
Parallel Constraint Programming

Jean-Charles Régin and Arnaud Malapert

Abstract Constraint programming (CP) is an efficient technique for solving combi-
natorial optimization problems. In CP a problem is defined over variables that take
values in domains and constraints which restrict the allowed combination of val-
ues. CP uses for each constraint an algorithm that removes values of variables that
are inconsistent with the constraint. These algorithms are called while a domain is
modified. Then, a search algorithm such as a backtracking or branch-and-bound al-
gorithm is called to find solutions. Several methods have been proposed to combine
CP with parallelism. In this chapter, we present some of them: parallelization of the
propagator, parallel propagation, search splitting, also called work-stealing, prob-
lem decomposition, also called embarrassingly parallel search (EPS), and portfolio
approaches. We detail the two giving the best performances in practice: the work-
stealing approach and embarrassingly parallel search. We give some experiments
supporting this claim on a single multi-core machine, on a data center and on the
cloud.

1 Introduction

Constraint Programming (CP) is an efficient technique for solving combinatorial
optimization problems. It is widely used for solving real-world applications such as
rostering, scheduling, car sequencing, routing, etc. CP-based solvers are general and
generic tools for modeling and solving problems [12, 14, 85, 101, 88, 102, 98]. The
development of such solvers is an active topic of the CP community. In this chapter,
we propose to consider different approaches for parallelizing a CP-based solver. Our

Jean-Charles Régin
Université Côte d’Azur, CNRS, I3S, France, e-mail: jcregin@gmail.com

Arnaud Malapert
Université Côte d’Azur, CNRS, I3S, France e-mail: arnaud.malapert@unice.fr

1

2 J.-C Régin and A. Malapert

goal is to present methods that have been used to automatically parallelize CP-based
solvers. This means that no particular action of the user is required.

CP is mainly based on the exploitation of the structure of the constraints and
accepts constraints whose structure is different, unlike SAT or MIP which impose
certain rules on allowable models of the problem: having only boolean variables and
three clauses for SAT, or having only linear constraints for MIP.

This specificity of CP allows the use of any kind of algorithm for solving a prob-
lem. We could even say that we want to exploit as much as possible the capability
to use different algorithms. Currently, when a problem is modeled in CP it is pos-
sible that a large variety of algorithms are used at the same time and communicate
with each other. For instance, unlike with other techniques, it is really conceivable
to have at the same time flow algorithms and dynamic programming.

In CP, a problem is defined using variables and constraints. Each variable is as-
sociated with a domain containing its possible values. A constraint expresses prop-
erties that have to be satisfied by a set of variables.

In CP, a problem can also be viewed as a conjunction of sub problems for which
we have efficient resolution methods. These sub-problems can be very easy like
x < y or complex like the search for a feasible flow. These sub problems correspond
to constraints. Then, CP uses for each sub problem the associated resolution method,
often called a propagator. A propagator removes from the domains the values that
cannot belong to any solution of the sub problem. This mechanism is called filtering.
By repeating this process for each sub problem, so for each constraint, the domains
of the variables are reduced.

After each modification of a variable domain, it is useful to reconsider all the
constraints involving that variable, because that modification can lead to new de-
ductions. In other words, the domain reduction of one variable may lead to deduce
that some other values of some other variables cannot belong to a solution. So, CP
calls all the propagators associated with a constraint involving a modified variable
until no more modification occurs. This mechanism is called propagation.

Then, and in order to reach a solution, the search space will be traversed by
assigning successively a value to each variable. The filtering and propagation mech-
anisms are, of course, triggered when a modification occurs. Sometimes, an assign-
ment may lead to the removal of all the values of a domain: we say that a failure
occurs, and the latest choice is reconsidered: there is a backtrack and a new assign-
ment is tried. This mechanism is called search.

So, CP is based on three principles: filtering, propagation and search. We could
represent it by reformulating Kowalski’s famous definition of Algorithm (Algorithm
= Logic + Control) [53] as:

CP = f iltering+ propagation+ search (1)

where filtering and propagation correspond to Logic and search to Control.
An objective can also be added in order to deal with optimization problems. In

this case, a specific variable representing the objective is defined. When a better
solution is found then this variable is updated, and this modification is permanent.

Parallel Constraint Programming 3

The relation between the objective variable and the other variables is usually via a
constraint representing the objective function, which is often a sum constraint.

1.1 Filtering + Propagation

Since constraint programming is based on filtering algorithms [91], it is quite im-
portant to design efficient and powerful algorithms. Therefore, this topic caught the
attention of many researchers, who discovered a large number of algorithms.

As we mentioned, a filtering algorithm directly depends on the constraint it is
associated with. The advantage of using the structure of a constraint can be shown
on the constraint x ≤ y. Let min(D) and max(D) be respectively the minimum and
the maximum value of a domain. It is straightforward to establish that all the values
of x and y in the range [min(D(x)),max(D(y)] are consistent with the constraint. This
means that arc consistency can be efficiently and easily established by removing the
values that are not in the above ranges. Moreover, the use of the structure is often
the only way to avoid memory consumption problems when dealing with non-binary
constraints. In fact, this approach prevents us from explicitly having to represent all
the combinations of values allowed by the constraint.

One of the most famous examples is the ALLDIFFB constraint, which states that
values taken by variables must be different, especially because the filtering algo-
rithm associated with this constraint is able to establish arc consistency in a very
efficient way by using matching techniques [90].

The propagation mechanism pushes the propagators associated with a variable
when this variable is modified. There are usually two levels: a first level for the
immediate propagation of the modification of a variable and a delayed level that
aims at considering once and for all the modification of the variables involved in
each propagator. The delayed level is called only when there are no more propagator
to call in the first level. The delayed level is interrupted by the first level when the
latter is no longer empty.

Of course, each propagator can be parallelized. However a synchronization be-
tween them is needed, so it is really difficult to obtain consistent speed up with such
an approach. The propagation mechanism can also be parallelized, with the same
issues.

Note that the mechanism that is used when solving a Sudoku puzzle corresponds
to the application of rules, that is to the call of filtering algorithms (i.e. propagators)
until we cannot make any deduction. Thus, this is a propagation mechanism.

1.2 Search

Solutions can be found by searching systematically through the possible assign-
ments of values to variables. A backtracking scheme incrementally extends a partial

4 J.-C Régin and A. Malapert

assignment that specifies consistent values for some of the variables toward a com-
plete solution, by repeatedly choosing a value for another variable. The variables
are assigned sequentially.

Fig. 1a: Search tree for the four queens problems without propagation.

Fig. 1b: Search tree for the four queens problems with weak propagation.

Fig. 1c: Search tree for the four queens problems with strong propagation.

At each node of the search tree, an uninstantiated variable is selected and the node
is extended so that the resulting new branches out of the node represent alternative
choices that may have to be examined in order to find a solution. The branching
strategy, also called the variable-value strategy, determines the next variable to be
instantiated, and the order in which the values from its domain are selected. Each

Parallel Constraint Programming 5

time a variable is assigned a value the propagation mechanism is triggered. If a
partial assignment violates any of the constraints, that is if a domain becomes empty,
then a backtrack is performed to the most recently assigned variable that still has
alternative values available in its domain. Clearly, whenever a partial assignment
violates a constraint, backtracking is able to eliminate a subspace from the Cartesian
product of non-empty variable domains.

When a backtrack occurs, the refutation of the previous choice is usually added
to the solver and the propagation mechanism is called. More precisely, if the assign-
ment x = a fails, then a backtrack is performed and the constraint x 6= a is added.

The propagation mechanism allows the reduction of the variable domains and the
pruning of the search tree whereas the branching strategy can improve the detection
of solutions (or failures for unsatisfiable problems).

In the absence of specific knowledge, defining an efficient variable-value strategy
for guiding the search for solutions of a given problem is not an easy task. Thus some
generic variable-value strategies have been defined. They either try to apply generic
principles such as the first fail principle (i.e., we should try to fail as quickly as
possible) [39] or try to detect relations between variables and constraints. In the first
case, we have strategies such as min-domain, which selects the variable having the
minimum domain size, max-constrained, which prefers variables involved in a lot
of constraints, or min-regret which selects the variable that may lead to the largest
increase in the cost if it is not selected. The latter case is mainly formed by the
impact-based strategy [89], the weighted degree strategy [7] and the activity-based
strategy [71]. However, selecting a priori the best variable-value strategy is not an
easy task, because no strategy is better than any other in general and because it
is quite difficult to identify the types of problems for which a strategy is going to
perform well. In addition, there is no robustness among the strategies. Any variable-
value strategy can give good results for one problem and really bad results for some
others. It is not rare to see the ratio of performance for a pair of strategies going to
1 to 20 (and even more sometimes) according to the problems which are solved.

1.2.1 Search Methods in Solvers

In generic solvers based on constraint programming, the search mechanism is an
important part. It is a generic method for controlling the solver that is used to take
decisions and to introduce refutation (i.e., the negation of decisions) for solving a
whole problem. Decisions can correspond to the assignment of values to variables,
but they can also be more complicated. Real-life applications are usually complex
and the search mechanism is used for decomposing the problem, for adding some
constraints and for solving some subparts. In other words it is used for performing
different tasks. For instance, in scheduling applications it is common to deal with
the relation between activities, that is which one starts before the other, instead of
deciding at what precise moment an activity starts. In problems in which variables
are continuous it is also common that a decision splits a variable into two equal
parts.

6 J.-C Régin and A. Malapert

The search is usually totally controlled by the user, who specifies functions that
will be called to take a decision and to refute that decision. It is important to note
that, in general, there is no other way to reach a state given by a sequence of deci-
sions and refutations than replaying from the beginning that sequence.

1.3 Parallelism and Constraint Programming

In this chapter, we only discuss parallel constraint solving. Some surveys have been
written about parallel logic programming [22, 35], and about parallel integer pro-
gramming [21, 4, 28].

The main approaches to parallel constraint solving can roughly be divided into
the following main categories: parallel propagators and propagation; search-space-
splitting; portfolio algorithms; distributed CSPs; problem decomposition. Most ap-
proaches require communication and synchronization, but the most important issue
is load balancing, which refers to the practice of distributing approximately equal
amounts of work among tasks so that all processors are kept busy all the time.

After an introduction of the main principles of each approach we will detail the
two most important ones: the search space splitting method (i.e., the work-stealing
approach) and problem decomposition (i.e., embarrassingly parallel search).

1.3.1 Parallel Propagators and Propagation

The propagators of the constraints, that is the filtering algorithms associated with
constraints, can be parallelized. However, this operation is not simple, and some
synchronization issues of the domains of the variables arise. In addition, one of the
most important drawback is that propagation requires a specific parallelization of
each constraint. So, it is not popular because of the same synchronization problems,
only a few studies can be found on the parallelization of the propagation mecha-
nism [77, 37, 96]. Thus, parallelizing propagation is challenging [46] and the scala-
bility is limited by Amdahl’s law.

1.3.2 Search Space Splitting

Strategies exploring the parallelism provided by the search space are common ap-
proaches [87]: when a branching is done, different branches can be explored in
parallel.

The work-stealing method dynamically splits the search space during the resolu-
tion. It was originally proposed by Burton and Sleep [10] and first implemented in
Lisp parallel machines [36]. When a worker has finished exploring a subproblem, it
asks other workers for another subproblem. If another worker agrees to the demand,
then it dynamically splits its current subproblem into two disjoint subproblems and

Parallel Constraint Programming 7

sends one subproblem to the starving worker. The starving worker “steals” some
work from the busy one. Note that some form of locking is necessary to avoid the
case that several starving workers steal the same subproblem. The starving worker
asks other workers in turn until it receives a new subproblem. Termination of the
work-stealing method must be carefully designed to reduce the overhead when al-
most all workers are starving, but almost no work remains. Search space splitting is
an active research area [110, 43, 69, 16]. This is also one of the methods giving the
best results in practice.

Some frameworks sharing the same search tree in memory have been proposed
[83, 103]. In this case, a shared list of open nodes in the search tree is maintained
(nodes that have at least one child that is still unvisited) and starved processors
just pick up the most promising node in the list and expand it. Although this kind
of mechanism intrinsically provides excellent load balancing, it is known not to
scale beyond a certain number of processors; beyond that point, performance starts
to decrease. Indeed, on a shared-memory system, threads must contend with each
other to communicate with the memory and the problem is exacerbated by cache
consistency transactions. Thus, other approaches that do not use shared memory are
preferred.

However, even if the memory is not shared it is not easy to scale up to thousands
of processors, because work-stealing consumes communication, synchronization
and computation time. To address these issues, Xie and Davenport allocated specific
processors to coordination tasks, allowing an increase in the number of processors
(linear scaling up to 256 processors) that can be used on a parallel supercomputer
before performance starts to decline [107].

