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Abstract. We consider the problem of selecting the best variable-value strategy
for solving a given problem in constraint programming. We show that the recent
Embarrassingly Parallel Search method (EPS) can be used for this purpose. EPS
proposes to solve a problem by decomposing it in many subproblems and to give
them on-demand to workers which run in parallel. Our method uses a sample of
these subproblems for comparing strategies in order to select the most promis-
ing one to be used for solving the remaining subproblems. Each subproblem of
the sample is solved with all the candidate strategies in parallel using a timeout
that is twice the time of the best one. The selection of the strategy is then based
on the Wilcoxon signed rank test. This test is able to deal with censored data
caused by timeouts and makes no assumption on the solving time distribution.
The experiments we performed on a set of classical benchmarks for satisfaction
and optimization problems show that our method selects most of the time the best
strategy. Our method also outperforms the portfolio approach consisting of run-
ning some strategies in parallel and is competitive with the multi armed bandit
framework.

1 Introduction

Many generic variable-value strategies have been imagined [23,19,5,8,27,17]. Those are
especially useful in the absence of specific knowledge on the problem to solve. They
either try to apply generic principles like the first fail principle (i.e. try to fail as quickly
as possible) [13] or try to detect underlined relations between variables and constraints.
In the first case, we have strategies like min-domain which selects the variable having
the minimum domain size, max-constrained which prefers variables involved in a lot
of constraints, or min-regret which selects the variable which may lead to the largest
increase in the cost if it is not selected. The latter case is mainly formed by the impact
based strategy [23], weighted degree strategy [5] and the activity based strategy [19].
More recently strategies attempting to prioritize variables according to the past failures
or conflicting decision have also been designed [8,27,17].

However, selecting a priori the best variable-value strategy is not an easy task. In-
deed no strategy dominates the other ones in general and it is difficult to identify the
types of problems for which a strategy performs well. Any variable-value strategy can
give good results for a problem and really bad results for some others. It is not rare to



see ratio of performance for a pair of strategy going up from 1 to 20 (and even more
sometimes) according to the problems which are solved.

Unfortunately, there is almost no way to compare the performance of variable-value
strategies on a problem without solving it. Since strategies explore the search space
in different ways and since their pruning performances are not regular it is difficult to
compare their behavior before the end of the resolution.

Selecting the right strategy is a challenging decision impacting drastically the solv-
ing time.

Our problem can also be seen as the automatic selection of the most efficient al-
gorithm among a predefined set of algorithms, for solving a given problem [26,15,16].
Usually two types of approaches are considered [7]. Either we try to determine stati-
cally, that is a priori, which is the best algorithm or we dynamically compute the best
algorithm to use for each step of the problem solving. Both cases use a set of instances
of the problem from which they learn different criteria that will be used to take a deci-
sion.

We propose an original approach which is not based on machine learning but on
the statistical estimation of the best algorithm. Our approach does not require to deal
with a set of instances and use some sampling technique that are usually more accurate.
It exploits the decomposition proposed by the embarrassingly parallel search (EPS)
method recently developed [24,25].

EPS proposes to solve a problem by decomposing it into a large number of subprob-
lems consistent with the propagation (i.e., there is no immediate failure triggered by the
initial propagation of a subproblem). We propose to use a part of these subproblems for
comparing the strategies in order to select the most promising one for solving the whole
problem. Instead of comparing the strategies after solving the whole problem, we com-
pare the strategies for each subproblem of the sample. We measure the solving time for
each subproblem and each strategy and we eliminate the strategies that are statistically
proved to be less efficient by a Wilcoxon signed rank test. At the end, either only one
strategy remains or a set of non distinguishable strategies. In this latter case we select
the one having the smallest mean.

Since for each subproblem the solving times for the strategies may strongly vary,
it is necessary to add a timeout mechanism to control the time spent in the strategy
selection and to stop some computations after a given amount of time. From a statistical
point of view, this means that we may have censored data. By defining appropriately
these timeouts, we show that the results of the Wilcoxon signed rank test remains valid
if timeouts were not considered. Solving each subproblem with each strategy in parallel
allows us to define relative timeouts: we stop a strategy when it requires more than
twice the solving time of the best strategy.

