
The Weighted Spanning Tree Constraint

Revisited⋆

Jean-Charles Régin1, Louis-Martin Rousseau2, Michel Rueher1, and
Willem-Jan van Hoeve3

1 I3S, CNRS, University of Nice-Sophia Antipolis
2 CIRRELT, University of Montreal

3 Tepper School of Business, Carnegie Mellon University

1 Introduction

The weighted spanning tree constraint, or wst-constraint, is defined on an edge-
weighted graph G and a value K. It states that G admits a spanning tree with
weight at most K [3, 4]. It can be applied to network design problems as well
as routing problems, in which it serves as a relaxation. In this work, we assume
that we can represent the mandatory and possible edges that can belong to a
solution to the wst-constraint, e.g., using a subset-bound set variable as in [3].

Dooms and Katriel [3] consider a version of the wst-constraint in which the
weights of the edges are also variable. They propose several filtering algorithms,
including one for the version of the wst-constraint that we consider in this pa-
per. Subsequently, a more practical and incremental filtering algorithm for this
constraint was proposed by Régin [4].

In this work, we extend the algorithm of Régin [4] in several ways. First, we
revisit the computation of the ‘replacement cost’ of tree edges, and present an
algorithm with an almost linear time complexity. Second, we take mandatory
edges into account; that is, edges that belong to every spanning tree having
a weight at most K or that are imposed by the user. Third, we discuss the
incremental behavior of the algorithms when mandatory edges are introduced.

2 Existing Approaches

The task of propagating the wst-constraint consists of a check for consistency,
the removal (filtering) of inconsistent edges from the domain of possible edges,
and potentially fixing edges that must belong to every solution. An important
practical aspect is the incrementality of the algorithms, i.e., efficiently re-using
data structures and solutions from one propagation event to the next. The consis-
tency of the wst-constraint can easily by verified by finding a minimum-spanning
tree in the graph, using a classical method such as Prim’s algorithm or Kruskal’s

⋆ This work was partially supported by the European Community’s 7th Framework
Programme (FP7/2007-2013). It was started when L.-M. Rousseau and W.-J. van
Hoeve were visiting the University of Nice-Sophia Antipolis (June/July 2009).



algorithm. Assuming that the edges are sorted by non-decreasing weight, this
can be done in almost linear time [1]. Identifying inconsistent edges (that cannot
participate in a spanning tree of weight at most K) is more involved, however.
Dooms and Katriel [3] observed that inconsistent edges can be detected as fol-
lows [5]. Let T be a minimum spanning tree, and let (i, j) be a non-tree edge
that we wish to evaluate. We now find the maximum-weight edge on the unique
i-j path in T . If replacing that maximum-weight edge with (i, j) yields a tree of
weight more than K, (i, j) is inconsistent. Similar reasoning can be applied to
determine whether a tree edge is mandatory, i.e., when replacing it would yield
always a tree of weight more than K [3]. Therefore, the detection of inconsis-
tent and mandatory edges amounts to computing the ‘replacement cost’ of the
edges. Régin [4] also applies the replacement cost for non-tree edges to detect
inconsistent edges, but tree edges (and mandatory edges) were not considered.

Several algorithms have been proposed to compute the replacement cost of
the edges, for example by Tarjan [5] and Dixon, Rauch, and Tarjan [2]. These
algorithms allow to compute all replacement costs in time O(mα(m, n)) on a
graph with n nodes and m edges, where α(m, n) is the inverse Ackermann func-
tion stemming from the complexity of the ‘union-find’ algorithm [6]. Other ap-
proaches, such as those referenced by [3] are based on (or resemble) the algo-
rithms of [5] or [2]. Even though these algorithms allow to find the replacement
costs in almost linear time theoretically, the added complexity may not offset
the potential savings in practice, as argued by Tarjan [5]. Moreover, it is not
obvious how to apply the algorithms incrementally. Therefore, Régin proposed
a different algorithm running in O(n + m + n log n) time [4]. We next briefly
describe the main components of this algorithm for later use.

Régin [4] applies Kruskal’s algorithm to find a minimum spanning tree. That
is, we start from a forest consisting of all nodes in the graph. We then successively
add edges, whereby each added edge joins two separate trees. We ensure that
the next selected edge has minimum weight among all edges whose extremities
are not in the same tree. We use a so-called ccTree (‘connected component tree’)
to represent these merges. The leaves of the ccTree are the original graph nodes,
while the internal nodes of the ccTree represent the merging of two trees (or
connected components), defined in the order in which the edges were added to
the tree. An internal node thus represents the edge with which two components
have been merged; see Figure 1a and 1b for an example. Therefore, the ccTree
contains n− 1 internal nodes, where n is the number of nodes in the graph. The
computation of the replacement cost of a non-tree edge (i, j) can now be done
by finding the lowest common ancestor (LCA) of nodes i and j in the ccTree:
the weight of (i, j) minus the weight of the edge corresponding to the LCA is
exactly the replacement cost of (i, j). We refer to [4] for further details.

