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Abstract. We propose to combine two successful techniques of Artificial Intel-
ligence: sampling and Multi-valued Decision Diagrams (MDDs). Sampling, and
notably Markov sampling, is often used to generate data resembling to a corpus.
However, this generation has usually to respect some additional constraints, for
instance to avoid plagiarism or to respect some rules of the application domain.
We propose to represent the corpus dependencies and these side constraints by
an MDD and to develop some algorithms for sampling the solutions of an MDD
while respecting some probabilities or a Markov chain. In that way, we obtain
a generic method which avoids the development of ad-hoc algorithms for each
application as it is currently the case. In addition, we introduce new constraints
for controlling the probabilities of the solutions that are sampled. We experiments
our method on a real life application: the geomodeling of a petroleum reservoir,
and on the generation of French alexandrines. The obtained results show the ad-
vantage and the efficiency of our approach.

1 Introduction

Multi-valued decision diagrams (MDDs) are a compressing data structure defined over
a set of variables and used to store a set of tuples of values. They are implemented
in almost all constraint programming solvers and have been increasingly used to build
models [24, 21, 1, 9, 10, 3, 8, 5]. They can be constructed in several ways, from tables,
automata, dynamic programming, etc.; or defined by combining two or more MDDs
thanks to operators like intersection, union, or difference. They have a high compres-
sion efficiency. For instance, an MDD having 14,000 nodes and 600,000 arcs and rep-
resenting 1090 tuples has been used to solve a music synchronization problem [24].

For solving some automatic generation problems, sampling from a knowledge data
set is used to generate new data. Often, some additional control constraints must be
satisfied. One approach is to generate a vast amount of sequences for little cost, and
keep the satisfactory ones. However, this does not work well when constraints are com-
plex and difficult to satisfy. Thus, some works have investigated to integrate the control
constraints into the stochastic process.

For instance, in text generation, a Markov chain, which is a random process with
a probability depending only on the last state (or a fixed number of them), is defined
from a corpus [11, 16, 18]. In this case, a state can represent a word, and such a process
will generate sequences of words, or phrases. It can be modeled as a directed graph,
encoding the dependency between the previous state and the next state. Then, a random
walk, i.e. a walk in this graph where the probability for choosing each successor has



been given by the Markov model, will correspond to a new phrase. Such a walk corre-
sponds to a sampling of the solution set while respecting the probabilities given by the
Markov chain. This process generates sequences imitating the statistical properties of
the corpus. Then, the goal is to be able to incorporate some side constraints defining
the type of phrases we would like to obtain. For example, we may want to only produce
sequences of words that contain no subsequence belonging to the corpus or longer than
a given threshold, in order to limit plagiarism [16].

Such Markov models have long been used to generate music in the style of a com-
poser [7, 13, 16]. The techniques of Markov constraints have been introduced to deal
precisely with the issue of generating sequences from a Markov model estimated from
a corpus, that also satisfy non Markovian, user defined properties [14, 15, 2, 25].

Hence, there is a real need for being able to sample some solutions while satisfying
some other constraints.

The idea of this paper is to represent the corpus dependencies and the additional
constraints by an MDD and develop sampling algorithms dealing with the solution set
represented by this MDD.

Recently Papadopoulos et al. have designed a new algorithm which can be applied
to a regular constraint [17]. However, the paper is complex because it is a direct
adaption of the powerful and general belief propagation algorithm and requires the def-
inition of a regular constraint. In this paper, we propose a conceptually simpler method
defined on a more general data structure (the MDD), which may represent any regu-
lar constraint, but also different constraints. In addition, we show how to apply it for
any kind of samplings and not only on Markov samplings. Thus, instead of developing
ad-hoc algorithms or forcing the use of regular constraints, we propose a more general
approach that could be used for a large range of problems provided that we have enough
memory for representing the MDD.

a b

a b b

Fig. 1. A simple MDD.