It is important to note that our method does not require to know the distribution
of the solving times (we made some experiments showing that the distributions vary
according to the problems or to the strategy, and there are no general guidelines).

Our method can be distinguished from the machine learning approaches in two
ways:



– The relation between the data from which we take our decision and the instance to
solve is stronger in our case because we consider subproblems of the instance and
not some other instances.

– We do not try to learn any criteria and we do no try to estimate solving times. We
instead aim at selecting the most promising strategy for the given instance only.
Our results are statistically validated.

The paper is organized as follows. First we show the principles of our method on an
example. Then, we recall some preliminaries. Next, we detail the different steps of our
approach. We present some related work and some experiments on a set of benchmarks,
for which we compare our results with classical portfolio and a multi-armed bandit
method. At last we conclude.

2 Selection Principles

We present the principles of our method on a didactic example obtained from the all-
interval series, a common benchmark.

Our method proceeds by elimination of strategies until there is only one remaining.
We consider 4 strategies (S1, S2, S3, S4). The initial problem has been decomposed

into 300 subproblems from which we randomly select only 10 subproblems for the sake
of clarity.

We could consider each subproblem in turn and run all the strategies on it in parallel.
The drawback of this approach is that the running times are not regular and that some
strategies may perform poorly for some subproblems compared to other strategies. For
instance, here are the runtimes (in milliseconds) for each subproblem:

subproblem S1 S2 S3 S4

1 62 408 80 150
2 90 1 134 92 154
3 155 1 904 158 233
4 231 1 451 250 407
5 198 1 580 197 422
6 146 803 170 144
7 62 611 54 115
8 63 389 111 86
9 167 560 163 670
10 83 736 120 232
Σ 1 257 9 576 1 395 2 613

With this approach the total time for selecting the best strategy is 1257 + 9576 +
1395 + 2613 = 14841, that is more than 10 times the best runtime. Since there are
300 subproblems to solve and since we selected 10, then we can expect a total solv-
ing time around 30 times the runtime of the best strategy for our 10 subproblems that
is 1.26 × 30 = 37.8s1. This means that the time allocated to the strategy selection,

1 We do not claim that this computation is accurate. We present it only for understanding the
intuitive idea.



named selection time, may require more than 40% of the solving time. In practice run-
ning all the strategies on each subproblem in the sample might take up to 90% of the
solving time that would be taken by the best strategy to solve all the subproblems. Our
objective is to keep the overhead induced by the selection strategy minimal. Therefore
some timeouts are be introduced with respect to the time of the best strategy on each
subproblem. Timeouts may cause censored measures that must be carefully treated by
statistical methods.

We propose to deal with censored data and proceed by steps.

1. For each subproblem we compare the strategies, but we introduce a timeout limit
for each computation corresponding to 2 times the runtime obtained by the best
strategy.

2. We select the strategy having the smallest total time (timeouts are counted as their
values). If this strategy was stopped by a timeout for some subproblems we run it
again on these subproblems without timeouts. We repeat this step until the strat-
egy having the smallest total time without timeout, which we denote sb, has been
selected.

3. We compare all the strategies against sb by using the Wilcoxon signed rank test.
All strategies significantly slower than sb are eliminated. If sb is rejected by the
Wilcoxon test against sx (in theory this can happens even if sb has a better mean)
then sb is eliminated and replaced by sx. Note that this latter case never happens in
the 10,000s of tests we made.

4. Eventually, if some strategies cannot be distinguished by the Wilcoxon signed rank
test then we select the strategy performing the best on the sample.

Note that in any case we have a strong statistical support of our choice.
With timeouts corresponding to twice the runtime of the best strategy for each sub-

problem we obtain the following table:

# timeout S1 S2 S3 S4

1 2× 62 = 124 62 TO 80 TO
2 2× 90 = 180 90 TO 92 154
3 2× 155 = 310 155 TO 158 233
4 2× 231 = 462 231 TO 250 407
5 2× 197 = 394 198 TO 197 TO
6 2× 144 = 288 146 TO 170 144
7 2× 54 = 108 62 TO 54 TO
8 2× 63 = 126 63 TO 111 86
9 2× 163 = 326 167 TO 163 TO

10 2× 83 = 166 83 TO 120 TO
Σ 1 257 2 484 1 395 2 142

It is important to remark that the best strategy for the whole problem is not the best
one for each subproblem. In practice it happens frequently that the best strategy has
some timeouts.