Machado et al. proposed a hierarchical works-stealing scheme adapted to a clus-
ter physical infrastructure, in order to reduce the communication overhead [61].
A worker first tries to steal from its local node, before considering remote nodes
(starting with the closest remote node). This approach achieved good scalability up
to 512 cores for the n-queens and quadratic assignment problems. For constraint
optimization problems, maintaining the best solution for each worker would require
a large communication and synchronization overhead. However, they observed that
the scalability was lowered because of the lazy dissemination of the so-far best so-
lution, i.e., because some workers use an obsolete best solution.

General-purpose programming languages designed for multi-threaded parallel
computing such as Charm++ [45] and Cilk++ [56, 9] can ease the implementa-
tion of work-stealing approaches. Otherwise, a work-stealing framework such as
Bobpp [26, 54] provides an interface between solvers and parallel computers. In
Bobpp, the work is shared via a global priority queue and the search tree is decom-
posed and allocated to the different cores on demand during the search algorithm
execution. Periodically, a worker tests whether starving workers exist. In this case,
the worker stops the search and the path from the root node to the right highest open
node is saved and inserted into the global priority queue. Then, the worker contin-
ues the search with the left open node. Otherwise, if no starving worker exists, the
worker continues the search locally using the solver. Starving workers are notified
of the insertions in the global priority queue, and each one picks up a node and starts

8 J.-C Régin and A. Malapert

the search. Using or-tools as an underlying solver, Menouer and Le Cun observed
good speedups for the Golomb Ruler problem with 13 marks (41.3 with 48 work-
ers) and the 16-queens problem (8.63 with 12 workers) [66, 67] . Other experiments
investigate the exploration overhead caused by their approach.

Bordeaux et al. proposed another promising approach based on a search-space-
splitting mechanism not based on a work-stealing approach [5]. They use a hashing
function implicitly allocating the leaves to the processors. Each processor applies
the same search strategy in its allocated search space. Well-designed hashing con-
straints can address the load-balancing issue. This approach gives a linear speedup
from 30 processors for the n-queens problem, but then the speedups stagnate at 30
until to 64 processors. However, it only got moderate results on 100 industrial SAT
instances.

Sometimes, for complex applications where very good domain-specific strate-
gies are known, the parallel algorithm should exploit the domain-specific strategy.
Moisan et al. proposed a parallel implementation of the classic backtracking al-
gorithm, Limited Discrepancy Search (LDS) [40], which is known to be efficient
in a centralized context when a good variable-value selection heuristic is provided
[74, 75]. Xie and Davenport proposed that each processor locally uses LDS to search
in the trees allocated to them (by a tree-splitting, work-stealing algorithm) but the
global system does not replicate the LDS strategy [107].

1.3.3 Portfolio Algorithms

Portfolio algorithms explore the parallelism provided by different viewpoints on the
same problem, for instance by using different algorithms or parameter tuning. This
idea has also been exploited in a non-parallel context [32].

No communication is required and an excellent level of load balancing is achieved
(all workers visit the same search space). Even if this approach causes a high level
of redundancy between processors, it shows really good performance. It was greatly
improved by using randomized restarts [60] where each worker executes its own
restart strategy. More recently, Cire et al. executed the Luby restart strategy, as a
whole, in parallel [18]. They proved that it achieves asymptotic linear speedups
and, in practice, often obtained linear speedups. Besides, some authors proposed to
allow processors to share information learned during the search [38].

One challenge is to find a scalable source of diverse viewpoints that provide
orthogonal performance and are therefore of complementary interest. We can dis-
tinguish between two aspects of parallel portfolios: if assumptions can be made on
the number of available processors then it is possible to handpick a set of solvers
and settings that complement each other optimally. If it is not possible to make
such assumptions, then we need automated methods to generate a portfolio of any
size on demand [5]. So, portfolio designers became interested in feature selec-
tion [30, 31, 33, 47]. Features characterize problem instances by number of vari-
ables, domain sizes, number of constraints, constraints arities. Many portfolios se-
lect the best candidate solvers from a pool based on static features or by learning

Parallel Constraint Programming 9

the dynamic behavior of solvers. The SAT portfolio iSAC [2] and the CP portfolio
CP-Hydra [81] use feature selection to choose the solvers that yield the best perfor-
mance. Additionally, CP-Hydra exploits the knowledge coming from the resolution
of a training set of instances by each candidate solver. Then, given an instance, CP-
Hydra determines the k most similar instances of the training set and determines
a time limit for each candidate solver based on the constraint program maximiz-
ing the number of solved instances within a global time limit of 30 minutes. Briefly,
CP-Hydra determines a switching policy between solvers (Choco, Abscon, Mistral).

In general, the main advantage of the portfolio algorithms approach is that many
strategies will be automatically tried at the same time. This is very useful because
defining good search strategies is a difficult task.

The best strategy can also be detected in parallel by using estimation techniques
[82].

1.3.4 Distributed CSPs

Distributed CSPs is another idea that relates to parallelism, where the problem it-
self is split into pieces to be solved by different processors. The problem typically
becomes more difficult to solve than in the centralized case because no processor
has a complete view of the problem. So, reconciling the partial solutions of each
subproblem becomes challenging. Problem splitting typically relates to distributed
CSPs, a framework introduced by Yokoo et al. in which the problem is naturally
split among agents, for example for privacy reasons [109]. Other distributed CSP
frameworks have been proposed [41, 15, 24, 55, 104].

1.3.5 Problem Decomposition

The Embarrassingly Parallel Search (EPS) method based on search space splitting
with loose communications was first proposed by Régin et al. [92, 93, 95, 63].

When we have k workers, instead of trying to split the problem into k equivalent
subparts, EPS proposes to split the problem into a huge number of subproblems, for
instance 30k subproblems, and to give these subproblems successively and dynam-
ically to the workers when they need work. Instead of expecting to have equivalent
subproblems, EPS expects that for each worker the sum of the resolution time of its
subproblems will be equivalent. Thus, the idea is not to decompose a priori the initial
problem into a set of equivalent subproblems, but to decompose the initial problem
into a set of subproblems whose resolution time can be shared in an equivalent way
by a set of workers. Note that the subproblems that will be solved by a worker is not
known in advance, because this is dynamically determined. All the subproblems are
put in a queue and a worker takes one when it needs some work.

The decomposition into subproblems must be carefully done. Subproblems that
would have been eliminated by the propagation mechanism of the solver in a se-

10 J.-C Régin and A. Malapert

quential search must be avoided. Thus, only problems that are consistent with the
propagation are considered.

Fischetti et al. proposed another paradigm called SelfSplit in which each worker
is able to autonomously determine, without any communication between workers,
the job parts it has to process [25]. SelfSplit can be decomposed into three phases:
the same enumeration tree is initially built by all workers (sampling); when enough
open nodes have been generated, the sampling phase ends and each worker applies
a deterministic rule to identify and solve the nodes that belong to it (solving); a
single worker gathers the results from others (merging). SelfSplit exhibited linear
speedups up to 16 processors and good speedups up to 64 processors on five bench-
mark instances. SelfSplit assumes that sampling is not a bottleneck in the overall
computation whereas that can happen in practice [93].

This chapter is organized as follows. First we recall some preliminaries about
parallelism and constraint programming. Then we detail the work-stealing method
and the embarassingly parallel search. Next we give some results comparing the
methods and showing their efficiency on different types of parallel machines. Fi-
nally, we conclude.

2 Background

2.1 Parallelism

For the sake of clarity, we will use the notion of worker instead of process, processor,
core or thread. A worker is an entity which is able to perform some computations.
It usually corresponds to a thread/core in a current computer.

2.1.1 Parallelization Measures and Amdahl’s Law

Two important parallelization measures are speedup and efficiency. Let t(c) be the
wall-clock time of the parallel algorithm where c is the number of cores and let t(1)
be the wall-clock time of the sequential algorithm. The speedup su(c) = t(1)/t(c)
is a measure indicating how the parallel algorithm performs much faster due to
parallelization. The efficiency eff (c) = su(c)/c is a normalized version of speedup,
which is the speedup value divided by the number of cores. The maximum possible
speedup of a single program as a result of parallelization is known as Amdahl’s
law [3]. It states that a small portion of the program which cannot be parallelized will
limit the overall speedup available from parallelization. Let B∈ [0,1] be the fraction
of the algorithm that is strictly sequential. The time t(c) that an algorithm takes to
finish when being executed on c cores corresponds to t(c) = t(1)

(
B+ 1

c (1−B)
)
.

Therefore, the theoretical speedup su(c) is

Parallel Constraint Programming 11

su(c) =
1

B+ 1
c (1−B)

According to Amdahl’s law, the speedup can never exceed the number of cores, i.e.,
a linear speedup. This, in terms of efficiency measure, means that efficiency will
always be less than 1.

Note that the sequential and parallel branch-and-bound (B&B) algorithms do not
always explore the same search space. Therefore, super-linear speedups in parallel
B&B algorithms are not in contradiction with Amdahl’s law because processors can
access high-quality solutions in early iterations, which in turn bring a reduction in
the search tree and problem size.

For the oldest approaches, scalability issues are still to be investigated because
of the small number of processors, typically around 16 and up to 64 processors.
One major issue is that all approaches may (and a few must) resort to communica-
tion. Communication between parallel agents is costly in general: in shared-memory
models such as multi-core, this typically means an access to a shared data struc-
ture for which one cannot avoid some form of locking; the cost of message-passing
cross-CPU is even significantly higher. Communication additionally makes it dif-
ficult to get insights on the solving process since the executions are highly inter
dependent and understanding parallel executions is notoriously complex.

Most parallel B&B algorithms explore leaves of the search tree in a different
order than they would on a single-processor system. This could be a pity in situations
where we know a really good search strategy, which is not entirely exploited by the
parallel algorithm.

For many approaches, experiments with parallel programming involve a great
deal of non-determinism: running the same algorithm twice on the same instance,
with identical number of threads and parameters, may result in different solutions,
and sometimes in different runtimes.

2.2 Embarrassingly Parallel Computation

A computation that can be divided into completely independent parts, each of which
can be executed on a separate worker, is called embarrassingly parallel [105].

An embarrassingly parallel computation requires none or very little communica-
tion. This means that workers can execute their task, without any interaction with
other workers.

Some well-known applications are based on embarrassingly parallel computa-
tions, such as the Folding@home project, Low-level image processing, the Mandel-
brot set (a.k.a. fractals) or Monte Carlo calculations [105].

Two steps must be defined: the definition of the tasks and the task assignment
to the workers The first step depends on the application, whereas the second step is
more general. We can either use a static task assignment or a dynamic one.

12 J.-C Régin and A. Malapert

With a static task assignment, each worker does a fixed part of the problem which
is known a priori.

With a dynamic task assignment, a work-pool is maintained and workers consult
it to get more work. The work-pool holds a collection of tasks to be performed.
Workers ask for new tasks as soon as they finish previously assigned task. In more
complex work-pool problems, workers may even generate new tasks to be added to
the work-pool.

2.3 Internal and External Parallelization

Techniques which aims at sharing the search tree, like work stealing can be imple-
mented in two different ways in generic CP solvers. Either the solver integrates the
capability of traversing the search by several workers at the same time, that is the
parallelization is ad-hoc to the solver, or the solver provides some mechanisms like
monitors to control the search from outside of the solver. In the former case, we say
that the parallelization is made intra solver, whereas for the latter case we say that it
is an extra solver parallelization.

Usually the former case is more powerful, but requires some modifications of the
source code and so is less flexible and can only be done by the author of the solver
[79]. The allocation of the part of the search tree is often specific and it is difficult
to control, modify or change it.

The extra solver parallelization adds an algorithm which aims at supervising and
controlling the search for solutions. This algorithm also manages the work made
by each worker. It interacts with the sequential solver which provides it with some
parts of the search tree. The advantage of this approach is that the sequential search
is not really modified. The parallel algorithm is defined on the top of the sequential
mechanism and use the sequential search in parallel for each worker. Some function
are usually given in order to be able to define different kinds of task allocations and
to have a better control of the parallelization. Unfortunately, this also has some costs:
there are more communications, the protocol must be general and some functions
must be provided by the solver like the capability to give a part of the search tree and
to restart the search from a given node of the search tree. Thus, this method is often
dedicated to some methods of parallelization like the work stealing. For instance,
the or-tools solver gives monitors which directly interacts with the internal search.

Some generic framework have been developed in order to deal with external
parallelization. Such frameworks provide the user with some features for controlling
the search and that are independent of the solver. The role of the framework is to
implement the interface with the solver.