However, combining samplings and MDDs is not an easy task. Consider, for in-
stance, that we have a very simple MDD (Fig. 1) involving only two variables x1 and x2
whose values are a and b and that it represents the three solutions S = {((x1, a), (x2, a)),
((x1, a), (x2, b)), ((x1, b), (x2, b))}. Assume that we want to sample uniformly the so-
lution set. In other words, we want to randomly select one solution with an equal prob-
ability for each solution. This can easily be done by randomly selecting a solution in
S. Since there are 3 solutions, any solution has a probability of 1/3 to be selected. The
issue with MDDs is that they compress the solution set, so picking a solution with a
uniform probability is not straightforward. For instance, if we randomly select the first
value of the first variable and if we randomly select the value of the second variable
then the selection is not uniform, because we are going to select more often the so-
lution ((x1, b), (x2, b)) than the others. This problem can be solved by computing the
local probabilities of selecting a value according to the probabilities of the solutions
containing that value.

Furthermore, we study the case where the probabilities of values are not the same
and we consider Markov sampling, that is sampling where instead of considering the
probability of selecting one value, we consider the probability of selecting a sequence
of values.

In addition, it is sometimes interesting to define some constraints on the sampling.
For instance, the problem of generating the sequences with the maximum probability
in the Markov chain estimated from the corpus satisfying other constraints has been
studied by Pachet and Roy [14]. Hence we propose some constraints for imposing that
the probabilities of the solutions belong to a given range of probabilities.

This paper is mainly a paper about modeling and the advantage of having general
methods for dealing with different kinds of problems occurring in Artificial Intelligence.
As an example of this advantage, we apply our method to the transformation of classical
texts written in French into alexandrine texts. This means that we try to express the same
idea as the original text with the same style but by using only sentences having twelve
syllables. The generation of the text in the same style as an author uses a Markov chain
that is extracted from the corpus. An MDD is defined from the corpus and ensures that
each sentence will have exactly twelve syllables. Then, probabilities implementing the
Markov chain are associated with arcs of the MDD, and a random walk procedure is
used for sampling the solutions. Thus, the model of this problem is conceptually simple
and easy to implement. In addition, thanks to the existence of efficient propagators for
MDDs and the algorithms we propose for computing local probabilities, it gives good
results in practice.

We also test our approach on a real world application mainly involving convolutions
which are expressed by knapsack constraints (i.e.

∑
αixi) in which the probability of

a value to be taken by a variable is defined by a probability mass function. In addition
outliers are not allowed. We show how solutions can be efficiently sampled.

Note that the problem we consider is different from the work of Morin and Quimper
on the Markov transition constraint which proposes to compute the distribution of the
states of a Markov chain [12].

The paper is organized as follows. First we recall some definitions about probability
distribution, Markov chain and MDDs and their use in constraint programming. Then,



we propose some algorithms for sampling the solution set of an MDD while respecting
the probabilities given by a distribution, that can be a probability mass function or a
Markov chain. Next, we introduce two constraints ensuring that any solution of an MDD
associated with some probability distribution belongs to a given probability interval.
Afterwards, we present some experiments on the geomodelling of a petroleum reservoir
and on the generation of French alexandrines based on the famous La Fontaine’s fables.
Finally we conclude.

2 Preliminaries

2.1 Probability distribution

We consider that the probability distribution is given by a probability mass function
(PMF), which is a probability density function for a discrete random variable. The PMF
gives for each value v, the probability P (v) that v is taken:

Given a discrete random variable Y taking values in Y = {v1, ...vm} its probability
mass function P: Y → [0, 1] is defined as P (vi) = Pr[Y = vi] and satisfies the
following condition: P (vi) ≥ 0 and

∑m
i=1 P (vi) = 1.

Property 1 Let fP be a PMF and consider {xi} a set of n discrete integer variables
independent from a probabilistic point of view and associated with fP that specifies
probabilities for their values. Then, the probability of an assignment of all the variables
(i.e. a tuple) is equal to the product of the probabilities of the assigned values. That is
∀i = 1..n , ∀ai ∈ D(xi) P (a1, a2, ..., an) = P (a1)P (a2)...P (an).

2.2 Markov chain

A Markov chain1 is a stochastic process, where the probability for state Xi, a ran-
dom variable, depends only on the last state Xi−1. A Markov chain produces sequence
X1, ..., Xn with a probability P (X1)P (X2|X1)...P (Xn|Xn−1).

Property 2 Let PM be a Markov chain and consider a set of n discrete integer vari-
ables associated with PM that specifies probabilities for their values. Then, ∀i = 1..n
, ∀ai ∈ D(xi) P (a1, a2, ..., an) = P (a1)P (a2|a1)...P (an|an−1).

Several methods can be used to estimate the Markov chain from a corpus, like the
maximum likehood estimation [11]. This paper is independent from such methods and
considers that the Markov chain is given.

