
Simpler and incremental consistency checking

and arc consistency filtering algorithms for the

weighted spanning tree constraint

Jean-Charles Régin
regin@ilog.fr

ILOG Sophia Antipolis
Les Taissounières HB2,
1681 route des Dolines,
06560 Valbonne, France

Abstract. The weighted spanning tree contraint is defined from a set
of variables X and a value K. The variables X represent the nodes of
a graph and the domain of a variable x ∈ X the neighbors of the node
in the graph. In addition each pair (variable, value) is associated with a
cost. This constraint states that the graph defined from the variables and
the domains of the variables admits a spanning tree whose cost is less
than K. Efficient algorithms to compute a minimum spanning tree or to
establish arc consistency of this constraint have been proposed. However,
these algorithms are based on complex procedures that are rather difficult
to understand and to implement. In this paper, we propose and detail
simpler algorithms for checking the consistency of the constraint and for
establishing arc consistency. In addition, we propose for the first time
incremental algorithms for this constraint, that is algorithms that have
been designed in order to be efficiently maintained during the search for
solution.

1 Introduction

In this paper, we consider the weighted spanning tree constraint (wst constraint).
Several filtering algorithms for constraints based on graph theory and par-

ticularly on trees have been proposed. For instance, the robust spanning tree
problem1 with interval data has been addressed in [2]; the ”tree” constraint has
been studied in [3] (this constraint enforces the partionning of a digraph into
a set of vertex-disjoint anti-arborescences), and recently, the ”Not-Too-Heavy
Spanning Tree” constraint has been introduced in [7]. This constraint is defined
on undirected graph G and a tree T and it specifies that T is a spanning tree
of G whose total weight is at most a given value I, where the edge weights are
defined by a vector. The wst constraint is a simplified form of this constraint.

1 From [2]:the robust spanning tree problem, given an undirected graph with interval
edge costs, amounts to finding a tree whose cost is as close as possible of that
minimum spanning tree under any possible assignment of costs.

In order to define it without introducing set variables or graph variables, we
recall first the definition of a spanning tree and then we present the neighbor
variables representation of a graph in CP.

A tree is a connected and acyclic graph. A tree T = (X ′, E′) is a spanning
tree of G = (X, E) if X ′ = X and E′ ⊆ E. In addition, if each edge of G is
associated with a cost then the cost of a spanning tree of G is the sum of the
costs of the edges of the tree.

The neighbor variables representation of a graph G consists of a variable set
X corresponding to the nodes of G (i.e. xi is associated with the node i in G and
conversely) such that the domain of a variable xi is equivalent to the neighbors
of i in G (i.e. j ∈ D(xi) ⇔ j ∈ N(i) of G). Then, there is an equivalence
between the cost of an edge in G and the cost of a value of a variable (i.e.
cost(i, j) = cost(xi, j)).

The weighted spanning tree constraint (wst constraint) is a constraint de-
fined on the neighbor representation of a graph G each of whose edges has an
associated cost, and associated with a global cost K. This constraint states that
there exists in G a spanning tree whose cost is at most K.

This kind of constraint is not often present directly in real world applications,
but it is used frequently as a lower bound of a more complex problems like
hamiltonian path or node covering problems. For instance the minimum spanning
tree is a well known bound of the traveling salesman problem.

It is straightforward to see that checking the consistency of this constraint is
equivalent to finding a minimum spanning tree and to check if its cost is less than
K. Moreover, arc consistency filtering algorithms are based on the computation
for every edge e of the cost of the minimum spanning tree subject to the condition
that the tree must contain e [7]. These two problems were solved for a long time.
The search for a minimum spanning tree can be solved by several methods and
we will consider here the Kruskal’s algorithm. The second problem is close of
another problem called ”Sensitivity Analysis of Minimum Spanning Trees” [14].
The best algorithms solve this problem in linear time. Unfortunately they are
quite complex to understand and to implement (see [6] or [11] for instance).

Therefore, in this paper, we propose a simpler and easy to implement consis-
tency checking and filtering algorithms for the wst constraint, because, currently,
there is no CP Solver which contains such a constraint. This algorithm is based
on the creation of a new tree while running Kruskal’s algorithm for computing
an mst. Then, we find lowest common ancestors (LCA) in this tree by using the
equivalence between the LCA and the range minimum query problem. A recent
simple preprocessing leads to an O(1) algorithm to find any LCA.

In addition, we will consider an important aspects of the algorithms which
is usually ignored: the incremental aspect. This aspect is quite important in CP
as shown for instance in[12] because the consistency checking algorithms and
the filtering algorithms are systematically called during the search for solution.
Thus, it is worthwhile to design algorithms that are able to exploit the previous
computations in order to solve more quickly the problems they consider. In this

case and because the algorithms are called very often with only few modifications
between two calls, any real saving is beneficial in practice.