The Wilcoxon signed rank test considers the difference in response within pairs.
Then it ranks the absolute values of these differences. The sum W+ of the ranks for the



positive difference is the Wilcoxon signed rank statistic and has mean µW+ = n(n+1)
4 .

The Wilcoxon signed rank test rejects the hypothesis that there is no systematic differ-
ences within pairs when the rank sum W+ is far from its mean.

Suppose we want to compare the strategies S1 and S3. For each subproblem we
compute the difference time(S1) − time(S3). Then, we rank the absolute values of
these differences and we add a sign in front of these ranks corresponding of the signs of
the differences. For instance, for the first subproblem we have time(S1)− time(S3) =
62 − 80 = −16, 16 is the 6th values so its rank is 6. The sign rank is −6 because
the difference is negative. Then, we compute W+, the sum of the positive ranks. The
following table shows that we have W+ = 1 + 5 + 4 = 10.

sub problem S1 S3 S1 − S3 signed rank
1 62 80 -18 -6
2 90 92 -2 -2
3 155 158 -3 -3
4 231 250 -19 -7
5 198 197 1 +1
6 146 170 -24 -8
7 62 54 8 +5
8 63 111 -48 -10
9 167 163 4 +4
10 83 120 -37 -9

We consider a one-tailed test (S3 = S1 or S3 > S1) with a significance level of
0.05.

The critical value of W for N = 10 at p ≤ 0.05 is 10. Therefore the result is
significant and we can conclude that S1 is better than S3. So, we can eliminate S3.

We repeat this process between S1 and the other strategies. We will prove that we
can perform the calculations by using the timeouts values if these values are defined by
any value greater than twice the maximum positive difference because in this case the
positive ranks will not change for any value greater than this timeout. For instance, when
we compare S1 and S4 there is only one positive difference equal to 2 (for subproblem
6, we have 146 − 144 = 2), so for each subproblem j we can set the timeout to any
value v such that v > time(S1, j) and |time(S1, j) − v| > 2, because this will not
impact the rank of value 2 and so the value of W+.

If we apply this process for our example, the comparison against S1 will eliminate
all the other strategies.

In conclusion, S1 is selected. This leads to a resolution time of about 39.4s.

3 Background

3.1 Statistics

These definitions are due to Moore et al. [21].



Simple random samples. A simple random sample (SRS) of size n consists of n indi-
viduals from the population chosen in such a way that every set of n individuals has an
equal chance to be the sample actually selected. We select an SRS by labeling all the in-
dividuals in the population and selecting randomly a sample of the desired size. Notice
that an SRS not only gives each individual an equal chance to be chosen (thus avoiding
bias in the choice) but gives every possible sample an equal chance to be chosen.

Wilcoxon Signed Rank Test for Matched Pairs. Our data do not follow a Normal dis-
tribution and timeouts are introduced leading to right censored data. Common method
like t-test can thus not be used and non nonparametric tests have to be considered in-
stead for comparing strategies. We use the Wilcoxon Signed Rank Test. Bootstrap meth-
ods and permutation tests based on the idea of applying the method many times would
be too time-consuming for our purpose.

Since we aim at comparing the performance of two algorithms we consider a matched
pairs design, which compares just two observations. The idea is that matched subjects
are more similar than unmatched subjects, so comparing responses within a number of
pairs is more efficient than comparing the responses of groups of randomly assigned
subjects. Matched pairs data are analyzed by taking the difference within the matched
pairs to produce a single sample. The one sample statistic is applied on this difference
data in order to compare the matched pairs data.