Sampling a Markov chain can be simply and efficiently done by a random walk
(i.e. a path consisting of a succession of random steps) driven by the distribution of
the Markov chain. If we need to build a finite sequence of length k, then we perform a
random walk of k iterations using the given distribution.

1 Order k Markov chains have a longer memory: the Markov property states that
P (Xi|X1, ..., Xi−1) = P (Xi|Xi−k, ..., Xi−1). They are equivalent to order 1 Markov
chains on an alphabet composed of k-grams, and therefore we assume only order 1 Markov
chains.[17]



\ a b
a 0.9 0.1
b 0.1 0.9

Tuple Probability
aa 0.54
ab 0.06
ba 0.04
bb 0.36

Fig. 2. Markov chain for two variables. The starting probabilities are 0.6 for a and 0.4 for b.

Example. Consider M , the Markov chain in Fig. 2 and an initial probability of 0.6 for
a and 0.4 for b. If we apply M on two variables x1 and x2, then the probability of the
tuple (a, a) is P (x1, a)P ((x2, a)|(x1, a)) = 0.6× 0.9 = 0.54. The probabilities of the
four possible tuples are given in Fig. 2. The sum of the probabilities is equal to 1.

2.3 Multi-valued decision diagram (MDD)

An MDD is a data-structure representing discrete functions. It is a multiple-valued ex-
tension of BDDs [4]. An MDD, as used in CP [5, 20, 1, 9, 10, 3, 8, 24], is a rooted di-
rected acyclic graph (DAG) used to represent some multi-valued function f : {0...d −
1}n → {true, false}. Given the n input variables, the DAG representation is designed
to contain n+1 layers of nodes, such that each variable is represented at a specific layer
of the graph. Each node on a given layer has at most d outgoing arcs to nodes in the next
layer. Each arc is labeled by its corresponding integer. The arc (u, v, a) is from node u
to node v and labeled by a. All outgoing arcs of the layer n reach tt, the true terminal
node (the false terminal node is typically omitted). There is an equivalence between
f(a1, ..., an) = true and the existence of a path from the root node to the true terminal
node whose arcs are labeled a1, ..., an. The number of nodes of an MDD is denoted by
V , the number of edges by E and d is the largest domain size of the input variables.

MDD of a constraint. Let C be a constraint defined on X(C). The MDD associated
with C, denoted by MDD(C), is an MDD which models the set of tuples satisfying C.
MDD(C) is defined on X(C), such that layer i corresponds to the variable xi and the
labels of arcs of the layer i correspond to values of xi, and a path of MDD(C) where ai
is the label of layer i corresponds to a tuple (a1, ..., an) on X(C).

Consistency with MDD(C). An arc (u, v, a) at layer i is valid iff a ∈ D(xi). A path
is valid iff all its arcs are valid. The value a ∈ D(xi) is consistent with MDD(C) iff
there is a valid path in MDD(C) from the root node to tt which contains an arc at layer
i labeled by a.

MDD propagator. An MDD propagator associated with a constraint C is an algorithm
which removes some inconsistent values ofX(C). It establishes arc consistency of C if
and only if it removes all inconsistent values with MDD(C). This means that it ensures
that there is a valid path from the root to the true terminal node in MDD(C) if and only
if the corresponding tuple is allowed by C and valid.



Cost-MDD. A cost-MDD is an MDD whose arcs have an additional information: the
cost c of the arc. That is, an arc is a 4-uplet e = (u, v, a, c), where u is the head, v the
tail, a the label and c the cost. Let M be a cost-MDD and p be a path of M . The cost of
p is denoted by γ(p) and is equal to the sum of the costs of the arcs it contains.

Cost-MDD of a constraint [8, 6]. Let C be a constraint and fC be a function associ-
ating a cost with each value of each variable of X(C). The cost-MDD of C and fC is
denoted by cost-MDD(C, fC) and is MDD(C) whose the cost of an arc labeled by a at
layer i is fC(xi, a).

3 Sampling and MDD

We aim at sampling the solution set of an MDD while respecting the probabilities given
by a distribution, that can be a PMF or a Markov chain.

Let M be an MDD whose n variables are associated with a distribution that spec-
ifies the probabilities of their values. For sampling the solutions of M , we propose to
associate with each arc a probability, such that a simple random walk from the root node
to tt according to these probabilities will sample the solution set of M while respecting
the probabilities of the distribution of M .