The paper is organized as follows: First, we recall some concepts of graph
theory and constraint programming. Then, we formally define the propositions
on which the consistency and the arc consistency of the weighted spanning tree
constraint are based. Next, we introduce a new data structure named tree of con-
nected components which will lead us to propose a simple algorithm to establish
arc consistency. Afterwards, we modify this algorithm in order to maintain it ef-
ficiently during the search for solution when some modifications happen or when
a backtrack occurs. At last, we conclude.

2 Preliminaries

2.1 Graph Theory

A tree is a connected and acyclic graph. A tree T = (X ′, E′) is a spanning tree
of G = (X, E) if X ′ = X and E′ ⊆ E. The edges of E′ are the tree edges of
T and the edges of E − E′ are the nontree edges of T . A forest is a disjoint
union of trees.

There are different methods to traverse all the nodes of a tree, we recall the
one we will use in this paper: the inorder traversal. To traverse a non-empty
binary tree in inorder, perform the following operations: 1. Traverse the left
subtree in inorder. 2. Visit the root. 3. Traverse the right subtree in inorder.

2.2 Constraint Programming

A finite constraint networkN is defined as a set of n variables X = {x1, . . . , xn},
a set of current domains D = {D(x1), . . . , D(xn)} where D(xi) is the finite set
of possible values for variable xi, and a set C of constraints between variables.
We introduce the particular notation D0 = {D0(x1), . . . , D0(xn)} to represent
the set of initial domains of N . on which constraint definitions were stated.

A constraint C on the ordered set of variables X(C) = (xi1 , . . . , xir
) is

a subset T (C) of the Cartesian product D0(xi1) × · · · × D0(xir
) that specifies

the allowed combinations of values for the variables xi1 , . . . , xir
. An element of

D0(xi1) × · · · ×D0(xir
) is called a tuple on X(C). A value a for a variable x

is often denoted by (x, a). Let C be a constraint. A tuple τ on X(C) is valid
if ∀(x, a) ∈ τ, a ∈ D(x). C is consistent iff there exists a tuple τ of T (C)
which is valid. A value a ∈ D(x) is consistent with C iff x 6∈ X(C) or there
exists a valid tuple τ of T (C) with (x, a) ∈ τ . A constraint is arc consistent iff
∀xi ∈ X(C), D(xi) 6= ∅ and ∀a ∈ D(xi), a is consistent with C.

Definition 1 A weighted spanning tree constraint is a constraint C de-
fined on X the neighbor variable representation of a graph G, and associated
with cost a cost function on the edge of G, and an integer K such that
T (C) = { τ such that τ is a tuple on X(C)

and the graph defined by τ is a tree whose cost is less than K}
It is denoted by wst(X, cost, K).

3 Consistency Checking

Proposition 1 The constraint wst(X, cost, K) is consistent if and only if the
graph G defined by X has a minimum spanning tree T ∗ with cost(T ∗) ≤ K.

We propose to use Kruskal’s algorithm for searching for a mst. Kruskal’s
algorithm is a greedy algorithm that finds a minimum spanning tree for a con-
nected weighted graph. The algorithm starts with a forest where each node in the
graph is a separate tree. Then, it adds edges which join two nodes belonging to
different trees of the forest and merges the two trees into one. The particularity
of the algorithm is that the edges are selected in regards to their costs. For each
step the edge which connects two distinct trees and whose cost is minimum is
selected. Thus, Kruskal’s algorithm can be easily implemented by traversing the
edges in nondecreasing order of their costs and by adding edges connecting two
disjoint trees, until all nodes of the graph are in the same connected component.
The main issue to obtain an efficient implementation is to detect whether two
nodes belong to the same tree or not. This operation can be efficiently performed
by using the well known union-find data structure of Tarjan [15]. By combin-
ing the path compression and the union by rank heuristics, m operations on the
union-find performed on a set of n elements run in O(mα(m, n)) time [15], where
α(m, n) is a functional inverse of Ackerman’s function. Thus, we have:

Property 1 If the list of edges ordered by non decreasing cost is available then
Kruskal’s algorithm can be implemented in O(mα(m, n)).

Algorithm 1: Kruskal’s algorithm for computing a minimum spanning tree

getCCRoot(i): return find(i)
mergeCC(ri, rj): union(ri, rj)
initCC(n): for i = 1 to n do makeSet(i)
addEdge(ccT, T, ri, rj , {i, j})

mergeCC(ri, rj)
1 updateCCTree(ccT, ri, rj , {i, j})

add {i, j} to T

MinimumSpanningTree(nonDecrEC): (mst,ccTree)
initCC(n)

2 initCCTree(ccT, n)
T ← ∅
for each {i, j} ∈ nonDecrEC while |T | < n− 1 do

ri ← getCCRoot(i); rj ← getCCRoot(j)
if ri 6= rj then addEdge(ccT, T, ri, rj , {i, j})

return (T, ccT)