3 Computing the Replacement Cost of Tree Edges

We next present an algorithm that computes the replacement costs of tree edges
in time O(mα(m, n)). This is the same time complexity as the algorithm pro-



posed by Tarjan [5]. We note that the latter algorithm follows as a corollary
from a generic (and relatively complex) algorithm presented in [5]. Our contri-
bution is a description of a more practical algorithm, specific to the problem of
computing replacement costs, having the same time complexity. We will apply
the algorithm to detect mandatory edges.

Let G = (V, E) be the graph under consideration, with a ‘weight’ function
w : E → R, and let T be a minimum spanning tree of G. For a subset of edges
S ⊆ E, we let w(S) denote

∑
e∈S w(e). The replacement cost of an edge e in T

is defined as w(T 6e) − w(T ), where T 6e is a minimum spanning tree of G \ e. It
represents the marginal increase of the weight of the minimum spanning tree if e

is not used. It can be shown that the new minimum spanning tree can be obtained
by replacing e with exactly one other edge, which is called the replacement edge.
In fact, the replacement cost of e is the weight of its replacement edge minus the
weight of e itself.

Let us first describe a basic algorithm for computing the replacement costs
for tree edges. We start by computing a minimum spanning tree T , and we
label all tree edges as ‘unmarked’. We then consider the edges of the graph,
ordered by non-decreasing weight. If we encounter a non-tree edge (i, j), we do
the following. First, observe that there is a unique i-j path in T , and (i, j) serves
as replacement edge for all unmarked edges on this path. Therefore, we will mark
a tree edge as soon as we have identified its first replacement edge. For example,
in Figure 1, the first non-tree edge that we consider is (3, 4). We thus label the
tree edges (1, 3) and (1, 4) as marked, with associated replacement cost 1 and 2,
respectively. The next non-tree edge is (1, 2), which is used to mark tree edge
(2, 4) with associated replacement cost 2 (edge (1, 4) is already marked).

It can be shown that this basic algorithm computes the replacement costs of
all tree edges. Unfortunately, its time complexity is rather high: we may need up
to n steps to identify the unmarked edges, which gives an overall time complexity
of O(mn). Fortunately, we can efficiently reduce this complexity by contracting

the marked edges of the tree, i.e., we merge the extremities of marked tree edges.
This contraction will be performed by using a ‘union-find’ data structure [6, 1].

First, we root the minimum spanning tree, i.e., we designate an arbitrary root
node, and we organize the nodes in a directed tree with parent information. In
addition, each node is associated with a pointer p to its parent in the union-find
data structure. Initially the pointer p of every node points to the node itself.
When an unmarked edge is discovered, we ‘contract’ the edge by letting the
pointer p now point to its father. We then apply the classical ‘find’ function,
associated with its classical updates. That is, the pointers of the union-find data
structure are used to traverse the path between the two extremities of a non-
tree edge. Note that we move up in parallel in the tree from the two extremities.
We stop when the same node is reached by the two traversals (one from each
extremity). For example in Figure 1, suppose we let node 1 be the root of the
tree. After processing the first non-tree edge (3, 4), the updated pointers are
p(3) = 1 and p(4) = 1. For the next non-tree edge (1, 2), the algorithm directly
proceeds from the parent of 2 (node 4) to p(4), which is node 1.



The advantage of this method is that it is easy to implement. Moreover, we
will have at most n − 1 contractions because the tree contains n − 1 edges. In
addition we will have at most m requests, thus we obtain the classical union-find
complexity of O(mα(m, n)). We note that the replacement cost for tree edges
can be used to identify mandatory edges: an edge is mandatory if its replacement
cost is higher than K − w(T ), see also [3].

4 Mandatory Edges and Incrementality

We next consider the implications of introducing mandatory edges on the main-
tenance of the minimum spanning tree, in the context of the propagation algo-
rithms of Régin [4]. First, observe that we need to update our minimum span-
ning tree, and other necessary data structures when both tree edges and non-tree
edges become mandatory. If a non-tree edge becomes mandatory (for example
as a result from inference by other constraints), we clearly need to find a new
minimum spanning tree that includes this edge. If a tree edge becomes neces-
sary, it can remain in the tree, but we do need to update the data structures to
forbid this edge from being used as a replacement edge. Recall that the main
data structure used in [4] is the ccTree. We propose two different methods to
update the minimum spanning tree and the ccTree upon the addition of manda-
tory edges. The first method is based on recomputation. The second method is
based on ‘repairing’ the current minimum spanning tree and ccTree.