First, we consider that the distribution ofM is given by a PMF and that the variables
of M are independent from a statistical point of view. Then, we will consider that we
have a Markov chain for determining the probability of a value to be selected.

3.1 PMF and Independent variables

If the distribution associated with M is defined by a PMF fP and if the variables of M
are independent from a statistical point of view, then we propose to associate with each
arc e a probability P (e). From Property 1 we know that the probability of a solution
(a1, ..., an) must be equal to Πn

i=1P (ai).
We could be tempted to define P (e) as the value of fP (label(e)) where label(e)

is the label (i.e. value) associated with e. However, this is not exact because the MDD
usually does not contain all possible combinations of values as solutions. For instance,
consider the example of Fig. 1 with a uniform distribution. If all probabilities are equiv-
alent then each solution must be able to be selected with the same probability, which is
1/3 since there are three solutions (a, a), (a, b) and (b, b). Now, if we do a random walk
considering that the probability of each arc is 1/2 then we will choose with a proba-
bility 1/2 the solution (b, b) which is incorrect. The problem stems from the fact that
the probabilities of the higher layers are not determined according to the probabilities
of solutions that they can reach while it should be the case. The choice (x1, a) allows
to reach 2 solutions and (x1, b) one. So, with a uniform distribution the probability of
choosing a for x1 should be 2/3 while that of choosing b should be 1/3.

Definition 1 The partial solutions that can be reached from a node n in an MDD are
defined by the paths from n to tt.



In order to compute the correct values, we compute for each node n the sum of
the original probabilities of the partial solutions that we can reach from n. Then, we
renormalize these values in order to have these sums equal to 1 for each node. For
instance, for the node reached by traversing the first arc labeled by a in Fig. 1, the sum
of the original probabilities is 1/2 + 1/2 = 1, so the original probabilities are still
valid. However, for the node reached by traversing the arc from the root and labeled by
b, the sum of the original probabilities is 1/2, so half of the combinations are lost. This
probability is no longer valid and new values must be computed.

The sum of the original probabilities of the partial solutions that can be reached
from a node is defined as follows:

Property 3 Let M be an MDD defined on X and fP a PMF associated with M . Let n
be any of node of the MDD and A be any partial instantiation of X reaching node n.
The sum of the original probabilities of the partial solutions that can be reached from
n is v(n) =

∑
s∈S(n) P (s|A), where S(n) is the set of partial solutions that we can

reach from n and P (s|A) is the probability of s under condition A. The probability of
any arc e = (n′, n, a) is defined by P (e) = fP (a)× v(n).

proof: By induction from tt. Assume this is true at layer i+1. Let n′ be a node of layer
i, n a node in layer i + 1 and e = (n′, n, a) an arc. We have P (e) = fP (a) × v(n),
that is P (e) = fP (a)×

∑
s∈S(n) P (s|A), where A is any partial instantiation reaching

node n. So for node n′ we have:
v(n′) =

∑
e∈ω+(n′) P (e), where ω+(n′) is the set of outgoing arcs of n′

v(n′) =
∑

e∈ω+(n′) fP (label(e))×
∑

s∈S(n) P (s|A). Note thatA is any partial instan-
tiation reaching node n, so it can go through e. So we have
v(n′) =

∑
s∈S(n′) P (s|A′) where A′ is any partial instantiation reaching node n′. ut

The correct probabilities can be computed by a bottom-up algorithm followed by a
top-down algorithm. First, we consider the second to last layer and we define the prob-
ability P of an arc labeled by a as fP (a). Then, we directly apply Property 3 from the
bottom of the MDD to the top: once the layer i+1 is determined, we compute for each
node n′ of the layer i the value v(n′) =

∑
e∈ω+(n′) P (e) =

∑
e∈ω+(n′) fP (label(e))×

v(n). Once the bottom-up part is finished, we normalize the computed values P in
order to have v(n) = 1 for each node n. We use a simple top-down procedure for
computing these values. Fig. 3 details this process. The left graph simply contains the
probability of the arc labels. The middle graph shows the bottom-up procedure. For in-
stance, we can see that the right arc outgoing from the source has a probability equal to
1/2 × 1/2 = 1/4. Thus a normalization is needed for the root because the sum of the
probabilities of the outgoing arcs is 1/2 + 1/4 = 3/4 < 1. The right graph is obtained
after normalization.