Algorithm 1 is a possible implementation of Kruskal’s algorithm using the union-
find data structure. The algorithm returns the largest forest that can be built. At

this point, we recommend to ignore lines 2 and 1 and parameter ccT . Functions
makeSet, find and union are the classical union-find functions:
makeSet(x) :{ p[x]← x; rank[x]← 0 }
find(x): { if p[x] 6= x then p[x]← Find(p[x]) endif; return p[x] }
link(x, y) :{ if rank[x] > rank[y] then p[y] = x else p[x] = y endif
. if rank[x] = rank[y] then rank[y]← rank[y] + 1 endif }
union(x, y): {link(find(x),find(y)) }

4 Arc Consistency Filtering Algorithm

For each nontree edge {i, j}, we have to find the cost of a minimum spanning
tree subject to the condition that the tree must contain the edge {i, j}. First,
we recall the Optimality Conditions of a mst:

Theorem 1
• [Path Optimality Condition] A spanning tree T ∗ is a minimum span-

ning tree if and only if it satisfies the following path optimality conditions: for
every nontree edge {i, j} of G, cost(i, j) ≥ cost(u, v) for every edge {u, v} con-
tained in the path in T ∗ connecting nodes i and j.

• [Cut Optimality Condition] A spanning tree T ∗ is a minimum span-
ning tree if and only if it satisfies the following cut optimality conditions: for
every tree edge {i, j} of G, cost(i, j) ≤ cost(u, v) for every edge {u, v} contained
in the cut formed by deleting edge {i, j} from T ∗.

We will call {i, j}-tree, a tree which must contain the edge {i, j}. Then:

Property 2 Let G = (X, E) be a graph, {i, j} ∈ E be an edge of G, and v be the
minimum of the edge costs minus 1. Then, a minimum spanning {i, j}-tree of G

is the mst of G when the cost of {i, j} is equal to v. The cost of the minimum
spanning {i, j}-tree is then equal to the cost of the mst plus cost(i, j)− v.

proof: Since {i, j} is the edge with the minimum cost when its cost is equal to v, then

it will necessary be a tree edge of any mst. ⊙

For the sake of clarity we will consider that T ∗ is a minimum spanning tree
of G. The filtering algorithm is based on the following Proposition [7]:

Proposition 2 Let {i, j} be a nontree edge of G, and {u, v} be the edge with
the maximum cost contained in the path in T ∗ connecting nodes i and j.
The tree T corresponding to the tree T ∗ in which the edge {u, v} has been replaced
by the edge {i, j} is a minimum spanning {i, j}-tree of G.

proof: If the edge {i, j} is added to the tree then a cycle is created and the Path

Optimality Condition implies that the edge of the cycle having the largest cost must be

removed. Since an {i, j}-tree is wanted and from Property 2, we consider that {i, j} has

the smallest cost. So the edge that must be removed is {u, v} because it has the largest

cost. Thus a tree T is obtained. This tree satisfies the Path Optimality Condition for

all the nontree edges because T ∗ does and {i, j} is considered as having the smallest

cost. T also satisifies the path optimality condition for {u, v}. ⊙

Let minEC(T) and maxEC(T) be the cost of the edge of T having respec-
tively the minimum and the maximum cost. We deduce two corollaries:

Corollary 1 All the nontree edges {i, j} such that
(i) cost(i, j)> K− cost(T ∗)+maxEdgeCost(T ∗) are not consistent with C

(ii) cost(i, j) ≤ K − cost(T ∗) + minEdgeCost(T ∗) are consistent with C

So, we can immediately delete all the edges satisfying Corollary 1.(i) and avoid
studying the edges satisfying Corollary 1.(ii). For the other edges, we have:

Definition 2 Let {i, j} be a nontree edge of G which does not satisfy Corollary
1, and {u, v} be the edge with the maximum cost contained in the path in T ∗

connecting nodes i and j. Then, {u, v} is called a support of {i, j}, and S(u, v)
is the list of nontree edges that are supported by {u, v}.

Proposition 3 Let {i, j} be an nontree edge of T ∗ which does not satisfy Corol-
lary 1, {u, v} be the support of {i, j}.
{i, j} is consistent with C if and only if cost(i, j) ≤ K − cost(T ∗) + cost(u, v).

We propose to efficiently compute the supports by introducing a new tree while
running Kruskal’s algorithm,

4.1 Tree of Connected Components Merges

Kruskal’s algorithm proceeds by merging disjoint trees. Each time an arc is added
to the spanning tree, two trees are merged together. We propose to explicitly
represent these operations by creating a specific tree called: connected com-
ponent tree or ccTree. Every merge is represented by a node in the ccTree.

