated with it. If x is assigned
to b 6= a then the lower bound is increased by L(S, (x, b)) − sumobj(x, S). If this
increment is too much for the objective variable (i.e. the lower bound is greater than
obj) then the value (x, b) is not consistent with the constraint. Thus we have:

Property 5 For any value b of x we define:
• slack((x, b), S) = L(S, (x, b))− sumobj(x, S)

• K = obj − [
∑

Si∈P(SO) sumobj(xi, Si)]

Then, each value (x, b) such that slack((x, b), S) > K is not consistent with the
objective constraint.

Once the new lower bound has been computed this filtering algorithm does not cost
anything more because all the sums

∑
sobji∈S xsobji(x, b) have been computed for all

the values of x.
With respect to variables which are not associated with a part, we can either ignore

them (or compute a new partition and apply the filtering algorithm).



5 Application

The objective sum constraint arises frequently in problem with multi-objectives. For
instance, it occurs in multidimensional bin packing problems (in which an item has
several dimensions), like the one appearing in the cloud computing management. In
these problems, we need to fill in servers (bins) with virtual machine (items) while
respecting all the sums of the capacities, one for each dimension. In the same time, we
associate with each dimension and with each server a cost representing the assignment
of the virtual machine to the server. For instance, a dimension may be the disk access
time and the cost represents a penalty depending of the time access given by the server.
The objective is to minimize the sum of all the penalties and penalties may be involved
in several side constraints.

6 Related Work

The idea of the partition comes from PFC-MRDAC, an algorithm for solving over-
constrained problems. The original version of the algorithm dealing only with binary
constraints is given in [2]. A simpler presentation, not restricted to binary constraints,
is given in [5]. Our generic technique is an alternative to some dedicated algorithms
for propagating sum constraints, which are specific to particular classes of optimization
problems (e.g., see [1] for constraint-based scheduling).

7 Conclusion

This paper presented a preliminary work about a new filtering algorithm for the objec-
tive sum constraint, which is useful in the resolution of multi-objective problems.

References

1. A. Kovács and J. C. Beck. A global constraint for total weighted completion time for cumu-
lative resources. Constraints, in print., 2010.

2. J. Larrosa, P. Meseguer, T. Schiex, and G. Verfaillie. Reversible DAC and other improvements
for solving Max-CSP. Proceedings AAAI, pages 347–352, 1998.

3. T. Larsson and M. Patriksson. On side constrained models of traffic equilibria. In Proc. of the
19th Course of the International School of Mathematics, pages 169–178. Plenum Press, 1995.

4. T. Petit and E. Poder. Global propagation of side constraints for solving over-constrained
problems. Annals of Operations Research, 184:295–315, 2011.

5. J.-C. Régin, T. Petit, C. Bessière, and J.-F. Puget. An original constraint based approach for
solving over constrained problems. In Proc. of CP’00, pages 543–548, Singapore, 2000.