Note that the normalization consists of computing the probability according to the
sum of the probabilities. If P (e) is the current value for the arc e = (u, v, a) and T is
the sum of the probability of the outgoing arcs from u, then the probability of e becomes
P (e)/T .

This step can be avoided in practice by computing such normalized values only
when needed.



a,1/2 b,1/2

a,1/2 b,1/2 b,1/2

a,1/2 b,1/4

a,1/2 b,1/2 b,1/2

a,2/3 b,1/3

a,1/2 b,1/2 b,1

Fig. 3. Sampling from a simple MDD. The probability of a and b are 1/2.

Algorithm COMPUTEMDDPROBABILITIES can be described as follows:

1. Set v(tt) = 1; For each node v 6= tt, in a Breadth First Search (BFS) in bottom-up
fashion:
(a) Compute v(n) the sum of the original probabilities of the outgoing arcs of n.
(b) Define the probability of each incoming arc e of n labeled by a as P (e) =

fP (a)× v(n)
2. For each node in a BFS top-down fashion, normalize the probabilities of the outgo-

ing arcs.

During this algorithm, each sum is calculated once for each node during the bot-
tom up processing, and the normalization is performed once for each arc. The final
complexity is O(|E|+ |V |).

Fig. 4 gives an example of the running of this algorithm when the probabilities are
not uniform.

3.2 Markov chain

As in the previous section, our goal is to associate each arc with a probability and then
sample the solution set by running a simple random walk according to these probabili-
ties. The method we obtain is equivalent to the one proposed by Papadopoulos et al. for
the regular constraint [17]. However, their method is complex and the propagation
of the regular constraint costs more memory than the one of an MDD [20]. We claim
that our method is conceptually simpler.

It is more difficult to apply a Markov chain than a PMF because in a Markov chain
the probability of selecting a value depends on the previous selected value, that is, prob-
abilities must be defined in order to satisfy Property 2. More precisely, in an MDD, a
node can have many incoming arcs, and these different incoming arcs can have different
labels. Since the Markov probability depends on the previous value, the outgoing arcs
of that node may have different probabilities depending on which was the incoming arc



a,1/3 b,2/3

a,1/3 b,2/3 b,2/3

a,1/3 b,4/9

a,1/3 b,2/3 b,2/3

a,3/7 b,4/7

a,1/3 b,2/3 b,1

Fig. 4. Sampling from a simple MDD. The probability of a is 1/3 and it is 2/3 for b.

label. Thus, for an arc e, we need to have several probability values depending on the
previous arc that has been used.

There are two possible ways to deal with a Markov chain. Either we transform
the MDD by duplicating nodes in order to be able to apply an algorithm similar as
COMPUTEMDDPROBABILITIES or we directly deal with the original MDD and we
design a new algorithm.

Duplication of nodes We can note that the matrix of the Markov chain represents a
compression of nodes. Thus, if we duplicate each node according to its incoming arcs
then we obtain a new MDD for which the probabilities become independent. More
precisely, for each node n we split the node n in as many nodes as there are different
values incoming. This means that each node n has only incoming arcs having the same
label, and so only one value a incoming. Thus, the probability of each outgoing arc of
the duplicated nodes of n can be determined directly by the Markov matrix.

For instance, consider the probabilities of Fig 2 and that we have a node n with two
incoming arcs: one labeled by a an the other labeled by b; and with two outgoing arcs:
one labeled by a an the other labeled by b (Fig. 5). The node n is split into two nodes
na and nb. Node na has only incoming arcs labeled by a, and nb has only incoming
arcs labeled by b ((c) in Fig 5). In this case, we can define the probabilities as if we had
independent variables. The probability of the arc (na, x, a), is defined by P (a|a) = 0.9,
the probability of the arc (na, x, b) is P (b|a) = 0.1, the probability of the arc (nb, x, a)
is P (a|b) = 0.1, the probability of the arc (nb, x, b) is P (b|b) = 0.9. Fig. 5 shows the
duplication of a node. Note that when the node x will be split into two nodes xa and
xb, then each of them will have two incoming arcs having the same label, a for xa and
b for xb ((d) in Fig. 5).