A bottom-up creation of this tree is used. The leaves correspond to the nodes
of the graph, because, in Kruskal’s algorithm, initially each node defines a tree.
Each time an edge is added to the mst by Kruskal’s algorithm, a new ccTree node
is created. This ccTree node has two children: one for each tree (so the ccTree is
binary) that have been merged. Each tree created in Kruskal’s algorithm has a
pointer to the ccTree node which represents it. The ccTree contains at most 2n−1
nodes. Figure 1 gives a minimum spanning tree of a graph and Figure 2 shows
a tree of connected components obtained after running Kruskal’s algorithm on
this graph. The ccTree involves the following data:

− ccT. size: the current number of nodes of the tree
− ccT. p[r]: the ccTree leaf corresp. to the canonical element of node r of G

− ccT. left[k] and ccT. right[k]: the left and the right child of the ccTree node k

− ccT. parent[k]: the parent of the ccTree node k

− ccT. Gedge[k]: the edge of G which lead to the creation of the ccTree node k

− ccT. inorder[i]: the ith ccTree node visited by the inorder traversal
− ccT. pos[k]: the inorder index of the ccTree node k

− ccT. height[k]: the height (distance from the root) of ccTree node k

0

633 0

257 390 0

91 661 228 0

412 227 169 383 0

150 488 112 120 267 0

80 572 196 77 351 63 0

134 530 154 105 309 34 29 0

259 555 372 175 338 264 232 249 0

505 289 262 476 196 360 444 402 495 0

353 282 110 324 61 208 292 250 352 154 0

324 638 437 240 421 329 297 314 95 578 435 0

70 567 191 27 346 83 47 68 189 439 287 254 0

211 466 74 182 243 105 150 108 326 336 184 391 145 0

268 420 53 239 199 123 207 165 383 240 140 448 202 57 0

246 745 472 237 528 364 332 349 202 685 542 157 289 426 483 0

121 518 142 84 297 35 29 36 236 390 238 301 55 96 153 336 0

0 1 2

3

81 11 5

6

7

5

1 6

1 3 1 4

2 1 0

4

1

9
7 0 4 7

2 7

1 7 5

9 51 5 7

2 9

2 9

3 4

9 6

5 7

5 3 6 1

1 1 0 1 5 4

2 2 7

Fig. 1. The lower triangular matrix of problem gr17 of the TSPLIB and a Minimum
Spanning Tree of this Graph

12 3 7 6 16 5 0 14 2 13 10 4 9 11 8 15 1

(1 2 , 3) 2 7 (7 , 6) 2 9 (1 4 , 2) 5 3 (1 0 , 4) 6 1 (1 1 , 8) 9 5

(6 , 1 6) 2 9 (1 4 , 1 3) 5 7 (1 1 , 1 5) 1 5 7

(7 , 5) 3 4

(1 2 , 6) 4 7

(1 2 , 0) 7 0

(1 6 , 1 3) 9 6

(1 0 , 2) 1 1 0

(1 0 , 9) 1 5 4

(8 , 3) 1 7 5

(4 , 1) 2 2 7

indice 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (12,3) (7,6) (6,16) (7,5) (12,6) (14,2)

indice 23 24 25 26 27 28 29 30 31 32

value (14,13) (10,4) (12,0) (11,8) (16,13) (10,2) (10,9) (11,15) (8,3) (4,1)

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

H 10 9 10 6 10 9 10 8 10 7 10 5 10 4 10 9 10 8 10 3 10 9 10 2 10 1 10 9 10 8 10 0 10

inorder 12 17 3 21 7 18 6 19 16 20 5 25 0 27 14 22 2 23 13 28 10 24 4 29 9 31 11 26 8 30 15 32 1

Pos 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

value 12 32 16 2 22 10 6 4 28 24 20 26 0 18 14 30 8 1 5 7 9 3 15 17 21 11 27 13 19 23 29 25 31

Fig. 2. Tree of Connected Components Merges of mst of problem gr17. The nodes that
are not leaves contain the edge of G and its cost. Array of indices, array H, inorder
and Pos are also represented.

The creation of the ccTree can be easily done while running Kruskal’s algo-
rithm as shown by Algorithm 1 (See Line 1.). Function updateCCTree (ccT :
tree, ri , rj , {i, j}) creates a new node in the ccTree whose children are p[ri]
and p[rj] and with Gedge = {i, j}, Function initCCTree creates n leaves cor-
responding to the node of G, and Function inorderTreeTraversal performs
an inorder tree traversal of the ccTree.

Once the ccTree is built, the support of any edge {i, j} is the Gedge associated
with the ccTree node created when the tree containing i and the tree containing
j have been merged together. This node is the least common ancestor of the
ccTree node i and the ccTree node j.

Definition 3 Lowest Common Ancestor (LCA)
For nodes u and v of tree T , query LCAT (u, v) returns the lowest common
ancestor of u and v in T , that is, it returns the node farthest from the root that
is an ancestor of both u and v.

Proposition 4 Let i and j be two nodes of G, and ccT be the connected com-
ponent tree built while running Kruskal’s algorithm on G.
Then, ccT.Gedge[LCAccT (i, j)] is the edge that merged the tree of i and the tree
of j while running Kruskal’s algorithm on G.

proof: First, note that a node i of G corresponds to the node i of ccT which is leaf.