The Wilcoxon signed rank test (WSR test) for matched pairs is defined as follows.
Draw an SRS of size n from a population for a matched pairs study and take the dif-
ference in responses within pairs. Rank the absolute values of these differences. The
sum W+ of the ranks for the positive difference is the Wilcoxon signed rank statistic. If
the distribution of the responses is not affected by the different treatments within pairs,

then W+ has mean µW+ = n(n+1)
4 and standard deviation σW+ =

√
n(n+1)(2n+1)

24 .
Difference of zero are discarded before ranking. Ties among the absolute differences
are handled by assigning average ranks.

The WSR test rejects the hypothesis that there is no systematic difference within
pairs when the rank sum W+ is far from its mean.

P-values (i.e., the probability computed assuming that null hypothesis is true, that
the test statistic will take a value at least as extreme as that actually observed) for the
signed rank test are based on the sampling distribution of W+ when the null hypothesis
is true. P-values can be computed from the exact distribution (from software or tables)
or obtained from a Normal approximation with continuity correction.

3.2 Embarrassingly Parallel Search [25]

The idea of the Embarassingly Parallel Search (EPS) is to decompose statically the
initial problem into a huge number of subproblems that are consistent with propagation
(i.e., running the propagation mechanism on them does not detect any inconsistency).
These subproblems are added to a queue which is managed by a master. Then, each idle
worker takes a subproblem from the queue and solves it. The process is repeated until
all the subproblems have been solved.



The decomposition is made by selecting a set V of k variables and then by searching
all instantiations of V that are consistent with propagation. There is no specific variable-
value strategy used to find these instantiations. The number of generated subproblems
depends on the size of V which is determine by successive computations.

The assignment of the subproblems to workers is dynamic and there is no commu-
nication between the workers. EPS is based on the idea that if there is a large number
of subproblems to solve then the resolution times of the workers will be balanced even
if the resolution times of the subproblems are not. In other words, load balancing is
automatically obtained in a statistical sense. Interestingly, some experiments [24] have
shown that the number of subproblems does not depend on the initial problem but rather
on the number of workers. Moreover, they have shown that a good decomposition has
to generate more than 30 subproblems per worker.

4 Method

4.1 Simple random sample

We use EPS to decompose the initial problem into a huge set of subproblems. Thus the
population is the set of these subproblems. The SRS is built by selecting randomly k
subproblems from the set of subproblems. The sample is limited to 1% of the subprob-
lems to avoid spending too much time for the strategy selection. If k = 30 subproblems
seems to be the minimum number of subproblem to consider, then we need to have at
least 3, 000 subproblems.

4.2 Comparison of Strategies

Strategies are compared by using the WSR test on the SRS previously defined. For each
subproblem of the SRS we run the strategies in parallel and we stop the slowest ones
when they require twice the time of the best strategy. Then, we select the strategy hav-
ing the smallest sum of solving times for all the subproblems of the SRS. If this strategy
was stopped by a timeout for some subproblems we run it again on these subproblems
without timeout. We repeat this step until the strategy, denoted by Sb, having the small-
est total time without timeout has been selected. Next, we compare all the strategies
against Sb by using the WSR test performed on some modified data. All strategies sig-
nificantly slower than Sb are eliminated. If at a moment, the strategy Sb is rejected by
the Wilcoxon test against another strategy Sx, then timeouts are removed for Sx and we
use a t-test for deciding whether Sx should become the best strategy. In this latter case
we simply replace Sb by Sx.

In any case, we have a strong statistical support of our selection.
Our hypotheses are

H0: there is no difference between data of both Strategies.
Ha: scores are systematically higher for the second Strategy.

In order to make sure that the result of the test remains valid when exact solving
times are considered instead of timeout values, we proceed as follows. Suppose we
compare Sb and Si. Let us show that if we set for each subproblem j the timeout to a



value to(j) > dmax
bi + time(Sb, j) where dmax

bi the largest positive value of time(Sb)−
time(Si) for all the subproblems of the SRS then the test is valid if exact solving times
are considered instead of timeouts.