Let PC(e) be the computed probability of any edge e computed by the duplication
process. We can establish a Property similar as Property 3



\ a b
a 0.9 0.1
b 0.1 0.9

(c) n is split (d) x is split

Fig. 5. Duplication of a node and computation of probabilities.

Property 4 LetM be an MDD defined onX and PC a probability associated with each
arc. Let n be any of node of the MDD and A be any partial instantiation of X reaching
node n. The sum of the original probabilities of the partial solutions that can be reached
from n is v(n) =

∑
s∈S(n) P (s|A), where S(n) is the set of partial solutions that we

can reach from n and P (s|A) is the probability of s under condition A. The probability
of any arc e = (n′, n, a) is defined by P (e) = PC(e)× v(n).

proof: Similar as for Property 3. ut
From this property we can design an algorithm similar as COMPUTEMDDPROBA-

BILITIES by using PC(e) instead of fP (label(e)) for each arc e. The drawback of this
method is that it can multiply the number of nodes by at most d, the greatest cardinal-
ity domain of variables and also increases the number of edges which slowdowns the
propagators. The next section presents another method avoiding this duplication.

A new algorithm In order to deal with the fact that the probability of an outgoing
arc depends on the label of the incoming arc without duplicating nodes, we associate
each node with a probability matrix whose row depends on the incoming arc label.
We denote these matrices by Pn

M for the node n. For efficiency, we only have one
vector by incoming value instead of the full matrix, and each vector contains only the
probability of the possible outgoing arcs labels. Then, the same reasoning as previously
can be applied. We just need to adapt the previous algorithm by using matrices instead
of duplicating nodes:

Algorithm COMPUTEMDDMARKOVPROBABILITIES can be described as follows:

1. For each node n, build the Pn
M matrix by copying the initial Markov probabilities.

2. For each node n, in BFS in bottom-up fashion:



(a) Build the vector vv(n) whose size is equal to the number of different incom-
ing labels2. Each cell contains the sum of the probabilities of the row of the
corresponding label in the Pn

M matrix.
(b) Multiply each incoming arc probability by the cell of vv(n) corresponding to

its label.
3. For each node in a BFS top-bottom fashion, normalize the probability of the outgo-

ing arcs.

Example. Consider the MDD of Fig. 6.a, if we reuse the Markov distribution of
Fig. 2 and apply the step 1 of the method, we obtain the MDD in Fig. 6.b.

Now from the MDD in Fig. 6.b, we perform step 2, first (step 2.a) we process the
sum of the outgoing probabilities for each node. For example for node 5 its probability
is 0.1 + 0.9 = 1 and for node 3 the sum is 0.9. For these two nodes the sum does not
depend on the incoming arc label because there is only one. This is not the case for node
4 which has a sum of 0.1 for the incoming arc labeled by a and 0.9 for the incoming
arc labeled by b. Now we apply step 2.b: we multiply the probability of the incoming
arcs by the sum associated to their label in their destination node. Consider the arc from
node 1 to node 3 and labeled by a, its probability was 0.9 and the sum of probabilities in
its destination node is 0.9, then its new probability is 0.81. The arc from node 1 to node
4 is labeled by b; its probability was 0.1. For node 4, the sum is 0.9 for the incoming
arc labeled by b, so the new probability of the (1, 4, b) is 0.1 × 0.9 = 0.09. The MDD
in Fig. 7.a is labeled with the resulting global probabilities.

Finally, from the MDD in Fig. 7.a, we normalize the outgoing arc probability of
each node (step 3). For the root node 0, the outgoing probabilities sum is 0.54 +
0.364 = 0.904. For its arc labeled by a and directed to node 1, the probability become
0.54/0.904 = 0.597, this value has been rounded to 3 digits for readability. For its
arc labeled by b and directed to node 2, the probability becomes 0.364/0.904 = 0.403
(rounded). Thus, the outgoing sum of probabilities emanating from node 0 becomes
0.597 + 0.403 = 1. The MDD from Figure 7.b shows the normalized probabilities.

Complexities. The complexities of COMPUTEMDDMARKOVPROBABILITIES al-
gorithm are the following. The number of matrices is |V |, in the worst case the number
of columns and rows is d, so the global memory complexity is O(|V | × d2). The com-
plexity of each of the operations of this method are all linear over the matrices, so the
overall time complexity is O(|V | × d2). Since the number of columns of the matrix of
a node is equal to the number of outgoing arcs of this node, a more realistic complexity
for space and time is O(|V |+ |E| × d), knowing that in a MDD, |E| ≤ |V | × d. Note
that, for a given layer, nodes can be processed in parallel.