From the definition of ccT each node which is not a leaf corresponds to the merge of

two trees. Therefore, the lowest common ancestor of two leaves of ccT corresponds to

the merge of two disjoint trees of G that are identified by the extremities of the edge

merging them. The Gedge data associated with this ccTree node contains it. ⊙

Corollary 2 Let T ∗ be a mst of G, ccT be the connected component tree built
while running Kruskal’s algorithm and {i, j} be a nontree edge of T ∗. Then
{u, v} = ccT.Gedge[LCAccT (i, j)] is the support of {i, j}.

proof: By definition of the ccTree and the LCA, the LCA corresponds to the arc with

the greatest cost in the path from i to j in T ∗.⊙

The are several methods to solve directly the LCA problem, starting with
[1] and improved by [10] and [13]. Unfortunately these methods are complex
especially when the binary tree is not well balanced, which happens in our case.
Another approach to solve the LCA problem in a non direct way has been
introduced in [9]: the LCA problem is linearly equivalent to the Range Minimum
Query Problem. Thus, by efficiently solving the RMQ problem, we obtain an
efficient solution of the LCA problem.

Definition 4 Range Minimum Query (RMQ)
Let A be a length n array of numbers. For indices i and j between 1 and n, query
RMQA(i, j) returns the index of the smallest element in the subarray A[i, ..., j].

We will use the simple and nice transformation of LCA to RMQ proposed by
[8]: ”Let T be a rooted binary tree with n nodes.

• First perform an inorder tree walk in T and store it in an array inorder[1, n].

• Store the heights of each node: H [i] is the height of node inorder[i] in T .
• Let Pos be the inverse array of inorder, i.e., inorder[Pos[i]] = i. It is

easy to see that LCAT (v, w) = inorder[RMQH(Pos[v], Pos[w])]: the elements
in inorder between Pos[v] and Pos[w] are exactly the nodes encountered be-
tween v to w during an inorder tree walk in T , so the RMQ returns the position
k in H of the shallowest such nodes. As the LCA of v and w must be encountered
between v and w during the inorder tree walk, LCA(v, w) = inorder[k]”.

Figure 2 gives an example of ccTree, inorder traversal, H and Pos arrays. For
instance, LCAT (10, 6) = inorder[RMQH(Pos[10], Pos[6])] which is equal to
inorder[RMQH(20, 6)] = inorder[19] = 28 that is the index of the edge {10, 2}.

Now, the goal is to solve some RMQ requests as fast as possible. Harel and
Tarjan [10] have shown that if several requests will be made then it is worthwhile
to spend some time on preprocessing the tree in order to answer future queries
faster. In [8] an O(n) preprocessing is given, and with it any RMQ problem
request for two values can be answered in O(1). Unfortunately, this algorithm is
quite complex and the authors doubt about its advantages in practice. Thus, we
will use the much simpler algorithm proposed by [4]. It has a simple preprocessing
step which is in O(n log(n)) and solve each problem RMQ(i, j) in O(1) with only
computing the minimum of two values. It is based on the fact that the RMQ
problem for two values i and j can be easily solved if we have previously solved
the RMQ problems for four values i, u, v, j such that i ≤ v ≤ u ≤ j:

Property 3 [4] Given i, j, u, v four integers such that i ≤ v ≤ u ≤ j,
riu =RMQ(i, u) and rvj =RMQ(v, j). Then,
If A[riu] ≤ A[rvj] then RMQ(i, j) = riu else RMQ(i, j) = rvj

Then, the nice idea is to work only with intervals whose length is a power of
two, because any interval [i, j] can be splitted into two such intervals:

Corollary 3 [4] Given i, j two integers such that i ≤ j, and k = ⌊log2(i)⌋,
r1 =RMQ(i, i + 2k − 1) and r2 =RMQ(j − 2k + 1, j). Then,
If A[r1] ≤ A[r2] then RMQ(i, j) = r1 else RMQ(i, j) = r2

If all the intervals whose length is a power of two are precomputed, then:

Corollary 4 [4] Let A be an array of n values, and M [i][k] =RMQ(i, i+2k−1)
with i = 1..n and k = 0..⌊log2(n)⌋. Then, each RMQ(i, j), with 1 ≤ i < j ≤ n

can be computed in O(1).

The number of intervals [i, p] with p ≤ n and whose length is a power of 2
is in O(log(n)). Since there are n starting values, the overall complexity is in
O(n log(n)). Algorithm 2 is a possible implementation of the RMQ Problem.
Note that this algorithm uses the arrays Log2Array and Pow2Array which
contain respectively for a value k the result of mathematical operations: ⌊log(k)⌋
and 2k. The values of these arrays can be computed in O(n + log(n)) and this
can be done once for all when the constraint is defined.