Property 1 Let dmax
bi the largest positive value of time(Sb, j)− time(Si, j), and

rank(dmax
bi ) be its rank in the WSR test of that value. Then, rank(dmax

bi ) is the great-
est value of W+ and for any value v such that rank(v) > rank(dmax

bi ) we have
time(Sb, j)− time(Si, j) < 0 and v > dmax

bi .

proof: By definition of the ranks and since dmax
bi is the largest positive value of

time(Sb, j)− time(Si, j) then it has the largest rank in W+, thus any value having an
absolute value greater than dmax

bi is negative and has a greater rank �

Property 2 Suppose that for any subproblem j the timeout for j is set for Si to a value
to(j) > dmax

bi + time(Sb, j) and let W+ be the sum computed with these timeouts.
Then, for any value of timeout greater than to(j) the value of W+ remains unchanged.

proof: If the timeout is set to to(j) > dmax
bi + time(Sb, j) then for any j reaching the

timeout |time(Sb)− time(Si)| > dmax
bi . From Property 1 the increase of to(j) will not

change the rank of the elements of W+ so the property holds �.

So, for each subproblem j such that Si has been stopped by a limit which is less
than dmax

bi + time(Sb, j), we solve again this subproblem with Si with the time limit
defined by dmax

bi + time(Sb, j) + 1. Therefore, our deduction are statistically valid.
At the end, it is possible that we cannot deduce that some strategies are statisti-

cally different. However, this means that they should lead to equivalent solving time for
the whole problem, so we can select any of them. In this case, we select the strategy
performing the best on the sample.

If we compare s strategies with an initial timeout fixed to twice the time of the best
strategy and if tmax(Sb) denotes the largest solving time of a subproblem of the sample
by the best strategy Sb, then the sum of the solving times for all the strategies for each
problem in the sample is bounded by s× tmax(Sb).

Significance level of the results The significance level of the method is bounded by the
product of the confidence intervals of each comparison. This means that for k compar-
isons, each with a confidence interval of 99%, the overall result has a confidence interval
of 0.99k−1. Fortunately we have only few strategies. For instance for 7 strategies, this
leads to a confidence level of 0.996 = 94%. This is quite acceptable.

Optimization Problems In optimizations problems, an optimal value of an objective
function has to be found, thus bounds on this function are important. For each subprob-
lem, all strategies have the same bound. When a bound is found for subproblem i, it is
used for all subproblems considered after i for all strategies



5 Related work

There has been a significant amount of work on automatically selecting or adapting
the search strategy. Some successes have been obtained by running some algorithms in
parallel in CP [10] and in SAT [12]. Offline and online machine learning based methods
are popular. Offline methods select automatically the strategy among a set of available
strategies. They perform a learning phase on a training set of instances. They haven
been initially proposed for SAT [28] and then for CSPs [22]. Hamadi [11] proposed two
methods: continuous search which aims at finding the best strategy for solving a given
problem and autonomous search which aims at finding the best strategy in general.
These methods are based on machine learning techniques. On the other hand, online
methods have been considered. Epstein et al. [6] proposed Adaptive Constraint Engine
(ACE), a method which gathers the decision made by several strategies and proceed
to a vote in order to decide which one will be applied for the next decision. Gagliolo
and Schmidhuber [7] allocate times to each algorithms by using a multi-armed bandit
algorithm whose decisions is based on the previous computations. Arbelaez et al. [1]
apply Support Vector Machines to the problem of automatically adapting the search
strategy of a CP solver in order to more efficiently solve a given instance. Loth et al.
[18] define the best strategy during the search by using a multi-armed bandit approaches
combined with Monte Carlo Tree Search. Racing algorithms using a non-parametric
test based on ranking to successively discard unpromising configurations, like F-Race
[3], have also been proposed. However, F-Race does not deal with censored data: it
successively executes the algorithm until its completion on new sampled problems.
There is no parallel execution and no time-out that is central to our approach.

For a good introduction to Algorithm selection we encourage the reader to refer to
[7] and [16].

6 Experiments

All the experiments have been run in parallel on a parallel machine. The scaling of
the EPS method does not depend on the problem solved, so it is the same for all the
variable-value strategies. Therefore, for each strategy we have used the sum of the time
spent on each core allocated to this strategy as a measure of the time required by the
strategy. The best of these times correspond to the value we want to minimize, thus our
experiments are based on these times.