The first method can be implemented in a straightforward manner by using
the existing algorithms. Namely, we can associate an appropriate low weight
value to the mandatory edges, which will then be added first to the minimum
spanning tree (assuming that we use Kruskal’s algorithm, that adds the edges
ordered by non-decreasing weight). After all mandatory edges have been added,
the algorithm will proceed with the other edges. Then we can rebuild the ccTree
by considering the tree edges in the order of addition, which takes O(n) steps.
The advantage of this approach is that the mandatory edges will never appear
as an LCA to compute the replacement cost of a non-tree edge, except for the
special case when the edge under consideration forms a cycle with mandatory
edges only. In fact, we can avoid such special cases by removing all non-tree
edges between the nodes in each component formed by the mandatory edges.
This first method works well when several edges have become mandatory during
one propagation event. When only a few edges become mandatory, our second
method will be more efficient.

The second method rebuilds a new ccTree from the existing one. Consider a
mandatory (non-tree) edge (i, j). When this edge enters the minimum spanning
tree, it will replace the LCA of i and j in the ccTree, i.e., the LCA disappears.
As a result, we need to re-build the ccTree up to the point of the previous LCA.
That is, we need to revisit the order of the nodes along the paths from i and
j to the LCA. Without loss of generality, we assume that i has been added to
the ccTree before j. We start by merging i and j (this is the mandatory edge).
Then, we proceed by going up the i-LCA path and j-LCA path, starting from



1
2

4

5

6

7
8

9

3

2

4

1

3

5

4

7

6

4

8

3

65

2

1 4 3 2 6 5 7 9 8

(1,4): 1

(1,3): 2

(2,4): 2

(4,6): 4

(7,9): 4

(5,7): 3

(6,8): 6

(3,5): 5

1 4 5 3 2 7 6 9 8

(1,3): 2

(1,4): 1

(4,5): 6

(2,4): 2

(5,7): 3

(4,6): 4

(7,9): 4

(6,8): 6

a. MST b. The ccTree c. Updated ccTree

Fig. 1. The minimum spanning tree (MST, in bold) for a small example (a.), its ccTree
(b.), and the updated ccTree after the addition of the mandatory edge (4, 5) (c.)

i and j, respectively. Let ci and cj be the current node on the i-LCA path and
j-LCA path, respectively. As long as the weight of the parent of ci is at least the
weight of the parent of cj, we let ci be its parent and continue. If the weight of
the parent of cj is less than the weight of the parent of ci, we insert cj between
ci and its parent. In other words, cj has as ‘left’ child ci, and as ‘right’ child
its subtree in the path from j to the LCA (which is always a single node). We
then update cj to be its original parent in the j-LCA path, and repeat the
process until the two paths are fully combined (i.e., we reach the position of
the previous LCA). Figure 1 provides an example of our second method. To the
example presented in Figure 1.a, we introduce the mandatory edge (4, 5). From
the ccTree in Figure 1.b, we determine that the LCA for nodes 4 and 5 is the
internal node marked with edge (3, 5) with weight 5, which will disappear from
the ccTree. Execution of our second method yields the repaired ccTree, depicted
in Figure 1.c. The main benefit of this second method is that it needs to update
the minimum spanning tree (and the ccTree) only locally. In the worst case, its
time complexity may be O(n), but the expected time complexity is much lower.

Bibliography

[1] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

[2] B. Dixon, M. Rauch, and R. Tarjan. Verification and sensitivity analysis of mini-
mum spanning trees in linear time. SIAM J. Comput., 21(6):1184–1192, 1992.

[3] G. Dooms and I. Katriel. The “not-too-heavy spanning tree” constraint. In CP-

AI-OR’07, volume 4510 of LNCS, pages 59–70. Springer, 2007.
[4] J.-C. Régin. Simpler and Incremental Consistency Checking and Arc Consistency

Filtering Algorithms for the Weighted Spanning Tree Constraint. In Proceedings of

CPAIOR, volume 5015 of LNCS, page 233. Springer, 2008.
[5] R.E. Tarjan. Applications of path compression on balanced trees. Journal of the

ACM, 26(4):690–715, 1979.
[6] R.E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of

the ACM, 22:215–225, 1975.