Algorithm 2: AC Filtering Algorihtm based on LCA Problem

precomputeRMQ(Rmq, n)
for i = 1 to n do M [i][0] ← i

for j = 1 to Log2Array[n] do

for i = 1 to n− Pow2Array[j + 1] do

minL← Rmq.M [i][j − 1]
minR← Rmq.M [i + Pow2Array[j − 1]][j − 1]
if Rmq.A[minL] ≤ Rmq.A[minR] then Rmq.M [i][j]← minL

else Rmq.M [i][j] ← minR

RangeMinimumQuery(Rmq, i, j): Integer
logWidth← Log2Array[j − i + 1]
minL← Rmq.M [i][logWidth]
minR← Rmq.M [j − Pow2Array[logWidth] + 1][logWidth]
if Rmq.A[minL] ≤ Rmq.A[minR] then return minL

else return minR

LowestCommonAncestor(ccT, Rmq, i, j): Integer
pi ← ccT. pos[i]; pj ← ccT. pos[j]
return ccT.inorder[RangeMinimumQuery(Rmq,pi, pj)]

computeAllSupports(ccT, SE)
reduceCCTree(ccT, nonIncrEC)
inorderTreeTraversal(ccT)
Rmq.A← ccT. height

precomputeRMQ(Rmq, ccT. num)
for each {i, j} ∈ SE do

lca← LowestCommonAncestor(ccT, Rmq, i, j)
{u, v} ← ccT. Gedges[lca]
append {i, j} to S(u, v); support(i, j)← {u, v}

computePendingEdges(nonIncrEC, ccT): return ∅
computeEnteringEdges(nonIncrEC, T1, T2): Edge Set

return {{i, j} ∈ nonIncrEC s.t. cost(i, j) > K − cost(T2) + minEC(T2)}

ACFilter(nonIncrEC, oldT, oldccT, R, T, ccT)
for each {i, j} ∈ nonIncrEC while cost(i, j) > K−cost(T)+maxEC(T)
do deleteEdge({i, j}, nonIncrEC)
SE ← computeEnteringEdges(nonIncrEC, oldT, T)
SE ← SE ∪ computePendingEdges(R,oldccT)
computeAllSupports(ccT, SE)
for each {u, v} ∈ T do

for each {i, j} ∈ S(u, v) while cost(i, j) > K− cost(T)+ cost(u, v) do

deleteEdge({i, j}, nonIncrEC)

The preprocessing step is in θ(n log(n)) because the computation needs to be
systematically done. However, it can be transformed into a maximum complexity
because we can consider less than n nodes. The nodes that are not an extremity
of an edge for which we need to compute a support are not needed in the ccTree,

so we can remove them. In order to maintain a binary tree, after a removal each
node having only one child is contracted that is the node is deleted and its child
becomes the child of its father. These operations have an amortized cost of O(1)
per removal. Thus, the number of nodes of the ccT ree is less than or equal to
2n and so the complexity of the preprocessing step of the RMQ Problem is in
O(n log n). Function reduceCCTree implements this idea.

The main function for implementing an AC filtering algorithm are given
in Algorithm 2. The first call of a weighted spanning tree constraint can be
implemented as follows (we consider that the set of edges has been sorted first):

(T, ccT)← minimumSpanningTree(nonDecrEC)

if |T | < n− 1 or cost(T) > K then trigger a failure

ACFilter(nonIncrEC − T, ∅, ∅, ∅, T, ccT)

Proposition 5 Arc consistency of the weighted spanning tree constraint can be
established in O(n + m + n log(n))

5 Maintenance during the Search

First, we consider the incremental aspects of the problem, that is we study
the computation of the consistency of the constraint or the establishement of
arc consistency when some modifications happen. Then, we will consider the
problem of the restoration of the data structures when a backtrack occurs.

Note that the list of ordered edges is easy to maintain because we have just
to manage the deletion of elements. So if any edge knows its previous and its
next element in the ordered list then it can be removed from that list in O(1).

There are two possible events: either a nontree edge is removed or a tree edge
is removed. In the first case, the minimum spanning tree remains a minimum
spanning tree and the condition of consistency or arc consistency remain satisi-
fied (See Propositions 1 and 2).So, there is nothing to do. This case may happen
frequently because there are m edges and only n− 1 tree edges. The latter case
is more complex and deserves a careful study, because a new spanning tree must
be computed, so the ccTree may change and the lists of supported values also.
This is the purpose of the next section.

5.1 Consistency Checking

If we accept an O(n) complexity when some modifications happen, there is no
need to maintain the union find and the ccTree data structures. In fact, each
involves at most 2n elements. The new minimum spanning tree can be built from
the current one by using its tree edges, and some computations can be saved if
we rerun Kruskal’s algorithm:

Proposition 6 Let T ∗ = (X, A) be a mst of G and {i, j} a tree edge. There
exists a mst of G− {i, j} containing the set of edges A− {i, j}.

proof: Let be {u, v} be the edge with the minimum cost contained in cut forming by

deleting {i, j} from T ∗. Let T be the tree corresponding to T ∗ where {i, j} has been

replaced by {u, v} then T satisifies the Cut Optimality Condition of G− {i, j} and so

is a minimum spanning tree of G− {i, j} and T contains the edges A− {i, j}. ⊙

Proposition 7 Let T ∗ = (X, A) be a mst of G and R = {r1, ..., rk} be a subset
of the tree edge set. There exists a mst of G−R containing the set of edges A−R

and a set S = {s1, ..., sk} of edges such that for each i = 1..k ri ≤ si .