Bobpp [27] is a parallel framework oriented towards solving Combinatorial Opti-
mization Problems. It provides an interface between solvers of combinatorial prob-
lems and parallel computers. It is developed in C++ and can be used as the runtime
support. Bobpp provides several search algorithms that can be parallelized using
different parallel programming methods. The goal is to propose a single frame-

Parallel Constraint Programming 13

work for most classes of Combinatorial Optimization Problems, so that they may be
solved in as many different parallel architectures as possible. Figure 2 shows how
Bobpp interfaces with high-level applications (QAP, TSP, etc.), CP solvers, and dif-
ferent parallel architectures using several parallel programming environments such
as Pthreads as well as MPI or more specialized libraries such as Athapascan/Kaapi.

Fig. 2: Bobpp Framework

2.4 Constraint Programming

A constraint network C N = (X ,D ,C) is defined by

• a set of n variables X = {x1,x2, . . . ,xn}.
• a set of n finite domains D = {D(x1),D(x2), . . . ,D(xn)} with D(xi) the set of

possible values for the variable xi,
• a set of constraints between the variables C = {C1,C2, . . . ,Ce}. A constraint Ci is

defined on a subset of variables XCi = {xi1 ,xi2 , . . . ,xi j} of X with a subset of the
Cartesian product D(xi1)×D(xi2)× . . .×D(xi j) that states which combinations
of values of variables {xi1 ,xi2 , . . . ,xi j} are compatible.

Each constraint Ci is associated with a filtering algorithm, often called a propa-
gator, which removes values from the domains of its variables that are not consistent
with it. The propagation mechanism applies the filtering algorithms of C to reduce
the domains of variables in turn until no reduction can be done. One of the most
interesting properties of a filtering algorithm is arc consistency. We say that a filter-
ing algorithm associated with a constraint establishes arc consistency if it removes
all the values of the variables involved in the constraint that are not consistent with
the constraint. For instance, consider the constraint x+ 3 = y with the domain of
x equal to D(x) = {1,3,4,5} and the domain of y equal to D(y) = {4,5,8}. Then
establishing arc consistency will lead to D(x) = {1,5} and D(y) = {4,8}.

For convenience, we will use the word ”problem” to designate a constraint net-
work when it is used to represent the constraint network and not the search for a

14 J.-C Régin and A. Malapert

solution. We say that a problem P is consistent with the propagation if and only if
running the propagation mechanism on P does not trigger a failure.

Now, we can detail the general methods giving the best results in practice.

3 Parallel Search Tree

One of the most popular techniques for combining constraint programming and par-
allelism is to define a parallel search tree. In other words, we try to traverse the
search space in parallel. Usually, this result is achieved by splitting the search tree.
This can be done either before the beginning of the search or dynamically during
the search. The former case is named static partitioning while the latter is named
dynamic partitioning

3.1 Static Partitioning

When we want to use k workers for solving a problem, we can split the initial search
tree into k disjoint parts and give one subproblem to each worker. Then, we gather
the different intermediate results in order to produce the results corresponding to
the whole problem. The advantage of this method is its simplicity. Unfortunately,
it suffers from several drawbacks that arise frequently in practice: the times spent
to solve each part are rarely well balanced and the communication of the objective
value is not good when solving an optimization problem (the workers are inde-
pendent). The main issue is that the balancing of the workload of the workers is
equivalent to the balancing of the parts. Some works has been done on decompos-
ing search trees based on their size in such a way as to equilibrate the parts to be
solved [51, 19, 48]. However, the tree size is only approximated and is not strictly
correlated with the solving time. In addition, we do not know how to have equivalent
subtrees because the propagation mechanism will modify the tree during the search
for solutions. Thus, as mentioned by Bordeaux et al. [6], it is quite difficult to ensure
that each worker will receive the same amount of work. Hence, this method suffers
from some issues of scalability, since the resolution time is the maximum of the
resolution time of all workers. In order to remedy these issues, dynamic partitioning
of the search tree is preferred.

3.2 Dynamic Partitioning

This strategy, called the work-stealing method, aims to partition the search tree into
a set of subtrees, and schedule them during the execution of the search algorithm
in order to have good load balancing between the different workers. Thus, workers

Parallel Constraint Programming 15

each solve part of the problems and when a worker is waiting, it ”steals” some work
from another worker. This general mechanism can be described as follow: when a
worker W no longer has any work, it asks another worker V whether it has some
work to give it. If the answer is positive, then the worker V splits the search tree it is
currently solving into two subtrees and gives one of them to the waiting worker W .
If the answer is negative then W asks another worker U , until it gets some work to do
or all the workers have been considered. The work-stealing approach partly resolves
the balancing issue of the simple static decomposition method, mainly because the
decomposition is dynamic. Therefore, it does not need to be able to split a search
tree into well-balanced parts at the beginning.

This method has been implemented in a lot of solvers (Comet [70] or ILOG
Solver [84] for instance), and in several ways [99, 44, 111, 17] depending on
whether the work to be done is centralized or not, on the way the search tree is
split (into one or several parts) or on the communication method between workers.

For example, the study presented by Xie and Davenport [106] proposes the mas-
ters/workers approach. Each master has its workers. The search space is divided be-
tween the different masters, then each master puts its attributed subtrees in a work-
pool to dispatch to the workers. When a node of the subtree is detected that is a root
of a large subtree, the workers generate a large number of its subtrees and put them
in a work-pool in order to have better load balancing. Fischetti et al. [25], propose a
work-pool without communication between workers. First, the workers decompose
the initial problem during a limited sampling phase, during which each worker vis-
its nodes randomly. Thus, they can visit redundant nodes. After the sampling phase,
each worker is attributed its nodes by a deterministic function. During the resolu-
tion, if a node is detected to be difficult by an estimation function, it is put into a
global queue. When a worker finishes the resolution of its node, it receives a hard
node from the global queue and solves it. When the queue is empty and there is no
work to do, the resolution is done. Jaffar et al. [44] propose the use of a master that
centralizes all pieces of information (bounds, solutions and requests). The master
evaluates which worker has the largest amount of work in order to give some work
to a waiting worker.

In the Bobpp framework, the work is shared thanks to a Global Priority Queue
(GPQ). The search tree is decomposed and allocated to the different workers on de-
mand and during the execution of the search algorithm. A unit of work corresponds
to the solving of a subtree of the search tree. This subtree is the subtree of the search
tree rooted at a given node, called the local root. This subtree is called the local
search tree.

Periodically, a working worker tests whether waiting worker(s) exist(s). If this is
the case, the working worker stops the search in the current node and gives a part
of its local search tree, that is the subtree rooted at a node. In other words, it puts a
node of the local search tree in the GPQ and continues to solve the remaining part of
its local search tree. The waiting workers are notified by the insertion of a new node
in the GPQ, and a waiting worker picks up the node and starts the solving of the
subtree rooted at this node. This partitioning strategy has been presented in detail
by Menouer and Le Cun [65].

16 J.-C Régin and A. Malapert

There are two main questions that have to be answered to efficiently implement
this mechanism: How do we start the search for a solution is a given subtree? And
which subtree is given? In the next sections we will see that there is no perfect
answer to these questions.

3.2.1 Local Subtree Solving

Conceptually there is no difficulty to start a search from a given node of the search
tree. However, in practice, this is quite different. The main question is to be able to
set the solver in the correct state corresponding to the root node. A state of a solver
is defined by the domains of the variables and the internal data structure required by
the propagators and some other data that may have been defined by the user. This
means that some actions have been performed to reach a state. Thus, the question
is how can we restore a state or how can we move from one state to another state?
This is the continuation problem in computer science [94]. The restoration of a state
of the search tree depends on the solver. Some solvers, such as or-tools [86] or
Choco [13] or Oscar [98], use a trail mechanism. This means that they save some
data when the search is going down in order to be able to restore them when the
search is going up (i.e., backtracking). Some others, such as Gecode, use different
mechanisms to avoid restoring the memory. The internal mechanism may lead to
different strategies to move from one state to another one. Some solvers directly
implement continuations [102].

There are usually three possibles methods: the state is explicitly saved, the state
is recomputed from the current state or the state is recomputed from scratch, that is
from the root of the search tree.

The possible implementations of these methods depend on whether the solver
uses a generic search procedure or an internal one.

Internal search procedure.

Such a procedure means that the solver has total control over what can be done
during the search for a solution. Some interactions with the search are possible but
these are limited and the user cannot define its own data structures in a way which is
not controlled by the solver. Usually internal search corresponds to a search method
in which the only decisions are assignments or refutations. In this case, this means
that nodes can be seen as subproblems. Thus, computing a state is equivalent to
restarting the search from a given subproblem of the initial problem. This can be
easily done by simply imposing the specific definition of the subproblem and run-
ning the propagation of the solver once. Therefore the cost is not really expensive.
In addition saving a sub problem is not costly in memory so it is a good alternative
to the explicit saving of the state.

The two other methods can also be used, that is we can easily backtrack to the
lowest common ancestor (lca) of the current and the target node and then replay

Parallel Constraint Programming 17

the search from the lca to the target node. We can measure whether this is more
efficient than direct instantiation with the subproblem of the target node or not. The
replay from scratch is usually less interesting than restarting the problem with the
constraints defining the subproblem of the target node.

Generic search procedure.

As we mentioned in the Introduction, if a generic search is used then there is no
way to deduce the state of a node of the search tree, mainly because we cannot
know what are the data structures that are used. We have no information about the
data that are defined by the user. This means that the state needs to be recomputed
from the path going from the root to the target node. In this case, we say that the
search is replayed. Unfortunately this has a cost.

Since we cannot define precisely the structure of a state, the memorization of a
state can only be done by copying the whole memory, which is possible only when
there are only a few variables and constraints. So in general the first method is not
possible. The second method is only possible for the current worker. Therefore when
some work is given to another worker, the third method is usually used. Replaying
the search from the root node has a cost that depends on the length of the path.
Therefore, it is common to study the consequences of some choices. This is the
purpose of the next section.

3.2.2 Subtree Definition

When a worker needs some work it asks the other workers to give it a part of their
current work. We discuss here how a worker can answer this request. All jobs, that
is all given subtrees are not equivalent for several reasons: it can be expensive to
replay the corresponding state and the solving times of the subtrees may strongly
differ.

The first problem can be solved by the worker which gives some work by defining
a strategy for selecting the given node of its local search tree. The simplest strategy
consists of giving the current node and triggering a local backtrack in order to con-
tinue solving the local search tree (See Figure 3). It is also possible to give the next
available open node.

However this method does not take into account the time to replay the state of a
node. Thus, some other methods [64] have been developed. Notably, the node that
is the closest to the root can be transferred. Some experiments have shown that this
decreases the number of decision replays by a factor of 2. Figure 4 illustrates this
approach.

The second question about the amount of work that is given is more important for
the global solving time. In fact, dynamic partitioning has a termination issue. When
the whole search for solutions is almost done, there are more and more workers
without work and so there are more and more workers asking for some work. At the

18 J.-C Régin and A. Malapert

Fig. 3: Simple work separation

Fig. 4: Transmission of the subtree rooted at the node closest to the root.

same time, there are fewer and fewer workers that can give a part of their work. In
addition the quantity of work that can be given is less and less important. Thus, we
have more requests, fewer possible responders and less work to give. This is why
we often observe a decrease in performance when the search is almost ended. Thus,
we generally observe that the method scales well for a small number of workers
whereas it is difficult to maintain a linear gain when the number of workers becomes
larger, even though some methods have been developed to try to remedy this issue
[108, 70]. Note that it is possible to have an immediate failure, that is the propagation
of the new node may fail.

Parallel Constraint Programming 19

In order to speed up the termination of the algorithm, we should avoid giving a
search tree that will be too small to be solved. Unfortunately, it is difficult to esti-
mate the time that will be required to traverse a search tree, otherwise we would be
able to have nice decompositions. One possible solution is to consider the depth of
a node and to relate it to the solving time of the subtree rooted at that node. Thus,
if a node is at a depth that is greater than a given threshold then the node cannot be
given to another worker. This means that some workers will not be able to give any
node. This idea usually improves the global behavior of the parallelization. How-
ever, it can be further improved by using a dynamic threshold that mainly depends
on the depth. The choice of the value of the threshold is a difficult problem. Choos-
ing a very small threshold makes the algorithm similar to static partitioning, with
a limited number of subtrees explored by the different workers. Conversely, choos-
ing a high threshold makes the algorithm similar to dynamic partitioning without a
threshold, which makes load balancing easier between the workers but increases the
exploration of redundant nodes. For instance, Menouer [64] uses a threshold equal
to 2 log(#workers), where #workers is the number of available workers. In addition,
the threshold is increased each time a worker no longer has work. The maximum
value is defined by 7log(#workers).

Even if the depth is a poor estimation of the quantity of work needed to solve a
subtree, a threshold based on depth improves the work-stealing approach in prac-
tice. Figure 5 shows the variation in computation time according to the value of the
threshold to solve the Naval Battle problem (Sb sb 13 13 5 1) [73] using 12 cores
on an Intel machine (12 cores and 48 GB of RAM). As a result, the computation
time decreases with increasing threshold value until an optimal threshold (value of
25) is reached. After this optimal value the computation time increases again.