3.3 Incremental modifications.

If some modifications occur in the MDD, then instead of reprocessing all the probabil-
ities we can have an incremental approach. From Step 2 of algorithms COMPUTEMD-
DPROBABILITIES or COMPUTEMDDMARKOVPROBABILITIES, which performs a BFS
in bottom-up, we perform the BFS only from the modified nodes since they are the only
ones that can trigger modifications of the probabilities.

2 vv(n) represents a vector of v(n).
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Fig. 6. (a) left: an MDD. (b) right: the MDD whose arcs have their probability set thanks to the
Markov distribution.

The reset principle used in MDD4R [20] can also be applied in this case. In other
words, when there is less remaining arcs than deleted arcs, it is worthwhile to recompute
from scratch the values.

4 MDDs and Probabilities based constraints

For some reasons, like security or for avoiding outliers, some paths of MDDs can be
unwanted, because they have only very little chance to be selected or because they
contain almost only values having the strongest probability to be selected. In other
words, we accept only paths whose probability is in a certain interval.

We define constraints for this purpose. One, named the MDDProbability, con-
sidered that the MDD is associated with a PMF and independent variables and the other,
named MDDMarkovProcess, that the MDD is associated with a Markov chain.

Definition 2 Given M an MDD defined on X = {x1, x2, ..., xn} that are indepen-
dent from a probabilistic point of view and associated with fP a probability mass
function , Pmin a minimum probability and Pmax a maximum probability. The con-
straint MDDProbability(X, fP ,M, Pmin, Pmax) ensures that every allowed tuple
(a1, a2, ...an) is a solution of the MDD and satisfies Pmin ≤ Πn

i=1fP (a1) ≤ Pmax.

This constraint can be easily transformed into a cost-MDD constraint. The cost
associated with an arc labeled by a is log(fP (a)), and the logarithms of Pmin and
Pmax are considered for dealing with a sum instead of a product3. Thus, any cost-MDD
propagator can be used [22].

3 We can also directly deal with products if we modify the costMDD propagator accordingly.
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Fig. 7. (a) left: MDD from Fig. 6.b whose arcs probability has been multiplied by the sum of the
probabilities of the outgoing arcs from their destination node. (b) right: the MDD with renormal-
ized probabilities.

Definition 3 Given M an MDD defined on X = {x1, x2, ..., xn} and associated with
P a Markov chain, Pmin a minimum probability and Pmax a maximum probability. The
constraint MDDMarkovProcess(X,P,M,Pmin, Pmax) ensures that every allowed
tuple (a1, a2, ...an) is a solution of the MDD and satisfies
Pmin ≤ P (a1)P (a2|a1)...P (an|an−1) ≤ Pmax.

As we have seen, with a Markov chain, the probability for selecting an arc de-
pends on the previous selected arc. Thus, each arc of the MDD is associated with
several probabilities. So we cannot directly use a cost-MDD propagator as for the
MDDProbability constraint. However, if we accept to duplicate the nodes as pro-
posed in the previous section then we can immediately transforms the constraint into
a simple cost-MDD constraint by considering logarithms of probabilities and any cost-
MDD propagator can be used. Since the number of time a node can be duplicated is
bounded by d, the overall complexity of this transformation is O(d× (|V |+ |E|)).

5 Evaluation

The experiments were run on a macbook pro (2013) Intel core i7 2.3GHz with 8 GB of
memory. The constraint solver used is or-tools. MDD4R [20] is used as MDD propaga-
tor and cost-MDD4R as cost-MDD propagator [23].

5.1 PMF constraint and sampling

The data come from a real life application: the geomodeling of a petroleum reservoir
[19]. The problem is quite complex and we consider here only a subpart. Given a seis-
mic image we want to find the velocities. Velocities values are represented by a prob-
ability mass function (PMF) on the model space. Velocities are discrete values of vari-
ables. For each cell cij of the reservoir, the seismic image gives a value sij from which



we define a sum constraint Cij :
∑22

k=1 αklog(xi−11+k−1j) = sij ± ε, where αk are
defined from the given seismic wavelet. Locally, that is, for each sum, we have to avoid
outliers w.r.t. the PMF for the velocities. The problem is huge (millions of variables) so
we consider here only a very small part.