proof: by induction on the number of element of R. From Prop. 6, this is true for 1

that is for R = r1, because the cost of the mst of G − r1 is greater than the cost of

T ∗ so s1 ≥ r1. Suppose it is true until i, that is for R = r1, ...ri. This means that we

can build a tree T containing the edges of A− {r1, ...ri}. Now from Prop.6 if the edge

ri+1 is removed then we can build another tree that wil contain the edges of T minus

ri+1. This tree will also contain an arc si+1 such that cost(si+1) ≥ cost(ri+1) because

T is a mst of G−{r1, ..., ri}. Therefore this is true for i+1 and the proposition holds. ⊙

Consider that the sets A and R of edges are ordered w.r.t. the cost of the
edges. While traversing the edges of E to build the new mst T , we can add the
edges of A−R and avoid considering some edges of E. Suppose that we search
for an edge si replacing the edge ri and that we have found replacement edges
for all the edges of R smaller than ri. If si is smaller than ri+1 then we can
immediatly add to T all the edges of A − R between ri and ri+1 and we can
search for a replacement of ri+1 from that position in E (See Algorithm 3.).

5.2 AC Filtering Algorithm

The computation of a new mst changes the boundaries of Corollary 1. Thus,
some edges can be immediately deleted and some supports must be computed
for the first time for some other edges, named entering edges. In addition, the
ccTree has been rebuilt when checking the consistency, so some support lists may
be no longer correct. Consider ccT ∗ the ccTree associated with the old mst T ∗

and ccT the ccTree associated with the new mst T . We need first to run again
the preprocessing of the RMQ problems for ccT . Then, we need to identify the
edges for which their support is no longer valid or for which the validity must be
verified. These edges are called pending edges, These are the edges belonging to
any support list S(u, v) where the node of ccT ∗ associated with the edge {u, v}
or a descendant of this node in ccT ∗ is associated with an edge of G which has
been removed. Once these lists have been identified, it is necessary to compute
the supports for all the edges contained in these lists and then to recompute new
lists of supports. Then, all the lists of supports can be checked. This is required
because the cost of the mst changed and so some edges that were consistant
may become inconsistant. These checks of consistency of edges within support
lists can be greatly improved if the elements are sorted, due to the structure of
Proposition 3, so we need to sort the elements contained in the union of all the
unvalid lists of support. Fortunately, it is possible to achieve such a sort in a
very efficient way:

Algorithm 3: Recomputation of a mst after modifications.

RecomputeMST(T, R, nonDecrEC): (mst, ccTree)
initCC(n)
initCCTree(ccT, n)
A is the edge set of T ; newT is empty
{u, v} ← first(A)
while {u, v} ≤ last(A) do

ne← next(A, {u, v})
if {u, v} ∈ (A−R) then

ri ← getCCRoot(i); rj ← getCCRoot(j)
addEdge(ccT, newT, ri, rj , {i, j})

else

cpt← cpt + 1
for each {i, j} ∈ nonDecrEC from {u, v} while cpt > 0 do

ri ← getCCRoot(i); rj ← getCCRoot(j)
if {i, j} ≥ ne then

if {i, j} = ne then addEdge(ccT, newT, ri, rj , {i, j})
ne← next(A,ne)

else

if ri 6= rj then

addEdge(ccT, newT, ri, rj , {i, j})
cpt← cpt− 1

{u, v} ← ne

return (newT, ccT)

Proposition 8 Let G = (X, E) be a graph where E is ordered, and OE be the
array of ordered indices of E (i.e. OE[e] = k means that the edge e in in the kth

position in E). Let F be a subset of E and n = |X |, m = |E|, m′ = |F |. Then,
we can sort the elements of F with the same order as for E in O(n + m′).

proof : Consider a Least Significant Digit Radix Sort and b a base (or radix) used

to represent numbers. Such a sort is able to sort an array of numbers ranging from

0 to ∆ − 1 in logb(∆) calls to a stable sort [5]. A stable sort like counting sort [5] is

able to sort num numbers ranging from 0 to b− 1 in O(num + b). Therefore the time

complexity of a radix sort can be expressed as: logb(∆) × O(num + b). The edge set

E is already sorted, and we can access for each edge to its position in E, so instead

of considering the value associated with each element, it is equivalent to consider the

position of the element in E. There are m possible positions, so to order F we need

to order elements taking their value in [0..m− 1]. With a Radix Sort combined with a

counting sort we can sort F in logb(m) × O(m′ + b), because ∆ = m and num = m′

in our case. If we use n as base b then we have logn(m)×O(m′ + n). We have m ≤ n2

so logn(m) ≤ logn(n2) = 2 logn(n) = 2. Therefore logn(m) × O(m′ + n) is equivalent

to 2×O(m′ + n), that is O(m′ + n). ⊙

Algorithm 4: Incremental AC Filtering Algorithm

computeEnteringEdges(nonIncrEC, T1, T2): Edge Set
if cost(T2) ≥ cost(T1) then

return {{i, j} ∈ nonIncrEC s.t.
K − cost(T2) + minEC(T2) < cost(i, j) ≤ K − cost(T1) + minEC(T1)}