 1
 10 15

 25 30 35 20 23 25 27 29 31 33 35

 46.89

Time(s)

Computation time

NB nodes Threshold value

Time(s)

 75.92

 77.26
 78.13

 80.61

 91.63

 10 15 20 24 25 26 27 28 29 30 36

Ti
m

e
 (

s)

Threshold Value

Computation Time

Fig. 5: Variation of the computation time for solving the Naval Battle problem on
12 cores according to the threshold value [68]

20 J.-C Régin and A. Malapert

4 Problem Decomposition

The idea of Embarrassingly Parallel Search (EPS) is to statically decompose the
initial problem into a huge number of subproblems that are consistent with propa-
gation (i.e., running the propagation mechanism on them does not detect any incon-
sistency). These subproblems are added to a queue, which is managed by a master.
Then, each waiting worker takes a subproblem from the queue and solves it. The
process is repeated until all the subproblems have been solved. The assignment of
the subproblems to workers is dynamic and there is no communication between the
workers. EPS is based on the idea that if there is a large number of subproblems to
solve then the resolution times of the workers will be balanced even if the resolution
times of the subproblems are not. In other words, load balancing is automatically
obtained in a statistical sense.

We will detail this method in this section.

4.1 Principles

This approach relies on the assumption that the resolution time of disjoint subprob-
lems is equivalent to the resolution time of the union of these subproblems. If this
condition is not met, then the parallelization of the search of a solver (not neces-
sarily a CP Solver) based on any decomposition method, such as simple static de-
composition, work stealing or embarrassingly parallel method may be unfavorably
impacted.

This assumption does not seem too strong because experiments do not show such
a poor behavior with a CP Solver. However, it has been observed in some cases with
a MIP Solver.

We have seen that decomposing the initial problem into the same number of sub-
problems as workers may cause unbalanced resolution times for different workers.
Thus, the idea of EPS is to strongly increase the number of considered subprob-
lems, in order to define an embarrassingly parallel computation leading to good
performance.

Before going into further details of the implementation, a property can be estab-
lished. While solving a problem, we will use the following terminology:

• active time of a worker: the sum of the resolution times of a worker (the decom-
position time is excluded).

• inactive time of a worker: the difference between the elapsed time for solving all
the subproblems (the decomposition time is excluded) and the active time of the
worker.

The EPS approach is mainly based on the following remark.

Remark 1. The active time of all the workers may be well balanced even if the res-
olution time of each subproblem is not well balanced.

Parallel Constraint Programming 21

Since a worker may solve several subproblems, their resolution times can be differ-
ent while their sum remains equal to a given value.

The main challenge of a decomposition is not to define equivalent problems, it
is to avoid having some workers without work whereas some others are running.
We do not need to know in advance the resolution time of each subproblem. We just
expect that the workers will have equivalent activity time. In order to reach that goal,
EPS decomposes the initial problem into a lot of subproblems. This increases our
chance to obtain well-balanced activity times for the workers, because we increase
our chance to be able to obtain a combination of resolution times leading to the same
activity time for each worker.

For instance, when the search space tends to be not equilibrated, there are sub-
problems that will take a longer time to be solved. By having a lot of subproblems
we increase our chance to split these subproblems into several parts having compa-
rable resolution time and so to obtain a well-balanced load for the workers at the
end. It also reduces the relative importance of each subproblem with respect to the
resolution of the whole problem.

Here is an example of the advantage of using a lot of subproblems. Consider a
problem which requires 140s to be solved sequentially and for which we have four
workers. If we split the problem into four subproblems then we have the follow-
ing resolution times: 20,80,20,20. We will need 80s to solve these subproblems in
parallel. Thus, we gain a factor of 140/80 = 1.75. Now if we split again each sub-
problem into four subproblems we might obtain the following subproblems repre-
sented by their resolution time: ((5,5,5,5),(20,10,10,40), (2,5,10,3),(2,2,8,8)).
In this case, we might use the following assignment: worker1 : 5+20+2+8 = 35;
worker2 : 5+10+2+10 = 27; worker3 : 5+10+5+3+2+8 = 33 and worker4
: 5+ 40 = 45. The elapsed time is now 45s and we gain a factor of 140/45 = 3.1.
By splitting the subproblems again, we will reduce the average resolution time of
the subproblems and expect to break the 40s subproblem. Note that decomposing a
subproblem further does not run away the risk of increasing the elapsed time.

Property 1. Let P be an optimization problem, or a satisfaction problem in which we
search for all solutions. If P is split into subproblems whose maximum resolution
time is tmax, then

(i) the minimum resolution time of the whole problem is tmax;
(ii) the maximum inactivity time of a worker is less than or equal to tmax.

Proof. Suppose that a worker W has an inactivity time which is greater than tmax.
Consider the moment where W started to wait after its activity time. At this time,
there are no more available subproblems to solve, otherwise W would be active.
All active workers are then finishing their last task, whose resolution is bounded by
tmax. Thus, the remaining resolution time of each of these other workers is less than
or equal to tmax. Hence a contradiction.

The next section shows that the decomposition should be carefully done.

22 J.-C Régin and A. Malapert

4.1.1 Subproblems Generation: a Top-Down Method

We assume that we want to decompose a problem into q subproblems.
Unlike the work-stealing approach, EPS does not aim to decompose the search

tree into subtrees instead, it aims to decompose the whole problem into a set of
subproblems. These two decompositions are really different even if at first glance
they look similar. Notably the relation tp the sequential approach is different. There
exists one rule when we try to parallelize a sequential process that should not be
forgotten: We should avoid doing something in parallel that we would not have
done sequentially.

The simplest method that can be considered does not satisfy this remark. It is a
simple decomposition that is done as follows:

1. We consider any ordering of the variables x1,...,xn.
2. We define Ak to be the Cartesian product D(x1)× ...×D(xk).
3. We compute the value k such that |Ak−1|< q≤ |Ak|.

Each assignment of Ak defines a subproblem and so Ak is the sought decomposition.
This method works well for some problems such as the nqueens or the Golomb

ruler, but it is really bad for some other problems, because a lot of assignments of
A may be trivially not consistent. Consider for instance that x1, x2 and x3 have the
three values {a,b,c} in their domains and that there is an alldiff constraint involving
these three variables. The Cartesian product of the domains of these variables con-
tains 27 tuples. Among them only six ((a,b,c), (a,c,b), (b,a,c),(b,c,a),(c,a,b),
(c,b,a)) are not inconsistent with the alldiff constraint. That is, only 6/27 = 2/9
of the generated subproblems are not trivially inconsistent. It is important to note
that most of these inconsistent problems would never be considered by a sequential
search, and so we violate the previous rule. For some problems we have observed
more than 99% of the generated problems were detected inconsistent by running the
propagation (Figure 6). Thus, another method is needed to avoid this issue.

EPS solves this issue by generating only subproblems that are consistent with
the propagation, that is such that if we run the propagation mechanism on them
then there is no failure. This means that they are not known to be inconsistent.
Such subproblems will also be considered by a sequential process, so they no longer
violate the parallel-sequential rule we mentioned.

The generation of q such subproblems becomes more complex because the num-
ber of subproblems consistent with the propagation may not be related to the Carte-
sian product of some domains. A simple algorithm could be to perform a Breadth
First Search (BFS) in the search tree, until the desired number of subproblems con-
sistent with the propagation is reached. Unfortunately, it is not easy to perform a
BFS efficiently mainly because BFS is not an incremental algorithm like Depth-
First Search (DFS). Therefore, we can use a process similar to an iterative deepening
depth-first search [52]: we repeat a Depth-Bounded Depth First Search (DBDFS),
in other words a DFS that never visits nodes located at a depth greater than a given
value, increasing the bound until we have generated the right number of subprob-
lems. However, even if the depth of a search tree can be precisely defined, it is not

Parallel Constraint Programming 23

 0

 0.2

 0.4

 0.6

 0.8

 1

400 800 2000 4000 12000 40000 120000

N
D

I

Problems

Fig. 6: Percentage of subproblems consistent with the propagation (NDI) generated
by the simple decomposition method for all problems. The geometric mean is in
bold, dashed lines represent minimum and maximum values

easy to relate this notion to the number of variable already assigned. In fact, some
variables may be assigned by propagation, and this is the case for the latest values
of the domain of the variables. Thus, it is better to replace the depth limit by another
simple limit.
We consider a set Y ⊆ X of variables: we only assign the variables of Y and we
stop the search when they are all assigned. In other words, we never try to assign a
variable that is not in Y . This process is repeated until all assignments of Y consis-
tent with the propagation have been found. Each branch of a search tree computed
by this search defines an assignment. We will denote by AY the set of assignments
computed with Y ⊆ X . To generate q subproblems, we repeat the DBDFS by adding
variables to Y if necessary until we have |AY | ≥ q.

For convenience and simplicity, a static ordering of the variables is used.
This method can be improved in two ways:

1. We try to estimate some good set of variables Y in order to avoid repeating too
many DBDFS: For instance, if for a given Y we produce only q/1000 subprob-
lems and if the size of the domains of the next three non-assigned variables is 10,
then we can deduce that we need to add at least three variables to Y .

2. In order to avoid repeating the same DFS for the first variables while repeating
DBDFS, we store in a table constraint the previously computed assignments.
More precisely, if we have computed AY then we use a table constraint containing
all these assignments when we look for AY ′ with Y ⊆ Y ′.

Large Domains

This method can be adapted to large domains. A new step must be introduced in
the algorithm in the latest iteration. If the domain of the latest considered variable,

24 J.-C Régin and A. Malapert

denoted by lx, is large then each of its values cannot be considered individually. In
this case, its domain is split into a fixed number of parts and we use each part as a
value. Then, either the desired number of subproblems is generated or we have not
been able to reach that number. In the latter case, the domain of lx is split again,
for instance by splitting each part into two new parts (this multiplies by at most 2
the number of generated subproblems) and we check whether the generated number
of subproblems is fine or not. This process is repeated until the right number of
subproblems is generated or the domain of lx is totally decomposed, that is each part
corresponds to a value. In the latter case, we continue the algorithm by selecting a
new variable.

Parallelization of the decomposition

When there are a lot of workers, for instance 500, the decomposition into subprob-
lems may represent an important part of the resolution if it is done sequentially. Two
reasons can explain this behavior: the ratio between a sequential method and a par-
allel one is large because we have 500 workers and not 6, 12 or 40. Since there are a
lot of workers, there is also much more work to do because the initial problem needs
to be decomposed into a larger number of subproblems. Thus, between a sequential
solution with w workers and another one with W > w workers, the potential loss in
term of computation power is W/w whereas we have at least W/w more work to do.
So, it is can be necessary to parallelize the decomposition into subproblems.

Experiments give some information:

1. The difference in the total work (i.e., activity time) done by the workers decreases
when the number of subproblems increases. This is not a linear relation. There
is a huge difference between the activity times of the workers when there are
fewer than five subproblems per worker. These differences decrease when there
are more than five subproblems per worker.

2. A simple decomposition into subproblems that may be inconsistent quickly
causes some issues because inconsistencies are detected very quickly.

3. Splitting an initial problem into a small set of subproblems is fast compared to
the overall decomposition time and compared to the overall resolution time.

These observations show that a compromise has to be found and an iterative pro-
cess decomposing the initial problem in three phases has to be defined. In the first
phase, the whole problem is decomposed into only a few subproblems because the
relative cost is small even with an unbalanced workload. However, we should be
careful with the first phase (i.e., starting with probably inconsistent subproblems)
because it can have an impact on the performance. Finally, the most important thing
seems to be to generate five subproblems because we could restart from these sub-
problems to decompose further and such a decomposition should be reasonably well
balanced.

Thus, a method in three main phases has been designed:

Parallel Constraint Programming 25

• An initial phase where one subproblem per worker is generated as quickly as
possible. This phase does not consume time and may remain sequential.

• A main phase which aims to generate five subproblems per worker. Each sub-
problem is consistent with the propagation. This phase can be divided into several
steps to reach that goal while balancing the work among the workers.

• A final phase which consists of generating K ≥ 30 subproblems per worker from
the set of subproblems computed by the main phase.

4.1.2 Subproblems Generation: a Bottom-Pp Method

Another method for finding the requested subproblems has been proposed by
Malapert et al [63]. It is a bottom-up decomposition that tries to find in a depth-
first manner the depth d at which we can generate the q subproblems (Figure 7).