We recall that the MDD of the constraint
∑

xi∈X f(xi) ∈ I , with I = [a, b] is
denoted by MDD(Σf,I(X)) and defined as follows. For the layer i, there are as many
nodes as there are values of

∑i
k=1 f(xk). Each node is associated with such a value.

A node np at layer i associated with value vp is linked to a node nq at layer i + 1
associated with value vq if and only if vq = vp + f(ai) with ai ∈ D(xi). Then, only
values v of the layer |X| with a ≤ v ≤ b are linked to tt. The reduction operation
is applied after the definition and delete invalid nodes [21]. The construction can be
accelerated by removing states that are greater than b or that will not permit to reach a.

Each constraint Cij is represented by MDD(Σf,I(X)) where f(xi) = αixi and
I is the tight interval representing [sij − ε, sij + ε]. Outliers are avoided thanks to an
MDDProbability constraint defined from the PMF for the velocities. Pmin is de-
fined by selecting only values having the 10% smaller probabilities, Pmax is defined
by selecting only values having the 10% greater probabilities. This constraint is repre-
sented by a cost-MDD constraint, as explained in the Section 4. Then, we intersect it
with MDD(Σf,I(X)).

We consider 20 definitions of Cij . We repeat the experiments 20 times and take the
mean of the results.

For each constraint Cij , the resulting MDD has in average 116,848 nodes and
1,239,220 edges. More than 320s are needed to compute it. Only 8 ms are required
by COMPUTEMDDPROBABILITIES algorithm in average. When a modification occurs
the time to recompute the values are between a negligible value when the modifications
are close to the root of the MDD and 8 ms when another part is modified.

For sampling 100,000 solutions we need 169 ms with the rand() function and 207 ms
with the Mersenne-Twister random engine in conjunction with the uniform generator
of the C++ standard library. Note that the time spends within the rand() function is 15
ms, whereas it is 82 ms with the second function. Therefore, the sampling procedures
require less than 3 times the time spent in the random function.

5.2 Markov chain and sampling

We evaluate our method for generating French alexandrines. That is, sentences contain-
ing exactly twelve syllables. The goal is to transform an existing text into a text having
the same meaning but using only alexandrines. From the corpus we define a Markov
chain and an MDD representing the sentences having the right number of syllables.
The sampling procedure we define generates solutions of the MDD associated with the
Markov chain, that is, sentences hopefully resembling those of the corpus and having
exactly 12 syllables. This model is simple and easy to implement. Note that we are not
able to model this problem with any other technique, even the one proposed by Pa-
padopoulos et al, because we need to deal only with sentences having 12 syllables and
we do not know how to integrate this constraint into their model.

First, we use a corpus defined by one of the famous La Fontaine’s fables. Here is the
result we obtain for the fable: La grenouille qui veut se faire aussi grosse que le boeuf



(The Frog and the Ox). We have underlined the syllables that must be pronounced when
it is unclear:

La grenouille veut se faire aussi grosse que le bœuf

Grands seigneurs Tout bourgeois veut bâtir comme un Bœuf
Plus sages Tout marquis veut bâtir comme un œuf
Pour égaler l’animal en tout M’y voila
Voici donc Point du tout comme les grands seigneurs
Chétive Pécore S’enfla si bien qu’elle creva
Seigneurs Tout petit prince a des ambassadeurs

The generation of the MDD with the correct probabilities, that is just before the
random walk, can be performed in negligible computational time.

We also considered a larger corpus: “A la recherche du temps perdu” of Proust,
which contains more than 10,000 words. In this case, the results are less pertinent
and some more work must be done about the meaning of the sentences. However,
the method is efficient in term of computing performance because only 2 seconds are
needed to create the MDD with the correct probabilities.

6 Conclusion

We have presented two methods for sampling MDDs, one using a probability mass
function and another one using a Markov chain. These methods require the definition
of probabilities for each arc and we have given algorithms for performing this task. We
have also proposed propagators for constraining these probabilities. Thanks to these al-
gorithms and MDD propagators we can easily model and implement complex problems
of automatic music or text generations having good performances in practice. We have
experimented our method on a real life application: the geomodeling of a petroleum
reservoir and on the problem of the transformation of French texts into alexandrines.
We have shown how it is easy to define the model and to generate solutions.
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