else

return {{i, j} ∈ nonIncrEC s.t.
K− cost(T2)+maxEC(T2) < cost(i, j) ≤ K− cost(T1)+maxEC(T1)}

computePendingEdges(R, ccT): Edge Set
SE ← ∅
add to UN the nodes of ccT associated with edges of R

for each x ∈ UN do

SE ← SE ∪ S(ccT.Gedge[x])
S(ccT.Gedge[x])← ∅
if ccT.parent[x] 6∈ UN then add(ccT.parent[x], UN)

sort(SE)
return SE

When used during the search for a solution the consistency checking and the
arc consistency filtering of a wst constraint can be implemnted as follows (See
also Algorithm 4). Let R be the set of edges of T that are deleted:

(newT, newccT)← RecomputeMST(T, R, nonDecrEC)
if |newT | < n− 1 or cost(newT) > K then trigger a failure
ACFilter(nonIncrEC − newT, T, ccT, R, newT, newccT)
T ← newT ; ccT ← newccT

5.3 Restoration

Algorithm 5: Restoration of a mst.

RestoreMST(T, P, R, nonDecrEC): (mst, ccTree)
initCC(n)
initCCTree(ccT, n)
A is the edge set of T ; newT is empty
for each {i, j} ∈ (A−R) ∪ P do

ri ← getCCRoot(i); rj ← getCCRoot(j)
addEdge(ccT, newT, ri, rj , {i, j})

return (newT, ccT)

There are two possible ways to deal with backtracks: either the state is exactly
restored or an equivalent state is defined [12]. With a boundary based constraint
the optimal solution at a node n may not be an optimal solution for the ancestors
of n, therefore it is needed to restore the same state when a backtrack occurs. For
the wst constraint, it means that we need to save all the modifications affecting
the current minimum spanning tree. Then, we can easily restore the previous
spanning tree because we know the set P of edges that have been deleted at a

given search node and the set R of edges that have been added to the mst for
this node (See Algorithm 5). All the restored edges must also be added to the
pending edges. Here is a possible procedure to restore the previous state:

(newT, newccT)← RestoreMST(T, P, R, nonDecrEC)
if |newT | < n− 1 or cost(newT) > K then trigger a failure
ACFilter(nonIncrEC − newT, T, ccT, R, newT, newccT)
T ← newT ; ccT ← newccT

6 Conclusion
In this paper we have presented simpler algorithms for checking the consistency
and for establishing arc consistency of the weighted spanning tree constraint.
We have detailed, by giving the pseudo-code, several versions of these algotihms
that are able to exploit the modifications that happen during the search for a
solution in order to save some computations . The complexity of all the proposed
filtering algorithms neither exceeds O(m + n log(n)) which is quite good.

References

1. A. Aho, J. Hopcroft, and J. Ullman. On finding lowest common ancestors in trees.
SIAM J. Comput., 5(1):115–132, 1976.

2. I. Aron and P. Van Hentenryck. A constraint satisfaction approach to the robust
spanning tree problem with interval data. In Proc. of UAI, pages 18–25, 2002.

3. N. Beldiceanu, P. Flener, and X. Lorca. The tree constraint. In Proceedings of
CPAIOR05, pages 64–78, 2005.

4. M. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. Lowest
common ancestors in trees and directed acyclic graphs. Journal of Algorithms,
57:75–94, 2005.

5. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

6. B. Dixon, M. Rauch, and R. Tarjan. Verification and sensitivity analysis of mini-
mum spanning trees in linear time. SIAM J. Comput., 21(6):1184–1192, 1992.

7. G. Dooms and I. Katriel. The not-too-heavy spanning tree constraint. In Proceed-
ings of CPAIOR07, pages 59–70, 2007.

8. J. Fischer and V. Heun. Theoretical and practical improvements on the rmq-
problem, with applications to lca and lce. In Proceedings of the 17th Annual Sym-
posium on Combinatorial Pattern Matching (CPM’06), pages 36–48, 2006.

9. H. Gabow, J. Bentley, and R. Tarjan. Scaling and related techniques for geometry
problems. In Proc. of STOC, pages 135–143, 1984.

10. D. Harel and R. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984.

11. G. Manku. An o(m + n log* n) algorithm for sensitivity analysis of minimum
spanning trees, 1994. citeseer.ist.psu.edu/manku94om.html.

12. J-C. Régin. Maintaining arc consistency algorithms during the search without
additional space cost. In Proceedings of CP’05, pages 520–533, 2005.

13. B. Schieber and U. Vishkin. On finding lowest common ancestors: Simplification
and parallelization. SIAM J. Comput., 17(6):1253–1262, 1988.

14. R. Tarjan. Sensitivity analysis of minimum spanning trees and shortest path trees.
Information Processing Letters, 14(1):30–33, 1982.

15. R.E. Tarjan. Data Structures and Network Algorithms. CBMS-NSF Regional
Conference Series in Applied Mathematics, 1983.