2P nodes

Search Frontier Dynamic

Static

P nodes Initial depth

Final depth

nodes

D

D

p⋆

Fig. 7: Bottom-up decomposition and estimation

The algorithm aims to identify the topmost search frontier with approximately
p∗ = q open nodes by sampling and estimation of the sought depth. The procedure
can be divided into three phases:

1. a partial tree is built by sampling the top of the real search tree;
2. we estimate the level widths of the real tree;
3. we determine the decomposition depth d with a greedy heuristic.

Since we need to explore the top of the search tree, an upper bound D on the
decomposition depth is fixed. The maximum decomposition depth D must be chosen
according to the number of workers and the expected number of subproblems per
worker. If D is too small, the decomposition could generate too few subproblems.
If D is too large, the sampling time increases while the decomposition quality could
decrease.

The sampling phase builds a partial tree with at most p∗ assignments on a level
using a depth-first search. The number of assignments (i.e., open nodes in the search
tree) at each level is counted by a callback. The maximum depth D is reduced each

26 J.-C Régin and A. Malapert

time there are p∗ assignments at a given level. If the sampling ends within its limits,
then the top of the tree has been entirely visited and no estimation is needed. Other-
wise, we need to estimate the widths of the topmost levels of the tree depending on
the partial tree. This estimation is a straightforward adaptation of the one proposed
by Cornuejols et al. [20] to deal with n-ary search trees. In practice, the main issue
is that the higher the arity is, the lower the precision of the estimation. Therefore,
the heuristics that is used minimizes the absolute deviation between the estimated
number of nodes and the expected number p∗. If several levels have an identical
absolute deviation, then the lowest level with an estimated number of subproblems
greater than or equal to p∗ is selected.

4.1.3 Implementation

EPS involves three tasks: the definition of the subproblem (TaskDefinition) the task
assignment of subproblems to the workers (TaskAssignment) and a task that aims
at gathering solutions and/or objective values: TaskResultGathering. In this step, the
answers to all the subproblems are collected and combined in some way to form the
output (i.e., the answer to the initial problem).

For convenience, we create a master (i.e., a coordinator process) which is in
charge of these operations. So, it creates the subproblems (TaskDefinition) holds the
work-pool and assigns tasks to workers (TaskAssignment) and fetches the computa-
tions made by the workers (TaskResultGathering).

We detail these operations for the satisfaction and optimization problems.

Satisfaction Problems

• The TaskDefinition operation consists of computing a partition of the initial prob-
lem P into a set S of subproblems.

• The TaskAssignment operation is implemented by using a FIFO data structure
(i.e., a queue). Each time a subproblem is defined it is added to the back of the
queue. When a worker needs some work it takes a subproblem from the queue.

• The TaskResultGathering operation is quite simple: when searching for a solution
it stops the search when one is found; when searching for all solutions, it just
gathers the solutions returned by the workers.

Optimization Problems

In case of optimization problems we have to manage the best value of the objective
function computed so far. Thus, the operations are slightly modified.

Parallel Constraint Programming 27

• The TaskDefinition operation consists of computing a partition of the initial prob-
lem P into a set S of subproblems.

• The TaskAssignment operation is implemented by using a queue. Each time a
subproblem is defined it is added to the back of the queue. The queue is also
associated with the best objective value computed so far. When a worker needs
some work, the master gives it a subproblem from the queue. It also gives it the
best objective value computed so far.

• The TaskResultGathering operation manages the optimal value found by the
worker and the associated solution.

Note that there is no other communication, that is when a worker finds a better
solution, the other workers that are running cannot use it for improving their current
resolution. So, if the absence of communication may increase our performance, this
aspect may also lead to a decrease in performance. Fortunately, we do not observe
this bad behavior in practice. We can see here another argument for having a lot
of subproblems in case of optimization problems: the resolution of a subproblem
should be short in order to improve the transmission of a better objective value and
to avoid performing work that could have been ignored with a better objective value.

4.1.4 Size of the partition

One important question is: how many subproblems should be generated?
This is mainly an experimental question. However, in order to have good scala-

bility, this number should be defined in relation to the number of workers that are
involved. More precisely, it is more consistent to have q subproblems per worker
than a total of q subproblems.

It appears that this number does not depend on the type of problem that is con-
sidered. Some experiments show that a minimum of 30 subproblems per worker is
required.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 4 10 20 30 50 100 200

M
ax

 in
ac

tiv
ity

#sppw

Fig. 8: Percentage of maximum inactivity time of the workers (geometric mean)

28 J.-C Régin and A. Malapert

Figure 8 shows that the percentage of the maximum inactivity time of the work-
ers decreases when the number of subproblems per worker is increased. From 20
subproblems per worker, we observe that on average the maximum inactivity time
represents less than 20% of the resolution time.

4.2 Determinism

EPS can be modified to return the same solution as the sequential algorithm, which
can be useful in several scenarios such as debugging or performance evaluation.

We assume that the whole problem is decomposed into the subproblems P1, . . . ,Pp
in that order and that they are selected by respecting that order.

The first solution found by the sequential algorithm belongs to the satisfiable
subproblem Pi with the smallest index, that is the leftmost solution. Consider that
the parallel algorithm finds the first solution for the subproblem Pj such that j > i.
Then, it is not necessary to solve problems Pk such that k > j and one must only
wait for each problem Pk such that k < j and then determine the leftmost solution,
the satisfiable subproblem with the smallest index.

This can easily be extended for optimization problems by slightly modifying the
cutting constraints. Usually, when a new solution is found a cutting constraint is
stated that only allows strictly better solutions. On the contrary to other constraints,
the cutting constraint is always propagated while backtracking. Here, if a solution
is found when solving the subproblem Pj, then the cutting constraint only allows
strictly improving solution for subproblems k ≥ j, but also allows equivalent solu-
tions for subproblems k < j.

So, the parallel algorithm returns the same solution as the sequential one if the
subproblems are visited in the same order. Moreover, the solution returned by the
parallel algorithm does not depend on the number of workers, but only on the de-
composition.

5 Comparison Between the Work-Stealing Approach and EPS

The EPS method has several advantages compared to the work-stealing approach.
We can cite the most important ones:

• there is almost no communication between workers and the communication
between the master and the workers is really weak.

• the method is independent of the solver. There is no need to know the solver
in detail or to have access to internal data structures. It can be used with a generic
search without any problem.

• there is no termination issue.
• very easy problems can be considered by a worker without causing any issue.

There is no need for any threshold.

Parallel Constraint Programming 29

• there is no issue of replaying a part of the search with a generic search, because
the problem is decomposed and not split.

• the method is quite simple.
• the method can be easily adapted to use distributed machines.
• by saving the order in which the subproblems have been executed, we can

simply replay a resolution in parallel. This costs almost nothing and helps a lot with
the debugging of applications. Determinism is easy to achieve.

The work-stealing approach has several advantages:
• we have fine and dynamic control over the way the search is explored and

split.
• the method manages the repartition of the work and if only one worker is

working then its work will be shared, whereas this may not be the case with EPS.
• there is no setup time because there is no a priori decomposition of the problem

6 Experiments

These experiments come from Malapert et al. [63]. More information and more
details can be found in [63].

6.1 Benchmark Instances

We consider instances of satisfaction and optimization problems. We ignore the
problem of finding a first feasible solution because the parallel speedup can be com-
pletely uncorrelated to the number of workers, making the results hard to analyze.
We consider optimization problems for which the same variability can be observed,
but to a lesser extent because an optimality proof is required.

We perform a huge number of tests and we select the most representative ones.
The first set, called fzn, is a selection of 18 instances selected from more than

5000 instances either from the repository maintained by [49] or directly from the
Minizinc 1.6 distribution written in the FlatZinc language [78]. Each instance is
solved in more than 500 seconds and less than 1 hour with Gecode. The selection is
composed of one unsatisfiable, six enumerations, and 11 optimization instances.

The set xcsp is composed of instances from the categories ACAD and REAL of
XCSP 2.1 [97]. It consists of difficult instances that can be solved within 24 hours
by Choco2 [62]. A first subset, called xcsp1, is composed of five unsatisfiable and
five enumeration instances whereas the second subset, called xcsp2, is composed
of 11 unsatisfiable and three enumeration instances. The set xcsp1 is composed of
instances easier to solve than those of xcsp2.

30 J.-C Régin and A. Malapert

6.1.1 Implementation Details

Three CP solvers are used: Choco2 2.1.5 written in Java, Gecode 4.2.1 and
OR-tools rev. 3163 written in C++. Threads [76, 50] and MPI [57, 34] tech-
nologies are used. The typical difference between them is that threads (of the same
process) run in a shared memory space, while MPI is a standardized and portable
message-passing system to exchange information between processes running in sep-
arate memory spaces. Therefore, Thread technology does not handle multiple nodes
of a cluster whereas MPI does.

In C++, Threads are implemented by using pthreads, a POSIX library [76, 50]
used by Unix systems. In Java, the standard Java Thread technology [42] is used.

OR-tools uses a sequential top-down decomposition and C++ Threads. Gecode
uses a parallel top-down decomposition and C++ Threads or MPI technologies. In
fact, Gecode will use C++ pthread on the multi-core computer, OpenMPI on
the data center, and MS-MPI on the cloud platform. Gecode and OR-tools both
use the lex variable selection heuristic because the top-down decomposition re-
quires a fixed variable ordering. Choco2 uses a bottom-up decomposition and Java
Threads. In every case, the jobs are scheduled in FIFO to mimic as much as possi-
ble the sequential algorithm so that speedups are relevant. We always take the value
selection heuristic that selects the smallest value, whatever heuristic that may be.

6.1.2 Execution Environments

We use three execution environments that are representative of computing platforms
available nowadays: multi-core, data center and cloud computing.

Multi-core is a Dell computer with 256 GB of RAM and four Intel E7-4870 2.40
GHz processors running on Scientific Linux 6.0 (each processor has 10 cores).

Data Center is the “Centre de Calcul Interactif” hosted by the Université Nice
Sophia Antipolis, which provides a cluster composed of 72 nodes (1152 cores) run-
ning on CentOS 6.3, each node with 64 GB of RAM and two Intel E5-2670 2.60
GHz processors (eight cores). The cluster is managed by OAR [11], i.e., a versa-
tile resource and task manager. As Thread technology is limited to a single node of
a cluster, Choco2 can use up to 16 physical cores whereas Gecode can use any
number of nodes thanks to MPI.

Cloud Computing is a cloud platform managed by the Microsoft company (Mi-
crosoft Azure) that enables applications to be deployed on Windows Server technol-
ogy [58]. Each node has 56 GB of RAM and Intel Xeon E5-2690E 2.6 GHz proces-
sors (eight physical cores) We were allowed to simultaneously use three nodes (24
cores) managed by the Microsoft HPC Cluster 2012 [72].

Some computing infrastructures provide hyper-threading technologies, which
improves parallelization of computations (doing multiple tasks at once). For each
core that is physically present, the operating system addresses two logical cores,
and shares the workload among them when possible. The multi-core computer pro-

Parallel Constraint Programming 31

vides hyper-threading, whereas it is deactivated on the cluster, and not available on
the cloud.

The time limit for solving each instance is set to 12 hours whatever be the solver.
Usually, we use two workers per physical core (w = 2c) because hyper-threading is
efficient in our experiments. The target number p of subproblems depends linearly
on the number w of workers (p = 30×w), which allows statistical balance of the
workload without increasing too much the total overhead [92].

Let t be the solving time (in seconds) of an algorithm and let su be the speedup
of a parallel algorithm. In the tables, a row gives the results obtained by different
algorithms for a given instance. For each row, the best solving times and speedups
are indicated in bold. Dashes indicate that the instance is not solved by the algo-
rithm. Question marks indicate that the speedup cannot be computed because the se-
quential solver does not solve the instance within the time limit. Arithmetic means,
abbreviated AM, are computed for solving times, whereas geometric means, abbre-
viated GM, are computed for speedups and efficiency. Missing values, i.e., dashes
and question marks, are ignored when computing statistics.

6.2 Multi-core

In this section, we use parallel solvers based on Thread technologies to solve the
instances of xcsp1 or the nqueens problem using a multi-core computer. Let us re-
call that there are two workers per physical core because hyper-threading is activated
(w = 2c = 80). We show that EPS frequently gives linear speedups, and outperforms
the work-stealing approach proposed by [100] and [80].

Table 1 gives the solving times and speedups of the parallel solvers using
80 workers for the xcsp1 instances. Choco2, Gecode and OR-tools use
lex. They are also compared to a work stealing approach denoted Gecode-
WS [100, 80]. First, implementations of EPS are faster and more efficient than the
work-stealing. EPS often reaches linear speedups in the number of cores whereas
it never happens for the work stealing. Even worse, three instances are not solved
within the 12-hour time limit using work-stealing whereas they are using the se-
quential solver.