Machines All the experiments have been made on a Dell machine having four E7-
4870 Intel processors, each having 10 cores with 256 GB of memory and running under
Scientific Linux.

Solver We implemented our method on the top of Gecode 4.2 (http://www.gecode.org/).

Considered strategies After some experiments we selected 7 candidate strategies. Each
strategy is dynamic:



– FF implements the first fail principle by selecting the variable with the minimum
domain size [13];

– Act selects the variable with the maximum of activity 2 [19];
– Wdegm selects the variable with the maximum weighted degree 3 [4];
– WdegM same as above excepted that the value is selected differently;
– MRegret selects the variable for which the difference between the largest and second-

largest value still in the domain is maximum [9].
– MostC selects the most constrained variable.
– D/Wdeg selects the variable for which the ratio of the size of its domain by its

weighted degree is minimum [4,5].

After selecting the variable, all strategies but Wdegm, assign to it the minimum
value of its domain. WdegM assigns to it the maximum value of its domain. We did not
consider impact based strategy [23] because this strategy is not implemented in Gecode.

Benchmarks instances We present the most representative results that we obtained (re-
sults for other problems are equivalent).

Problems come from the CSPLib, the minizinc challenge [20] or the Hakank’s con-
straint programming blog [14].

For satisfaction problems we search for all solutions and we consider the following
problems: all-I: All intervall series 14; Costa: Costa Array 13; Filo: Filomino 13; Lams
9; Qgrp: Quasi group 7; Msplt: Market split s5-08; Sched: sport scheduling 12; Tank:
tank attack puzzle 7; Gol: Golomb 12; Perm: Permutation 12.

For optimization problems, we search for the optimal solution and we prove the
optimality. Results are given for the following problems: Crew; Dud: dudney thea; Java:
java routing trip 6-3; mario; mario medium 3; Fback: minimum feed back; matching
problem Money: money change 27; War: War Peace 8; Sugi: Sugiyama 7 7;

Sampling The initial problem is decomposed into 16,635 subproblems from which we
randomly select 100 subproblems.

6.1 Main results

PSS denotes the Parallel Strategies Selection that we propose.
Times are expressed in minutes and correspond to the sum of the times spent by all

the cores. Bold times indicate the best strategy for the considered problem.

2 Roughly the activity is defined by the number of times the variables has been introduced in the
propagation queue. The activity is increased at most by one for each decision.

3 The weighted degree of a variable is defined by a counter associated with it. Each time a
constraint fails, the counter of each variable involved in the constraint is increased by one.



FF Act Wdegm WdegM MRegret MostC D/Wdeg PSS
All-I 26.3 210 55.1 54.4 31.6 26.1 0.8 0.9
Costa 46.2 365 78.2 153 213 41.7 96.9 49.2
Filo 427 160 12.0 78.2 335 654 23.5 12.4

Lams 58.6 802 416.3 319.2 49.9 48.7 1301 62.0
Qgrp 36.7 41.0 367 877 4.6 3.3 2.8 3.0
Msplt 525 1035 616 620 526 492 703 515
Sprt 55.8 265 124 116 73.0 36.6 14.9 15.4
Tank 29.6 1091 27K 47K 40.6 13K 3.8 4.1
Gol 341 295 543 455 183 334 168 176

Perm 234 177 159 201 121 331 27.3 28.1

In terms of ratio with respect to the best time (i.e., each time is divided by the best
time), we obtain the following table which clearly shows the strong disparities between
strategies, and that the performance of PSS is close to the one of the best strategy for
each problem. We use the following notation: x is the mean and geo x is the geometric
mean.