Decomposition is the key to the bad performance on the instances knights-80-5
and lemma-100-9-mod. The decomposition of knights-80-5 takes more
than 1,100 seconds and generates too many subproblems, which precludes any
speedup. The issue is lessened using the sequential decomposition of OR-tools
and is resolved by the parallel top-down decomposition of Gecode. Note also
that the sequential solving times of OR-tools and Gecode respectively are
20 and 40 times higher. Similarly, the long decomposition time of Choco2 for
lemma-100-9-mod leads to a low speedup. However, the moderate efficiency of
Choco2 and Gecode for squares-9-9 is not caused by the decomposition.

Gecode and OR-tools are often more efficient and faster than Choco2. The
solvers show different behaviors even when using the same variable selection heuris-

32 J.-C Régin and A. Malapert

Instances Choco2 Gecode OR-tools Gecode-WS

t su t su t su t su

costasArray-14 240.0 38.8 62.3 19.1 50.9 33.4 594.0 2.0
knights-80-5 1133.1 1.5 548.7 37.6 2173.9 18.5 – –
latinSquare-dg-8 all 328.1 39.2 251.7 42.0 166.6 35.2 4488.5 2.4
lemma-100-9-mod 123.4 4.1 6.7 10.1 1.8 22.9 3.0 22.3
ortholatin-5 249.9 36.0 421.7 13.5 167.7 38.1 2044.6 2.8
pigeons-14 899.1 15.5 211.8 39.1 730.3 18.5 – –
quasigroup5-10 123.5 32.5 18.6 26.4 17.0 36.9 22.8 21.5
queenAttacking-6 622.5 28.5 15899.1 ? – – – –
series-14 39.3 32.9 11.3 34.2 16.2 28.7 552.3 0.7
squares-9-9 1213.0 16.1 17.9 18.4 81.4 35.0 427.8 0.8

AM (t) or GM (su) 497.2 17.4 1745.0 24.0 378.4 28.7 1161.9 3.3

Table 1: Solving times and speedups (40-cores machine). Gecode and OR-tools
use the lex heuristic

tic because their propagation mechanisms and decompositions differ. Furthermore,
the parallel top-down decomposition of Gecode does not preserve the ordering of
the subproblems with regard to the sequential algorithm.

6.3 Data Center

In this section, we study the influence of the search strategy on the solving times and
speedups, the scalability up to 512 workers, and compare EPS to a work-stealing
approach.

 2

 4

 8

 16

 32

 64

 128

 256

 512

16 32 64 128 256 512

sp
ee

du
p

(s
u)

workers (w)

Fig. 9: Scalability up to 512 workers (Gecode, lex, data center).

Table 2 compares the Gecode implementations of EPS and work-stealing (WS)
for solving xcsp instances using 16 or 512 workers. EPS is faster and more ef-
ficient than work-stealing. With 512 workers, EPS is on average almost 10 times

Parallel Constraint Programming 33

Instances w = 16 w = 512
EPS WS EPS WS

t su t su t su t su

cc-15-15-2 – – – – – – – –
costasArray-14 64.4 13.6 69.3 12.7 3.6 243.8 17.7 49.8
crossword-m1c1 240.6 13.1 482.1 6.6 18.7 168.6 83.1 38.0
crossword-m12 171.7 14.5 178.5 13.9 13.3 187.3 57.8 43.0
knights-20-9 5190.7 ? 38347.4 ? 153.4 ? 3312.4 ?
knights-25-9 7462.3 ? – – 214.9 ? – –
knights-80-5 1413.7 11.5 8329.2 2.0 49.3 329.8 282.6 57.5
langford-3-17 24351.5 ? 21252.3 ? 713.5 ? 7443.5 ?
langford-4-18 3203.2 ? 25721.2 ? 94.6 ? 5643.1 ?
langford-4-19 26871.2 ? – – 782.5 ? – –
latinSquare-dg-8 all 613.5 13.1 621.2 13.0 23.6 341.7 124.4 64.7
lemma-100-9-mod 3.4 14.7 5.8 8.6 1.0 51.4 2.5 19.7
ortholatin-5 309.5 14.1 335.8 13.0 10.4 422.0 71.7 61.0
pigeons-14 383.3 14.5 6128.9 0.9 15.3 363.1 2320.2 2.4
quasigroup5-10 27.1 13.5 33.7 10.8 1.7 211.7 9.8 37.3
queenAttacking-6 42514.8 ? 37446.1 ? 1283.9 ? 9151.5 ?
ruler-70-12-a3 96.6 15.1 105.5 13.8 3.7 389.3 67.7 21.5
ruler-70-12-a4 178.9 14.4 185.2 13.9 6.0 429.5 34.1 75.5
series-14 22.5 13.4 56.9 5.3 1.1 264.0 8.2 36.9
squares-9-9 22.8 11.1 44.3 5.7 1.3 191.7 7.6 33.7

AM (t) or GM (su) 5954.8 13.5 8196.7 7.4 178.53 246.2 1684.6 33.5
1crossword-m1-words-05-06 2crossword-m1c-words-vg7-7 ext

Table 2: Speedups and solving times for xcsp (Gecode, lex, data center, w = 16
or 512)

faster than work-stealing. It is also more efficient because they both parallelize the
same sequential solver. On the multi-core machine, Gecode is faster than Choco2
on most instances of xcsp1. Five instances that are not solved within the time limit
by Gecode are not reported in Table 2. Six instances are not solved with 16 work-
ers whereas twelve instances are not solved with the sequential solver. By way of
comparison, only five instances are not solved by Choco2 using the lex heuristics
whereas all instances are solved in sequential or parallel when using dom/wdeg or
dom/bwdeg. Once again, this highlights the importance of the search strategy.

Figure 9 is a boxplot of the speedups with different numbers of workers for solv-
ing fzn instances. The median of speedups are around w

2 on average and their dis-
persion remains low.

34 J.-C Régin and A. Malapert

Instance EPS WS

t su t su

market split s5-02 467.1 24.3 658.6 17.3
market split s5-06 452.7 24.4 650.7 17.0
market split u5-09 468.1 24.4 609.2 18.7
pop stress 0600 874.8 10.8 2195.7 4.3
nmseq 400 342.4 8.5 943.2 3.1
pop stress 0500 433.2 10.1 811.0 5.4
fillomino 18 160.2 13.9 184.6 12.1
steiner-triples 09 108.8 17.2 242.4 7.7
nmseq 300 114.5 6.6 313.1 2.4

golombruler 13 154.0 20.6 210.4 15.1
cc base mzn rnd test.11 1143.6 7.3 2261.3 3.7
ghoulomb 3-7-20 618.2 6.8 3366.0 1.2
still life free 8x8 931.2 9.6 1199.4 7.5
bacp-6 400.8 16.4 831.0 7.9
depot placement st70 6 433.9 18.3 1172.5 6.8
open stacks 01 wbp 20 20 1 302.7 17.6 374.1 14.3
bacp-27 260.2 16.4 548.4 7.8
still life still life 9 189.0 16.9 196.8 16.2
talent scheduling alt film117 22.7 74.0 110.5 15.2

AM (t) or GM (su) 414.7 15.1 888.4 7.7

Table 3: Solving times and speedups for fzn (Gecode, lex, cloud, w = 24)

6.4 Cloud Computing

The systems are deployed on the Microsoft Azure cloud platform. The available
computing infrastructure is organized as follows: cluster nodes compute the appli-
cation; one head node manages the cluster nodes; and proxy nodes load-balance
communication between cluster nodes. Unlike a data center, cluster nodes may be
far from each other and communication time may take longer. Proxy nodes requires
two cores and are managed by the service provider. Here, three nodes of height cores
with 56 GB of RAM memory provide 24 workers (cluster nodes) managed by MPI.

Table 3 compares the Gecode implementations of EPS and work stealing for
solving the fzn instances with 24 workers. Briefly, EPS is always faster than work-
stealing, and therefore more efficient because they both parallelize the same se-
quential solver. Work–stealing suffers from a higher communication overhead in
the cloud than in a data center. Furthermore, the architecture of the computing in-
frastructure and the location of cluster nodes are mostly unknown, which precludes
improvements to work-stealing such as those proposed by Machado et al. [61] or
Xie and Davenport [107].

Parallel Constraint Programming 35

6.5 Comparison with Portfolios

Portfolio approaches exploit the variability of performance that is observed between
several solvers, or several parameter settings for the same solver. We use four port-
folios. The portfolio CPHydra [81] uses feature selection on top of the solvers
Mistral, Gecode and Choco2. CPHydra uses case-based reasoning to deter-
mine how to solve an unseen problem instance by exploiting a case base of problem
solving experience. It aims to find a feasible solution within 30 minutes. It does
not handle optimization or all-solution problems and the time limit is hard coded.
The other static and fixed-size portfolios (Choco2, CAG, OR-tools) use differ-
ent variable selection heuristics as well as randomization and restarts. Details about
Choco2 and CAG can be found in [62]. The CAG portfolio extends the Choco2
portfolio by also using the solvers AbsCon and Gecode. So, CAG always pro-
duces better results than Choco2. The OR-tools portfolio was the gold medalist
of the Minizinc challenge 2013 and 2014. It can seem unfair to compare parallel
solvers and portfolios using different numbers of workers, but designing scalable
portfolios (up to 512 workers) is a difficult task and almost no implementation is
publicly available.

Table 4 gives the solving times of EPS and portfolios for the xcsp instances on
the data center. First, CPHydra with 16 workers only solves two among 16 unsat-
isfiable instances (cc-15-15-2 and pigeons-14), but in less than 2 seconds
whereas these are difficult for all other approaches. OR-tools is the second-least
efficient approach because it solves fewer problems and often takes longer as con-
firmed by its low Borda score. The parallel Choco2 using dom/wdeg is better
on average than the Choco2 portfolio even if the portfolio solves a few instances
much faster such as scen11-f5 or queensKnights-20-5-mul. In this case,
the diversification provided by the portfolio outperforms the speedups offered by the
parallel B&B algorithm. This is emphasized for the CAG portfolio, which solves all
instances and obtains several of the best solving times. The parallel Gecode with
16 workers is often slower and less robust than the portfolios Choco2 and CAG.
However, increasing the number of workers to 512 clearly makes it the fastest solver,
but still less robust because five instances are not solved within the time limit.

To conclude, the Choco2 and CAG portfolios are more robust thanks to their
inherent diversification, but their solving times vary more from one instance to
another. With 16 workers, implementations of EPS outperform the CPHydra and
OR-tools portfolio, are competitive with the Choco2 portfolio, and are slightly
dominated by the CAG portfolio. In fact, the good scaling of EPS is a key to beat
the portfolios.

7 Conclusion

We have presented different methods for combining constraint programming tech-
niques and parallelism, such as parallelization of the propagator or parallel propa-

36 J.-C Régin and A. Malapert

Instances EPS Portfolio

Choco2 Gecode Choco2 CAG OR-tools

w = 16 w = 16 w = 512 w = 14 w = 23 w = 16

cc-15-15-2 2192.1 – – 1102.6 3.5 1070.0
costasArray-14 649.9 64.4 3.6 6180.8 879.4 1368.8
crossword-m1-words-05-06 204.6 240.6 18.7 512.3 512.3 22678.1
crossword-m1c-words-vg7-7 ext 1611.9 171.7 13.3 721.2 721.2 13157.2
fapp07-0600-7 2295.7 – – 37.9 3.2 –
knights-20-9 491.3 5190.7 153.4 3553.9 0.8 –
knights-25-9 1645.2 7462.3 214.9 9324.8 1.1 –
knights-80-5 1395.6 1413.7 49.3 1451.5 301.6 32602.6
langford-3-17 3062.2 24351.5 713.5 8884.7 8884.7 –
langford-4-18 538.3 3203.2 94.6 2126.0 2126.0 –
langford-4-19 2735.3 26871.2 782.5 12640.2 12640.2 –
latinSquare-dg-8 all 294.8 613.5 23.6 65.1 36.4 4599.8
lemma-100-9-mod 145.3 3.4 1.0 435.3 50.1 38.2
ortholatin-5 362.4 309.5 10.4 4881.2 4371.0 4438.7
pigeons-14 2993.3 383.3 15.3 12336.9 5564.5 12279.6
quasigroup5-10 451.5 27.1 1.7 3545.8 364.3 546.0
queenAttacking-6 706.4 42514.8 1283.9 2644.5 2644.5 –
queensKnights-20-5-mul 5209.5 – – 235.3 1.0 –
ruler-70-12-a3 42.8 96.6 3.7 123.5 123.5 8763.1
ruler-70-12-a4 1331.3 178.9 6.0 1250.2 1250.2 –
scen11-f5 – – – 45.3 8.5 –
series-14 338.9 22.5 1.1 1108.3 302.1 416.2
squares-9-9 115.9 22.8 1.3 1223.7 254.3 138.3
squaresUnsat-19-19 3039.8 – – 4621.1 4621.1 –

Arithmetic mean 1385.0 5954.8 178.5 3293.8 1902.7 7853.6

Table 4: Solving times of EPS and portfolio (data center)

gation. We have detailed the most popular methods: work-stealing methods based
on search tree splitting, and EPS, the embarrassingly parallel search method, which
is based on problem decomposition. These methods give good results in practice.
They have been tested on a single multi-core machine, on a data center and on the
cloud. However, it seems that the scaling performance of EPS is better. In addition
EPS is simple and easy to implement. The future will tell us whether it can replace
the work stealing approach in CP solvers. In any case, the obtained results show
that we can efficiently combine parallelism and CP and often expect results that are
almost linear.