FF Act Wdegm WdegM MRegret MostC D/Wdeg PSS
All-I 32 254 67 66 38.4 31.7 1 1.06
Costa 1.1 8.8 1.9 3.7 5.1 1.0 2.3 1.06
Filo 35 1.0 13 6.5 27 54 1.96 1.04

Lams 1.2 16.5 8.6 6.6 1.0 1.0 26.8 1.06
Qgrp 13.1 14.7 131 314 1.6 1.2 1.0 1.06
Msplt 1.1 2.1 1.3 1.3 1.1 1.0 1.43 1.04
Sprt 3.7 17.8 8.4 7.8 4.9 2.5 1.0 1.03
Tank 7.9 291 7408 12625 10.8 3576 1.0 1.07
Gol 2.0 1.8 3.2 2.7 1.1 2.0 1.0 1.05

Perm 8.6 6.5 5.8 7.4 4.4 12.1 1.0 1.03
geo x 5.1 12.1 17.6 19.6 4.4 7.3 1.7 1.05
x 10.6 61.5 765 1304 9.7 368.3 3.8 1.05

For optimization problems we obtain the following results:

FF Act Wdegm WdegM MRegret MostC D/Wdeg PSS
Crew 64 258 85 91 68 58 74 61
Dud 15 34 40 32 37 17 16.1 16.3
Java 24 35 41 35 21 24 108 22.7

Mario 4.2 45.9 18.7 9.8 7.4 5.8 5.9 4.6
Fback 126 281 379 436 128 131 127 133
Money 0.6 0.9 0.9 0.6 0.8 0.6 0.6 0.6

War 185 259 232 250 211 54 176 56.4
Sugi 504 154 113 111 381 504 29.1 30.1

We can also express them in term of ratios w.r.t. the best time in order to see the
relative differences between strategies:



FF Act Wdegm WdegM MRegret MostC D/Wdeg PSS
Crew 1.10 4.44 1.46 1.57 1.17 1.00 1.21 1.05
Dud 1.00 2.23 2.60 2.06 2.39 1.12 1.07 1.07
Java 1.12 1.62 1.91 1.64 1.00 1.10 5.14 1.06

Mario 1.0 10.9 4.43 2.33 1.75 1.37 1.40 1.09
Fback 1.00 2.22 3.00 3.45 1.02 1.04 1.01 1.05
money 1.00 1.57 1.57 1.09 1.35 1.12 1.05 1.05

War 3.45 4.82 4.32 4.65 3.92 1.00 3.26 1.05
Sugi 17.3 5.30 3.90 3.80 13.0 17.3 1.00 1.05
geo x 1.71 3.35 2.67 2.32 2.01 1.56 1.54 1.06
x 3.38 4.14 2.90 2.57 3.21 3.13 1.88 1.06

Once again our method gives good results. Note that for all problems the Wilcoxon
signed rank test was able to eliminate all strategies against the best one.

Next we give some results for the search of the first solution. The chance plays a
role in this case. We consider only problems having few solutions since for problems
with many solutions the first one is found during the sampling. Times are in minutes
and the last column contains the number of subproblems considered before finding one
with a solution (recall that the number of subproblems is 16,635). The subproblems
are considered as generated by the decomposition. As can be observed the results are
surprisingly good with a very limited footprint with respect to the best strategy.

PSS Best Strategy ratio #firstSol
Filo 5.56 5.45 1.02 5,283

Msplt 26.8 201 1.33 678
Tank 1.94 1.24 1.57 39
Gol 127 125 1.014 12,400

We report next the mean of 250 experiments obtained by randomly selecting the
subproblems. The results obtained by PSS are close to the results of the best strategy:

PSS Best Strategy ratio
Filo 7.09 6.19 1.14

Msplt 172 164 1.05
Tank 2.84 2.66 1.07
Gol 101 95 1.07

6.2 Comparison with a Sequential Approach

We compare the results obtained with PSS against the sequential time of the best strat-
egy (Seq+Best) used for each problem. We give wall clock times in minutes.

All-I Costa Filo Lams Qgrp Msplt Sprt Tank Gol Perm
PSS 0.024 1.29 0.33 1.63 0.08 13.52 0.40 0.11 4.62 0.74

Seq+Best 1.6 34.6 5.95 38.8 2.1 515 9.8 2.9 135 21
Ratio 28.4 26.8 18.3 23.8 26.5 38.1 24.2 26.7 29.1 28.6



6.3 Comparison with Multi-armed Bandit (MAB) Approach

The Multi-Armed Bandit selector is based on a model defined on a set of k arms, one
for each strategy, and a set of rewards Ri(j), where Ri(j) is the reward delivered when
an arm i has been chosen at time j. A reward reflects the performance of choosing that
arm. The idea is to select for each subproblem a strategy (i.e., an arm) and then to solve
the subproblem with this strategy. This will give us a reward inversely related to the
solving time. The next selection is based on the sequence of the previous trials. We
propose to use the UCB1 policy defined in [2], which selects the arm i that maximizes

p(i) = Ri +
√

2lnm
mi

, where m is the current number of selection, mi the number of

times i has been selected andRi is the mean of the past rewards of the i arm. This policy
prefers the most rewarded strategy but also biases the selection toward less frequently
selected strategies (this bias factor increases along the iterations). The main difficulty
is the definition of the reward function. We adapt the one of Gagliolo and Schmidhuber
[7] which is designed for resource allocation and defined by: ln(tmax)−ln(ti)

ln(tmax)−ln(tmin)
, where

tmax and tmin are respectively the maximum and minimum solving time and ti is the
time for solving problem i. Experimentally, we obtained the best results by defining
tmax = 10µ and tmin = µ/10 where µ is the mean of the solving times. With such
values we accept some variations and degenerate cases (i.e., very bad solving times) will
give only negative rewards. We denote by MAB this method. Here is the comparison
with PSS:

time ratio w.r.t. best
PSS MAB PSS MAB

All-I 0.9 2.0 1.06 1.14
Costa 49.2 65.4 1.06 1.41
Filo 12.4 36.8 1.04 3.08

Lams 62.0 102 1.06 1.73
Qgrp 3.0 7.8 1.06 2.77
Mspl 515 548 1.04 1.11
Sprt 15.4 19.8 1.03 1.32
Tank 4.1 12.0 1.07 3.13
Gol 176 243 1.05 1.45

Perm 28.1 31.4 1.03 1.15
geo x 1.05 1.68
x 1.05 1.83

The results obtained with PSS are better than with MAB. In addition PSS is more robust.
These experiments show that applying the reasoning on subproblems coming from the
instance to solve is certainly a good idea.

6.4 Comparison with Portfolio

PSS needs 1172 minutes for solving all the problems. The Portfolio-x4 method runs in
parallel the four best strategies. It requires 3959 minutes which is not competitive with
our method.



We also tried to combine our approach with a portfolio approach. PSS-pfolio2 is
the PSS method for which we run in parallel the two best estimated strategies when the
difference between them is small. The following results show that it is never interesting
to run some strategies in parallel.

All-I Costa Lams Qgrp Msplt Perm
PSS 0.9 49.2 62.0 3.0 515 28.1

PSS-pfolio2 1.6 94.0 114 5.4 917 37.9

6.5 Timeout, Sample size and Simple impact

The timeout (TO) may have a huge impact on the selection time as shown by the fol-
lowing table, where “without TO” means that we do not stop any strategy when solving
a subproblem.

with TO without TO
All-I 0.1 4.9
Costa 3.0 16.1
Filo 0.4 17.5

Lams 3.4 9.6
Qgrp 0.2 2.9
Msplt 22.9 82.8
Sprt 0.5 7.8
Tank 0.3 136
Gol 7.9 38.0

Perm 0.8 5.5

We also performed some experiments with a sample size equals to 30 instead of
100. We do not observe any difference for the selected strategy. The best strategy is
selected for all problems.
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8 Conclusion

The Embarrassingly Parallel Search method solves a problem by decomposing it into
subproblems. In order to select the best variable-value strategy to solve a problem,
we propose to use a part of these subproblems and compare some strategies on them.
Then, we select the most promising one by using the Wilcoxon signed rank test. This
method, PSS, is simple and does not require a lot of computations. It can easily be used
in practice because the time allocated to the strategy selection is under control. Some



comparisons with other portfolio approaches show the advantage of our method. We
also give a model based on the Multi-armed Bandit algorithm which gives interesting
results although inferior and less robust than those of PSS. Finally, it appears that it is
better to select only one variable-value strategy than running several in parallel, even if
we make some mistakes sometimes.
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