References

1. 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004), 15-
17 November 2004, Boca Raton, FL, USA. IEEE Computer Society (2004). URL http:

Parallel Constraint Programming 37

//ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9460
2. Amadini, R., Gabbrielli, M., Mauro, J.: An Empirical Evaluation of Portfolios Ap-

proaches for Solving CSPs. In: C. Gomes, M. Sellmann (eds.) Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems,
Lecture Notes in Computer Science, vol. 7874, pp. 316–324. Springer Berlin Heidelberg
(2013). DOI 10.1007/978-3-642-38171-3 21. URL http://dx.doi.org/10.1007/
978-3-642-38171-3_21

3. Amdahl, G.: Validity of the Single Processor Approach to Achieving Large Scale Computing
Capabilities. In: Proceedings of the April 18-20, 1967, Spring Joint Computer Conference,
AFIPS ’67, pp. 483–485. ACM, New York, NY, USA (1967)

4. Bader, D., Hart, W., Phillips, C.: Parallel Algorithm Design for Branch and Bound. In:
H. G (ed.) Tutorials on Emerging Methodologies and Applications in Operations Research,
International Series in Operations Research & Management Science, vol. 76, pp. 5–1–5–44.
Springer New York (2005). DOI 10.1007/0-387-22827-6 5

5. Bordeaux, L., Hamadi, Y., Samulowitz, H.: Experiments with Massively Parallel Constraint
Solving. In: Boutilier [8], pp. 443–448

6. Bordeaux, L., Hamadi, Y., Samulowitz, H.: Experiments with massively parallel constraint
solving. In: Boutilier [8], pp. 443–448

7. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting
constraints. In: ECAI, vol. 16, p. 146 (2004)

8. Boutilier, C. (ed.): IJCAI 2009, Proceedings of the 21st International Joint Conference on
Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009 (2009)

9. Budiu, M., Delling, D., Werneck, R.: DryadOpt: Branch-and-bound on distributed data-
parallel execution engines. In: Parallel and Distributed Processing Symposium (IPDPS),
2011 IEEE International, pp. 1278–1289. IEEE (2011)

10. Burton, F.W., Sleep, M.R.: Executing Functional Programs on a Virtual Tree of Processors.
In: Proceedings of the 1981 Conference on Functional Programming Languages and Com-
puter Architecture, FPCA ’81, pp. 187–194. ACM, New York, NY, USA (1981)

11. Capit, N., Da Costa, G., Georgiou, Y., Huard, G., Martin, C., Mounie, G., Neyron, P., Richard,
O.: A Batch Scheduler with High Level Components. In: Proceedings of the Fifth IEEE
International Symposium on Cluster Computing and the Grid (CCGrid’05) - Volume 2 -
Volume 02, CCGRID ’05, pp. 776–783. IEEE Computer Society, Washington, DC, USA
(2005). URL http://dl.acm.org/citation.cfm?id=1169223.1169583

12. Choco, T.: Choco: an open source java constraint programming library. Ecole des Mines de
Nantes, Research report 1, 10–02 (2010)

13. Choco, T.: Choco: an open source java constraint programming library. Ecole des Mines de
Nantes, Research report 1, 10–02 (2010)

14. Choco solver
http://www.emn.fr/z-info/choco-solver/ (2013). Accessed: 14-04-2014

15. Chong, Y.L., Hamadi, Y.: Distributed Log-Based Reconciliation. In: Proceedings of the
2006 Conference on ECAI 2006: 17th European Conference on Artificial Intelligence August
29 – September 1, 2006, Riva Del Garda, Italy, pp. 108–112. IOS Press, Amsterdam, The
Netherlands, The Netherlands (2006). URL http://dl.acm.org/citation.cfm?
id=1567016.1567045

16. Chu, G., Schulte, C., Stuckey, P.J.: Confidence-Based Work Stealing in Parallel Constraint
Programming. In: Gent [29], pp. 226–241

17. Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel constraint
programming. In: Gent [29], pp. 226–241

18. Cire, A.A., Kadioglu, S., Sellmann, M.: Parallel Restarted Search. In: Proceedings of
the Twenty-Eighth AAAI Conference on Artificial Intelligence, AAAI’14, pp. 842–848.
AAAI Press (2014). URL http://dl.acm.org/citation.cfm?id=2893873.
2894004

19. Cornuéjols, G., Karamanov, M., Li, Y.: Early estimates of the size of branch-and-bound trees.
INFORMS Journal on Computing 18(1), 86–96 (2006)

38 J.-C Régin and A. Malapert

20. Cornuéjols, G., Karamanov, M., Li, Y.: Early Estimates of the Size of Branch-and-Bound
Trees. INFORMS Journal on Computing 18, 86–96 (2006)

21. Crainic, T.G., Le Cun, B., Roucairol, C.: Parallel branch-and-bound algorithms. Parallel
combinatorial optimization 1, 1–28 (2006)

22. De Kergommeaux, J.C., Codognet, P.: Parallel logic programming systems. ACM Comput-
ing Surveys (CSUR) 26(3), 295–336 (1994)

23. De Nicola, R., Ferrari, G.L., Meredith, G. (eds.): Coordination Models and Languages, 6th
International Conference, COORDINATION 2004, Pisa, Italy, February 24-27, 2004, Pro-
ceedings, Lecture Notes in Computer Science, vol. 2949. Springer (2004)

24. Ezzahir, R., Bessière, C., Belaissaoui, M., Bouyakhf, E.H.: DisChoco: A platform for dis-
tributed constraint programming. In: DCR’07: Eighth International Workshop on Distributed
Constraint Reasoning - In conjunction with IJCAI’07, pp. 16–21. Hyderabad, India (2007).
URL https://hal-lirmm.ccsd.cnrs.fr/lirmm-00189778

25. Fischetti, M., Monaci, M., Salvagnin, D.: Self-splitting of workload in parallel com-
putation. In: H. Simonis (ed.) Integration of AI and OR Techniques in Con-
straint Programming: 11th International Conference, CPAIOR 2014, Cork, Ireland,
May 19-23, 2014. Proceedings, pp. 394–404. Springer International Publishing, Cham
(2014). DOI 10.1007/978-3-319-07046-9 28. URL http://dx.doi.org/10.1007/
978-3-319-07046-9_28

26. Galea Fran c., Le Cun, B.: Bob++ : a Framework for Exact Combinatorial Optimization
Methods on Parallel Machines. In: International Conference High Performance Computing
& Simulation 2007 (HPCS’07) and in conjunction with The 21st European Conference on
Modeling and Simulation (ECMS 2007), pp. 779–785 (2007)

27. Galea, F., Le Cun, B.: Bob++ : a framework for exact combinatorial optimization methods on
parallel machines. In: International Conference High Performance Computing & Simulation
2007 (HPCS’07) and in conjunction with The 21st European Conference on Modeling and
Simulation (ECMS 2007), pp. 779–785 (2007)

28. Gendron, B., Crainic, T.G.: Parallel branch-and-bound algorithms: Survey and synthesis.
Operations research 42(6), 1042–1066 (1994)

29. Gent, I.P. (ed.): Principles and Practice of Constraint Programming - CP 2009, 15th Interna-
tional Conference, CP 2009, Lisbon, Portugal, September 20-24, 2009, Proceedings, Lecture
Notes in Computer Science, vol. 5732. Springer (2009)

30. Gomes, C., Selman, B.: Algorithm Portfolio Design: Theory vs. Practice. In: Proceedings of
the Thirteenth conference on Uncertainty in artificial intelligence, pp. 190–197 (1997)

31. Gomes, C., Selman, B.: Search strategies for hybrid search spaces. In: Tools with Artificial
Intelligence, 1999. Proceedings. 11th IEEE International Conference, pp. 359–364. IEEE
(1999)

32. Gomes, C., Selman, B.: Hybrid Search Strategies For Heterogeneous Search Spaces. Inter-
national Journal on Artificial Intelligence Tools 09, 45–57 (2000)

33. Gomes, C., Selman, B.: Algorithm Portfolios. Artificial Intelligence 126, 43–62 (2001)
34. Gropp, W., Lusk, E.: The MPI communication library: its design and a portable implemen-

tation. In: Scalable Parallel Libraries Conference, 1993., Proceedings of the, pp. 160–165.
IEEE (1993)

35. Gupta, G., Pontelli, E., Ali, K.A., Carlsson, M., Hermenegildo, M.V.: Parallel execution of
prolog programs: a survey. ACM Transactions on Programming Languages and Systems
(TOPLAS) 23(4), 472–602 (2001)

36. Halstead, R.: Implementation of Multilisp: Lisp on a Multiprocessor. In: Proceedings of the
1984 ACM Symposium on LISP and Functional Programming, LFP ’84, pp. 9–17. ACM,
New York, NY, USA (1984)

37. Hamadi, Y.: Optimal Distributed Arc-Consistency. Constraints 7, 367–385 (2002)
38. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a Parallel SAT Solver. Journal on Satisfiability,

Boolean Modeling and Computation 6(4), 245–262 (2008)
39. Haralick, R., Elliot, G.: Increasing tree search efficiency for constraint satisfaction problems.

Artificial Intelligence 14, 263–313 (1980)

Parallel Constraint Programming 39

40. Harvey, W.D., Ginsberg, M.L.: Limited Discrepancy Search. In: Proceedings of the Four-
teenth International Joint Conference on Artificial Intelligence, IJCAI 95, Montréal Québec,
Canada, August 20-25 1995, 2 Volumes, pp. 607–615 (1995)

41. Hirayama, K., Yokoo, M.: Distributed Partial Constraint Satisfaction Problem. In: Principles
and Practice of Constraint Programming-CP97, pp. 222–236. Springer (1997)

42. Hyde, P.: Java thread programming, vol. 1. Sams (1999)
43. Jaffar, J., Santosa, A.E., Yap, R.H.C., Zhu, K.Q.: Scalable Distributed Depth-First Search

with Greedy Work Stealing. In: 16th IEEE International Conference on Tools with Ar-
tificial Intelligence [1], pp. 98–103. URL http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=9460

44. Jaffar, J., Santosa, A.E., Yap, R.H.C., Zhu, K.Q.: Scalable distributed depth-first search with
greedy work stealing. In: ICTAI [1], pp. 98–103. URL http://ieeexplore.ieee.
org/xpl/mostRecentIssue.jsp?punumber=9460

45. Kale, L., Krishnan, S.: CHARM++: a portable concurrent object oriented system based on
C++, vol. 28. ACM (1993)

46. Kasif, S.: On the Parallel Complexity of Discrete Relaxation in Constraint Satisfaction net-
works. Artificial Intelligence 45, 275–286 (1990)

47. Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., Selman, B.: Dynamic Restart Policies. 18th
National Conference on Artificial Intelligence AAAI/IAAI 97, 674–681 (2002)

48. Kilby, P., Slaney, J.K., Thiébaux, S., Walsh, T.: Estimating search tree size. In: AAAI, pp.
1014–1019 (2006)

49. Kjellerstrand, H.: Håkan Kjellerstrand’s Blog. http://www.hakank.org/ (2014)
50. Kleiman, S., Shah, D., Smaalders, B.: Programming with threads. Sun Soft Press (1996)
51. Knuth, D.E.: Estimating the efficiency of backtrack programs. Mathematics of Computation

29, 121–136 (1975)
52. Korf, R.: Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intel-

ligence 27, 97109 (1985)
53. Kowalski, R.: Algorithm = logic + control. Commun. ACM 22(7), 424–436 (1979)
54. Le Cun, B., Menouer, T., Vander-Swalmen, P.: Bobpp. http://forge.prism.uvsq.

fr/projects/bobpp (2007)
55. Léauté, T., Ottens, B., Szymanek, R.: FRODO 2.0: An open-source framework for distributed

constraint optimization. In: Boutilier [8], pp. 160–164
56. Leiserson, C.E.: The Cilk++ concurrency platform. The Journal of Supercomputing 51(3),

244–257 (2010)
57. Lester, B.: The art of parallel programming. Prentice Hall Englewood Cliffs, NJ (1993)
58. Li, H.: Introducing Windows Azure. Apress, Berkely, CA, USA (2009)
59. Lodi, A., Milano, M., Toth, P. (eds.): Integration of AI and OR Techniques in Constraint Pro-

gramming for Combinatorial Optimization Problems, 7th International Conference, CPAIOR
2010, Bologna, Italy, June 14-18, 2010. Proceedings, Lecture Notes in Computer Science,
vol. 6140. Springer (2010)

60. Luby, M., Sinclair, A., Zuckerman, D.: Optimal Speedup of Las Vegas Algorithms. Inf.
Process. Lett. 47, 173–180 (1993)

61. Machado, R., Pedro, V., Abreu, S.: On the Scalability of Constraint Programming on Hierar-
chical Multiprocessor Systems. In: ICPP, pp. 530–535. IEEE (2013)

62. Malapert, A., Lecoutre, C.: À propos de la bibliothèque de modèles XCSP. In: 10èmes
Journées Francophones de Programmation par Contraintes(JFPC’15). Angers, France (2014)

63. Malapert, A., Régin, J., Rezgui, M.: Embarrassingly parallel search in constraint program-
ming. J. Artif. Intell. Res. (JAIR) 57, 421–464 (2016). DOI 10.1613/jair.5247. URL
http://dx.doi.org/10.1613/jair.5247

64. Menouer, T.: Paralllisations de Mthodes de Programmation Par Contraintes. Ph.D. thesis,
Universit de Versailles Saint-Quentin-en-Yvelines (2015)

65. Menouer, T., Cun, B.L.: Anticipated dynamic load balancing strategy to parallelize con-
straint programming search. In: 2013 IEEE 27th International Symposium on Parallel
and Distributed Processing Workshops and PhD Forum, pp. 1771–1777 (2013). DOI
10.1109/IPDPSW.2013.210. URL http://doi.ieeecomputersociety.org/10.
1109/IPDPSW.2013.210

40 J.-C Régin and A. Malapert

66. Menouer, T., Le Cun, B.: Anticipated Dynamic Load Balancing Strategy to Parallelize Con-
straint Programming Search. In: 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing Workshops and PhD Forum, pp. 1771–1777 (2013)

67. Menouer, T., Le Cun, B.: Adaptive N To P Portfolio for Solving Constraint Programming
Problems on Top of the Parallel Bobpp Framework. In: 2014 IEEE 28th International Sym-
posium on Parallel and Distributed Processing Workshops and PhD Forum (2014)

68. Menouer, T., Rezgui, M., Cun, B.L., Régin, J.: Mixing static and dynamic partitioning to
parallelize a constraint programming solver. International Journal of Parallel Programming
44(3), 486–505 (2016). DOI 10.1007/s10766-015-0356-7. URL http://dx.doi.org/
10.1007/s10766-015-0356-7

69. Michel, L., See, A., Hentenryck, P.V.: Transparent Parallelization of Constraint Program-
ming. INFORMS Journal on Computing 21, 363–382 (2009)

70. Michel, L., See, A., Hentenryck, P.V.: Transparent parallelization of constraint programming.
INFORMS Journal on Computing 21(3), 363–382 (2009)

71. Michel, L., Van Hentenryck, P.: Activity-based search for black-box constraint programming
solvers. In: Integration of AI and OR Techniques in Contraint Programming for Combinato-
rial Optimzation Problems, pp. 228–243. Springer (2012)

72. Microsoft Corporation: Microsoft HPC Pack 2012 R2 and HPC Pack 2012. http:
//technet.microsoft.com/en-us/library/jj899572.aspx (2015)

73. Minizinc challenge
http://www.minizinc.org/challenge2012/challenge.html (2012). Ac-
cessed: 14-04-2014

74. Moisan, T., Gaudreault, J., Quimper, C.G.: Parallel Discrepancy-Based Search. In: Principles
and Practice of Constraint Programming, Lecture Notes in Computer Science, vol. 8124, pp.
30–46. Springer Berlin Heidelberg (2013)

75. Moisan, T., Quimper, C.G., Gaudreault, J.: Parallel Depth-bounded Discrepancy
Search. In: H. Simonis (ed.) Integration of AI and OR Techniques in Con-
straint Programming: 11th International Conference, CPAIOR 2014, Cork, Ireland,
May 19-23, 2014. Proceedings, pp. 377–393. Springer International Publishing, Cham
(2014). DOI 10.1007/978-3-319-07046-9 27. URL http://dx.doi.org/10.1007/
978-3-319-07046-9_27

76. Mueller, F., et al.: A Library Implementation of POSIX Threads under UNIX. In: USENIX
Winter, pp. 29–42 (1993)

77. Nguyen, T., Deville, Y.: A distributed arc-consistency algorithm. Science of Computer
Programming 30(12), 227 – 250 (1998). DOI http://dx.doi.org/10.1016/S0167-6423(97)
00012-9. URL http://www.sciencedirect.com/science/article/pii/
S0167642397000129. Concurrent Constraint Programming

78. NICTA Optimisation Research Group: MiniZinc and FlatZinc. http://www.g12.
csse.unimelb.edu.au/minizinc/ (2012)

79. Nielsen, M.: Parallel Search in Gecode. Master’s thesis, KTH Royal Institute of Technology
(2006)

80. Nielsen, M.: Parallel Search in Gecode. Master’s thesis, KTH Royal Institute of Technology
(2006)

81. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based rea-
soning in an algorithm portfolio for constraint solving. In: Irish Conference on Artificial
Intelligence and Cognitive Science, pp. 210–216 (2008)

82. Palmieri, A., Régin, J., Schaus, P.: Parallel strategies selection. In: M. Rueher (ed.) Prin-
ciples and Practice of Constraint Programming - 22nd International Conference, CP 2016,
Toulouse, France, September 5-9, 2016, Proceedings, Lecture Notes in Computer Science,
vol. 9892, pp. 388–404. Springer (2016). DOI 10.1007/978-3-319-44953-1 25. URL
http://dx.doi.org/10.1007/978-3-319-44953-1_25

83. Perron, L.: Search Procedures and Parallelism in Constraint Programming. In: Principles
and Practice of Constraint Programming – CP’99: 5th International Conference, CP’99,
Alexandria, VA, USA, October 11-14, 1999. Proceedings, pp. 346–360. Springer Berlin Hei-
delberg, Berlin, Heidelberg (1999). DOI 10.1007/978-3-540-48085-3 25. URL http:
//dx.doi.org/10.1007/978-3-540-48085-3_25

Parallel Constraint Programming 41

84. Perron, L.: Search procedures and parallelism in constraint programming. In: CP, Lecture
Notes in Computer Science, vol. 1713, pp. 346–360 (1999)

85. Perron, L., Nikolaj, V.O., Vincent, F.: Or-Tools. Tech. rep., Google (2012)
86. Perron, L., Nikolaj, V.O., Vincent, F.: Or-Tools. Tech. rep., Google (2012)
87. Pruul, E., Nemhauser, G., Rushmeier, R.: Branch-and-bound and Parallel Computation: A

historical note. Operations Research Letters 7, 65–69 (1988)
88. cois Puget, J.F.: ILOG CPLEX CP Optimizer : A C++ implementation of CLP. http:

//www.ilog.com/ (1994)
89. Refalo, P.: Impact-based search strategies for constraint programming. In: M. Wallace (ed.)

CP, Lecture Notes in Computer Science, vol. 3258, pp. 557–571. Springer (2004)
90. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings

AAAI-94, pp. 362–367. Seattle, Washington (1994)
91. Régin, J.C.: Global Constraints: a Survey, chap. Global Constraints: a survey. Springer

(2011)
92. Régin, J.C., Rezgui, M., Malapert, A.: Embarrassingly Parallel Search. In: Principles and

Practice of Constraint Programming: 19th International Conference, CP 2013, Uppsala, Swe-
den, September 16-20, 2013. Proceedings, pp. 596–610. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013). DOI 10.1007/978-3-642-40627-0 45. URL http://dx.doi.org/
10.1007/978-3-642-40627-0_45

93. Régin, J.C., Rezgui, M., Malapert, A.: Improvement of the Embarrassingly Parallel Search
for Data Centers. In: B. O’Sullivan (ed.) Principles and Practice of Constraint Program-
ming: 20th International Conference, CP 2014, Lyon, France, September 8-12, 2014. Pro-
ceedings, Lecture Notes in Computer Science, vol. 8656, pp. 622–635. Springer Inter-
national Publishing, Cham (2014). DOI 10.1007/978-3-319-10428-7 45. URL http:
//dx.doi.org/10.1007/978-3-319-10428-7_45

94. Reynolds, J.C.: The discoveries of continuations. Lisp and Symbolic Computation. 6(3/4),
33248. (1993)

95. Rezgui, M., Régin, J.C., Malapert, A.: Using Cloud Computing for Solving Constraint Pro-
gramming Problems. In: First Workshop on Cloud Computing and Optimization, a confer-
ence workshop of CP 2014. Lyon, France (2014)

96. Rolf, C.C., Kuchcinski, K.: Parallel Consistency in Constraint Programming. PDPTA ’09:
The 2009 International Conference on Parallel and Distributed Processing Techniques and
Applications 2, 638–644 (2009)

97. Roussel, O., Lecoutre, C.: Xml representation of constraint networks format. http://
www.cril.univ-artois.fr/CPAI08/XCSP2_1Competition.pdf (2008)

98. Schaus, P.: Oscar, operational research in scala. URL https://bitbucket.org/
oscarlib/oscar/wiki/Home

99. Schulte, C.: Parallel search made simple. In: N. Beldiceanu, W. Harvey, M. Henz, F. Labur-
the, E. Monfroy, T. Mller, L. Perron, C. Schulte (eds.) Proceedings of TRICS: Techniques foR
Implementing Constraint programming Systems, a post-conference workshop of CP 2000.
Singapore (2000). URL http://www.ict.kth.se/˜cschulte/paper.php?id=
Schulte:TRICS:2000

100. Schulte, C.: Parallel Search Made Simple. In: ”Proceedings of TRICS: Techniques foR
Implementing Constraint programming Systems, a post-conference workshop of CP 2000,
pp. 41–57. Singapore (2000)

101. Schulte, C.: Gecode: Generic Constraint Development Environment. http://www.
gecode.org/ (2006)

102. Van Hentenryck, P., Michel, L.: The objective-cp optimization system. In: C. Schulte (ed.)
Principles and Practice of Constraint Programming - 19th International Conference, CP 2013,
Uppsala, Sweden, September 16-20, 2013. Proceedings, Lecture Notes in Computer Science,
vol. 8124, pp. 8–29. Springer (2013). DOI 10.1007/978-3-642-40627-0 5. URL http:
//dx.doi.org/10.1007/978-3-642-40627-0_5

103. Vidal, V., Bordeaux, L., Hamadi, Y.: Adaptive K-Parallel Best-First Search: A Simple but
Efficient Algorithm for Multi-Core Domain-Independent Planning. In: Proceedings of the
Third International Symposium on Combinatorial Search. AAAI Press (2010)

42 J.-C Régin and A. Malapert

104. Wahbi, M., Ezzahir, R., Bessiere, C., Bouyakhf, E.H.: DisChoco 2: A Platform for Dis-
tributed Constraint Reasoning. In: Proceedings of the IJCAI’11 workshop on Distributed
Constraint Reasoning, DCR’11, pp. 112–121. Barcelona, Catalonia, Spain (2011). URL
http://dischoco.sourceforge.net/

105. Wilkinson, B., Allen, M.: Parallel Programming: Techniques and Application Using Net-
worked Workstations and Parallel Computers, 2nd edition edn. Prentice-Hall Inc. (2005)

106. Xie, F., Davenport, A.: Solving scheduling problems using parallel message-passing based
constraint programming. In: Proceedings of the Workshop on Constraint Satisfaction Tech-
niques for Planning and Scheduling Problems COPLAS, pp. 53–58 (2009)

107. Xie, F., Davenport, A.: Massively Parallel Constraint Programming for Super-
computers: Challenges and Initial Results. In: Lodi et al. [59], pp. 334–
338. DOI 10.1007/978-3-642-13520-0 36. URL http://dx.doi.org/10.1007/
978-3-642-13520-0_36

108. Xie, F., Davenport, A.J.: Massively parallel constraint programming for supercomputers:
Challenges and initial results. In: Lodi et al. [59], pp. 334–338

109. Yokoo, M., Ishida, T., Kuwabara, K.: Distributed Constraint Satisfaction for DAI Problems.
In: Proceedings of the 1990 Distributed AI Workshop. Bandara, TX (1990)

110. Zoeteweij, P., Arbab, F.: A Component-Based Parallel Constraint Solver. In: De Nicola et al.
[23], pp. 307–322

111. Zoeteweij, P., Arbab, F.: A component-based parallel constraint solver. In: De Nicola et al.
[23], pp. 307–322

